
HAL Id: hal-01979781
https://laas.hal.science/hal-01979781v1

Submitted on 13 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Decision making in multi-UAVs systems: Architecture
and Algorithms

Simon Lacroix, Rachid Alami, Thomas Lemaire, Gautier Hattenberger,
Jérémi Gancet

To cite this version:
Simon Lacroix, Rachid Alami, Thomas Lemaire, Gautier Hattenberger, Jérémi Gancet. Decision
making in multi-UAVs systems: Architecture and Algorithms. In: Ollero A., Maza I. (eds) Multiple
Heterogeneous Unmanned Aerial Vehicles., 37, Springer Berlin Heidelberg, pp.15-48, 2007, Springer
Tracts in Advanced Robotics. �hal-01979781�

https://laas.hal.science/hal-01979781v1
https://hal.archives-ouvertes.fr

Decision making in multi-UAVs systems:
Architecture and Algorithms

Simon Lacroix, Rachid Alami, Thomas Lemaire, Gautier Hattenberger and
Jérémi Gancet

LAAS-CNRS, 7 avenue du colonel Roche, 31400 Toulouse
firstname.name@laas.fr

Summary. This chapter depicts an architecture that aims at designing a multi-
UAV framework enabling cooperative operations in a system in which some UAVs
are directly controlled by an operator, others are only endowed with operational au-
tonomy, and others have decisional autonomy capacities. The architecture provides
with the possibility to configure dynamically the decisional scheme, depending on
the available robots and on the operational context.

A taxonomy of robots decisional autonomy is introduced, and used as a foun-
dation to state the proposed architecture. The various functionalities on-board each
robot are organized among a repartition that exhibits on-board functional compo-
nents, and on-board or on-ground generic executive and decision making processes.

A set of algorithms that fulfill the three main decision-making functionalities
required in a multi-robot system are then presented: a contract-net protocol that
can handle task allocation for complex multi-UAV missions, a planning scheme based
on a Hierarchical Task Networks planner completed with plan-refiners that consider
the actual domain models, and an executive system that handles the coordination
and task execution issues.

1 Introduction

Several UAV projects have been led by different research teams. Many are
focused mainly on the development of advanced flight control abilities, e.g.
to achieve aggressive maneuvers with helicopters, and others rely on opera-
tional UAV autonomy, i.e. the UAVs receive a pre-planned sequence of tasks
to achieve, and do not exhibit high level planning or decisional skills – a no-
ticeable exception being the Witas project at Linköping University [1]. When
it comes to multi-UAVs, various topics have been studied. In the Anser project
[2], the focus is set on the data fusion between multiple vehicles, e.g. to recover
the positions of features on the ground [3].

Several contributions tackle the formation flight problem according to a
control theoretic approach [4, 5], or using reactive behavior-based controllers
in [6]. For this problem, the deliberative activities consist in determining the

2 Lacroix, Alami, Hattenberger, Lemaire and Gancet

trajectories to be followed by the formation (according to either a centralized
[7] or distributed paradigm [8]), in selecting the internal formation geomet-
ric configuration [9], and in achieving switches between two given geometric
configurations [11].

Fewer contributions deal with multi-UAVs problems according to a de-
liberative paradigm, where the UAVs exhibit cooperative and coordinated
activities produced by high level planners, while maintaining reactive abilities
during the execution of the plans (e.g. [10, 12, 13]).

Problem statement

We are interested here in the deployment of a multi-UAVs system to achieve
observation missions. These missions can consist in detecting particular events
over a given area, in monitoring their evolution, or in surveying (mapping)
a given area. The system is controlled by the operators, in the sense that it
achieve missions decided by operators according to their needs and the current
knowledge of the situation they have access to. In particular, depending on the
situation, a human operator should be able to handle the control of any UAV,
at any control level. This implies that the operators should be able to specify
high level missions, elementary tasks (such as setting a waypoint to reach by a
particular UAV), or could even directly control the motions of an UAV. This
is an essential feature required in any multi-UAV application context, where
the operators need to master the activities of the whole system. Of course,
this does not preclude the autonomous achievements of elementary tasks or
high level missions: tedious and repetitive operations such as surveying an
area relieve the operators if they are performed autonomously. There are even
cases where only an advanced planning and control system is able to efficiently
succeed, e.g. the coordinated operations of two or more UAVs flying out the
operators line of sight is extremely difficult to control remotely.

The main consequence of this “controlability” requirement is that the sys-
tem must be able to integrate UAVs with various levels of autonomy, from
simple teleoperated UAVs to UAVs endowed with mission planning abilities.
In other words, the system must enable both centralized (i.e. human-centered,
via a central ground station) and distributed (i.e. delegated to UAVs) con-
figurations of the decision. This significantly influences the design and imple-