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Abstract: This paper presents a software component, the plan database, which
provides the needed services to define plans, execute them and more importantly
adapt them during execution. This plan database handles fully dynamic plans
(insertion and removal of tasks), defines task transformation operators and
provides tools for safe concurrent execution and modification of plans. These
features are essential in multi-robot and human-robot contexts, where tasks need
to be easily passed between systems and plan adaptation helps coping with the
unpredictability inherent to systems where multiple agent make decisions.
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1. INTRODUCTION

In robotic systems, the planner rarely produces
results directly executable by the platform. It is
often needed to have an intermediate component,
whose role is to manage the functional layer, based
on the execution state and the information avail-
able in the plan. Moreover, this execution com-
ponent can handle “simple cases”, so that upper
layers do not have to manage all events that come
from the functional layer: it typically performs
error recovery and a limited form of script-based
plan generation. To ease the development of these
executives, tools like TDL (Simmons and Apfel-
baum, 1998), OpenPRS (Ingrand et al., 1996) or
ESL (Gat, 1997) have been designed.

One problem with this approach is that two com-
ponents, the planner and the executive, are keep-
ing two different plans. The first often lacks in-
formation about the execution state, while the
second lacks information about high level goals,
which are usually handled by higher layers. One
can therefore not manage the plan globally: an
error in the lower layers cannot be linked to the
upper-level plan, state and time estimation in the
higher layers cannot use low-level knowledge.

On the contrary, in the Claraty (Estlin et al.,
2001) architecture, a single plan is being managed
by a central component. Claraty then provides
a simple mechanism to ensure that the part of
the plan being executed will not be changed by
the planner: a floating “line” separates the long-
term plan, which can be freely modified by the
planner, from the short-term which is handled by
the executive and read-only for the planner.

The IDEA (Finzi et al., 2004) architecture defines
a hierarchy of agents, each of which plans a subset
of the whole plan and then sends part of it to
other agents for further processing. This allows
for instance to use a fast, reactive planner for
low-level tasks and a long-term planner for high-
level ones. Since the IDEA planners share plan
representation, they can maintain coherency in
plans of all agents. The common plan model of all
IDEA agents is however too restrictive to allow
the use of many different planners.

All these architectures lack the ability to effi-
ciently remove tasks from plans. The reason is of-
ten that the planners themselves lack this ability.
Our experience in developping robot systems show
that this capability is nonetheless essential when
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Fig. 1. The plan database is a system component
that represents and maintains plans during
execution

the mission set is highly dynamic. This paper
outlines a plan management component, the plan
database (pDB), which provides services aimed at
addressing these issues:

• fully dynamic: it defines a set of plan modi-
fication operations that are to be performed
by the pDB.
• simultaneous execution and modification of

the plan. It provides a generic tool to han-
dle conflicts between plan modifications and
execution.
• reduce redundancy: plan operators promot-

ing the reuse of tasks already present in the
plan

We first provide an overview of our system, and
present its behaviour using an example. Then, we
describe how plans are modeled in the pDB and
how they are managed during execution. Finally,
we describe the current implementation of this
system and outline future work.

2. OVERVIEW

Fig. 1 presents the context in which the pDB
is inserted. Plan generation tools (planners) are
responsible for producing coherent plans, and the
functional layer is a service layer which provides
algorithms and interface between the software and
the real world. Between these two, we introduce
three components: the pDB maintains a plan,
which is a graph of tasks and events defining
what the robot may do in the future and how it
will do it. This plan is continuously interpreted
by the executive to produce actual actions, us-
ing an event-based model. The decision control
component is the management component which
calls the planners to produce new plans for new
missions, or for contingency planning for instance.
It also takes the decisions needed by the executive:
since our framework allows simultaneous planning
and execution, we may need sometime to choose
between the central plan being executed and the
partial plans that are being built by the plan
generation tools. This role of the decision control
component will be explained in more details with
the central tool for simultaneous planning and
execution: transactions.

Let’s assume that an operator needs a transport
to a given point C. A robot is given this particular
mission, which is an initial plan made of only one
task: Provide(what: Transport, at: C). This

plan cannot be executed yet since there is no infor-
mation on how this would be done. We therefore
need to develop this task.

From the database point of view, planner results
are a set of plan modifications which, when ap-
plied to the current plan, will produce a new
global and coherent plan. The database does not
check the coherency of generated plans, it provides
tools to adapt them and to safely manipulate the
global plan while concurrently executing it.

Since planning is in general far from being fast,
the system must be able to ensure that a set of
modifications is valid despite the changes brought
by execution. To that end, the database provides
transactions: this is a sandbox in which planners
can freely generate the needed set of modifications
without changing the global plan, this set being ap-
plied atomically when planning is finished. These
modifications are gathered in one well-defined ob-
ject such that the pDB can check their validity
with respect to the global plan being executed.

In our example, a planner is selected for Provide
by the decision control. This planner begins
a transaction, and produces the set of plan
modifications leading to a simple Provide →
MoveTo(from: A, to: C) 2-tasks plan and ap-
plies these modifications by committing the trans-
action. Before it can be executed, however, a
specific MoveTo modality has to be chosen. For
example, our all-terrain rover has two motion
modalities (Peynot and Lacroix, 2005) (Fig. 4).
The NDD modality performs reactive obstacle
avoidance by using a 2D laser range finder and
can be used only on flat terrain. For more difficult
terrain, the P3D modality uses stereovision to
produce a 3D terrain model, which is then used
to compute local robot path. The first one allows
faster movement, while the second one is more
robust. We therefore want to use NDD when the
terrain allows it, and P3D otherwise.

To be on the safe side, decision control begins by
selecting the P3D modality (safe, but slow). We
replace the MoveTo task with P3D::MoveTo(from:
A, to: C). Note that the plan database knows
that it can switch between NDD::MoveTo and
P3D::MoveTo in this context, since from the point
of view of Provide, they are both equivalent to
MoveTo. The replace operator handles exchanging
such alternatives.

However, changing the kind of MoveTo task on
the fly is not that simple: we cannot have both
modalities active at the same time, as it would
mean that there is a way to send commands
to engines from two different sources, which is
forbidden in our functional layer. Therefore, when
we switch motion modality there is a period of
time where none is active, which breaks the plan.
However, if the duration of the switch is short
compared to the system dynamics, this break can
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Fig. 2. Example: a robot has two goals: going to C
and taking a picture at an intermediate point
B. The corresponding plan is a directed graph
of tasks and events.
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Fig. 3. The insertion of GetPicture into the
initial plan for Provide requires that we split
the original MoveTo(from: A, to: C) into
two sequential motions

be allowed. The pDB defines plan repairs to do
this in a controlled way.

Suppose now that during the execution of Provide,
the operator decides that a picture is needed at an
intermediate point B, which is not far from the
planned path. The GetPicture(at: B) mission
is inserted into the rover plan using a transaction.
To allow synchronization between the movement
and GetPicture, a new event B is dynamically
added to MoveTo (Fig. 2). Adding this event to
the task instance allows to express that we need
synchronization on a particular position of the
robot and that the robot should pass close to B
(events are presented in more details in 3.1). If
that is no longer possible, the B event enters a
particular state which allows us to determine that
the GetPicture cannot be executed anymore.

If the motion passes B before the transaction is
committed, the transaction cannot be committed
anymore since it depends on parts of the plan that
lie in the past. Thus, the transaction becomes in-
valid. In our case, this can be solved by abandon-
ing GetPicture and discarding the transaction.

But if taking the picture is an important mis-
sion, the system should try harder. Using the
split operator, we can pause motion at B before
planning GetPicture and later resume MoveTo.
The resulting plan is in Fig. 3. Arbitration be-

tween abandoning GetPicture or pausing MoveTo
is done in the decision control component.

Having introduced the main plan database con-
cepts, we can define its execution cycle as follows:

(1) event propagation
(2) apply the valid transactions that have been

committed to the global plan
(3) remove the set of tasks that are not required

by any robot mission (unneeded tasks)

3. PLAN OBJECTS

Plans are graphs of two objects: events and tasks
(Fig. 2). Events describe singular happenings dur-
ing task execution and the event graph gives the
information needed to perform some action when
an event is observed. Similarly to TDL and other
systems, tasks describe processes and the task re-
lations provide the information needed to manage
the whole set of tasks.

3.1 Event graph

Events are achievements, for instance “changed
speed” or “is at position P”. During execution,
an event is achieved or emitted if it has already
occured.

Moreover, an event is controllable if there is a
way to make sure that it will be achieved. For
instance, a robot stopped event is controllable,
since the system knows how to stop the robot.
On the contrary, a touched obstacle event is
not. Controllability is implemented by attaching a
procedure, called the event command, to an event.
The event model demands that if an event com-
mand is called, then this event will be achieved
sometime in the future. An event is pending if its
command has been called, but the event is not
achieved yet.

Events are linked with directed relations, which
define what action to take when a particular event
is achieved. Two event relations are defined: if an
event e1 signals a controllable event e2, then the
command of e2 is called when e1 is achieved. If
an event e1 is forwarded to e2, then e2 will be
achieved as soon as e1 is achieved.

3.2 Task models

While controllable events represent a determinis-
tic link between an achievement and its command,
tasks represent processes where simply calling the
command (starting the task), does not allow to
predict that the task will successfully fulfill its
purpose. In the plan database, task models are
defined as a set of events, which are the milestones
of the task execution. Plans are then made of
task instances, which are defined by a task model



and a set of parameter values. During execution,
achievement of the task events is determined ei-
ther internally by the task itself, or externally by
forwarding external events.

All task models define the following events:

• started: the task is started.
• failed: the task has terminated, but did not

realize its purpose. failed is controllable if
the task can be interrupted.
• success: the task has realized its purpose.

A task is achieved when its success event is.
• stopped: the task has terminated.

Obviously, no task event can be achieved be-
fore started or after stopped, and all of above
events can only be achieved once for a given task
instance. Note that all events except started
describe a termination of the task. We there-
fore would want that, for instance, if failed is
achieved then stopped is achieved too. Forward-
ing failed and success to stopped does that.

The definition of multiple events in the same task
model allows to define multiple execution paths.
For instance, one can define in a plan a signal
from the success event of a task, and a signal
from the failed event of the same task. Since
these two events are obviously exclusive, the plan
defines two execution paths.

Task models are managed in hierarchies, where a
parent model defines a more generic task than a
child model. Note that this hierarchy differs from
the refinement hierarchy presented later.

• as tasks are defined by a set of parameters, a
child model defines at least the same param-
eters as its parent. It can define more, but
not less.
• a child model defines a superset of the events

defined in its parent model

It follows that a task t1 can be substituted by
another task t2 if its model is a child of the model
of t1 and if its parameter set is included in t1’s
parameter set.

For instance, NDD::MoveTo and P3D::MoveTo are
submodels of MoveTo, which takes two arguments:
the origin and the destination. Submodels of
MoveTo can take more arguments, such as specific
parameters for the algorithms of each modality.
Moreover, the system can dynamically add a new
event B on MoveTo instances, which is achieved
when the robot crosses a geometric point B. If
new events have been added, then specialized task
instances can be used for substitution only if the
same events can be added to them.

3.3 Task instances graph

To finally form a plan, we need to describe task
dependencies. Our system defines two kind of re-

lations between tasks, which form directed acyclic
graphs: realized by and planned by.

3.3.1. Task refinement hierarchy The realized by
relation defines task refinement, where a task T
is realized by a task t if the achievement of T
requires the achievement of t, or of some of t
events. In that case, t is a child of T and T
is a parent task of t. The child tree is the tree
formed by the realized by relation and rooted by
T . Unlike TDL or TCA, however, the tasks do
not form a task tree but a task graph: one task
can have many children and many parents, which
allows to easily reuse tasks already in the plan.

The realized by relation has the following param-
eters, which are needed for plan management:

• a (model, arguments) pair which defines
what kind of task T needs, following the
substitution principle explained earlier.

• a set Esuccess of events from the child. The
child fullfilled its purpose when an event of
this set is achieved.

• a set Efailure of events from the child. Having
any event of Efailure achieved means that
the child will not realize what the parent was
expecting.

Normally, Esuccess = {success} and Efailure =
{failed}. In Fig. 2, GetPicture needs MoveTo
only until B is achieved, thus Esuccess is {B}.

3.3.2. The planned by relation A task t is
planned by a task T if T represents the plan-
ning process in charge of the achievement of t.
In general, it means that all or part of the subtree
of t has been produced, and can be changed, by
the process T . It can be used when one inserts a
new mission to be realized in the future, but the
system does not have enough information to plan
it yet. It is then possible to simply synchronize the
beginning of the planning process with the end of
the tasks which should bring us that information.

4. PLAN MANAGEMENT

The pDB defines the following services for plan
management:

• task transformation operators: split, replace
and merge (merge is not presented in this
paper as it is still a work in progress).

• handling of unexpected errors
• plan cleanup mechanism to remove unneeded

tasks
• a tool to concurrently modify and execute the

plan: transactions



4.1 Task transformation

The replace(t, T ) operator transparently replaces
the task t in the plan with a new task T . This is
only possible if T is a valid substitution of t for
all the hierarchy relations t is part of. To replace
running tasks, we need to check that the two
task models are equivalent (which is done by the
pDB), but also that they are in the same execution
state. This is done internally by the two tasks: T
should provide a method which ensures that its
state is equivalent to the one of t, given the task
models needed by t’s parents. In simple cases like
the MoveTo replacement, it ensures simply that a
running task is replaced by a running task.

The (t1, t2) = split(t, split at) operator (Fig. 3) is
used to plan the pause of a given task, and then
resume it. split has the property that executing
t1 and t2 in sequence gives the same result that
the whole task t, and that in between t1 and t2,
we can assume that t is not running. In practice,
this kind of plan modification may be problematic
during task removal: if the Camera::GetPicture
is removed during plan execution, we shall merge
the two tasks back into the original task. This
problem will be handled by merging mechanisms
that are still under development.

4.2 Error handling

We want to be able to express plans where fail-
ure is explicitly taken into account. Therefore,
like ESL (Gat, 1997), and unlike TDL (Simmons
and Apfelbaum, 1998), failures are not always
exceptional conditions. Separation between differ-
ent failure modes is then done by defining new
events which are forwarded to failed. There-
fore, the model does not consider that all non-
nominal events are errors. While TDL would for
instance handle a failed movement as an excep-
tion (Simmons and Coste-Manire, 2000), this is an
error so common in unknown environments than
its correction should have already been planned.
However, if it is not the case, the executive looks
for an error handler in the task refinement hierar-
chy and the planning tasks. If no handler is found,
the failed task is removed.

Another central tool for for error management
allows to asynchronously repair the plan: one can
register a task as repairing some parts of the
plan (for instance handling the failed event of
MoveTo). The plan can then remain broken at this
failure point. A timeout ensures that it remains
so only for a period of time short with respect
to the system dynamics: the executive considers
that the plan is being repaired as long as the task
is running and will not raise the corresponding
exceptions. If the plan is not repaired when the
task is finished, or when the timeout is achieved,
normal exception handling is resumed.

4.3 Plan cleanup

During the lifetime of the system, tasks will be
inserted and removed dynamically. We need to
be able to determine what tasks can be removed,
given that we know what are the high-level goals
of the robot: if we remove a high level task like
GetPicture in Fig. 2, we need to remove some of
its children (in this case, Camera::TakePicture).
There are therefore two kinds of tasks in a plan.
The missions are the high-level goals of the robot,
while the remaining of the plan exists to achieve
these missions. It follows that the plan can be split
into a set of tasks needed by the set of missions,
and a set of tasks that are not useful in the context
of the current missions. The first set is part of the
child tree of a mission, while the second is not.
Note that a mission is in general not explicitly
removed by an external tool: it is marked as not
being a mission anymore, and the system will
clean it up itself.

Planning tasks are handled differently. Since a
planning task objective is to produce a plan for
a set of tasks in the plan, they can be cleaned up
only if all the tasks they are planning are marked
as being removed as well.

While tasks that are not running can be simply
removed, running tasks should be stopped before
they are removed. Since their stopped event com-
mand can handle both the end of the task itself,
but also of its child tasks, we can’t remove a task
which is in the realization tree of a running task.
Therefore, the cleanup algorithm is as follows:

(1) Remove all tasks in the plan which are not
needed anymore, which have no parent task
and which are not running.

(2) Repeat until there are no more such tasks.
(3) Compute the set of tasks which are not

needed anymore and which have no parent.
(4) For all tasks in this set that have a control-

lable stopped event, call that event.

While cleanup is running, no event is propagated
and no plan modification is done.

4.4 Concurrent plan modification and execution

One of the main contributions of this plan man-
agement system is to provide the tools needed for
safe modifications of plans during execution.

While one can modify the global plan directly,
it is dangerous as the executive would begin the
execution of some parts that are not finished
yet. Currently, most executives solve this problem
by forbidding the modification of the short-term
plan. We find this solution quite limited since a
low-level executive shall often do reactive modifi-
cations of the plan. Our pDB offers transactions,
which gives a context to build a set of plan mod-
ifications outside of the global plan, subsequently
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Fig. 4. Task refinement of motion modalities.
Because the two modalities need the Rflex
to control the robot motors, they can’t be
running at the same time.

committed either all at once or not at all. The
transaction is checked before commit for sound-
ness: the commit is therefore only an application
of plan changes, and thus is not a CPU intensive
task. Transaction commits can thus have their
own slot in the execution cycle, which means that
no event propagations is done during the commit.

As we saw in section 2, concurrent execution and
planning can lead to invalid transactions: the
transaction depends on the MoveTo task, which is
running while in the main plan while the trans-
action is being built. If during planning the B
event, which is depended-upon by the tranasction,
is emitted the transaction becomes invalid and
cannot be committed. An invalid transaction can
be discarded or repaired by changing the transac-
tion, the global plan, or both. Choosing the way
to handle transaction invalidation is done by the
decision control component, whose role here is two
choose between a modification of the transaction
or a modification of the plan, by calling plan
generation components if needed.

In this example, the B event is emitted but its
command (if it would have one, which is not the
case) has not been called by the executive. We
may have situations where the transaction is inval-
idated because of plan signalling: for instance, if a
signal was to terminate the MoveTo task by calling
its failed event, decision control would have to
choose between doing this signal and invalidating
the transaction, or forbidding the signal. If the
signal is chosen, the transaction is invalidated and
the resolution procedure is the same as before.
However, if the transaction is chosen, an exception
is thrown from the signal source, whose effect
would be to either change the plan so that the
MoveTo task shall not be stopped, or remove the
part of the plan which was relying on this signal.

5. CONCLUSION

The pDB is currently implemented in the Ruby
language, on top of the GenoM 1 (Fleury et
al., 1997) functional layer, and will be used on

1 available at http://softs.laas.fr/openrobots

both a rover and a blimp. Plans are currently
produced using a simple script-based plan gener-
ator similar to the plan generation capabilities of
TDL. Moreover, a multi-robot interaction scheme
is in development to meet the needs of our ex-
perimentation. This scheme bases interaction on
the capabilities of an agent to provide information
which can facilitate the execution of another agent
tasks: in our experimentation, the blimp will pro-
vide traversability information to the rover.

One of our research objectives is to allow the
simultaneous use of multiple planners in the same
system, in order to use the more efficient plan-
ner according to current needs. This cannot be
achieved without plan merging mechanisms. The
development of a merge operator is an ongoing
work that is based on the presented substitution
principles, event and task structure and an addi-
tional conflict predicate for tasks that can not be
executed in parallel.

The contributions of this paper are the plan model
and the set of plan management mechanisms built
around it. The pDB allows insertion and removal
of tasks, using the task hierarchy to detect the
consequences of the removal operation. It also
provides a mechanism to safely modify a plan
online, transactions, which guarantee that there
are no partial modification of the global plan.
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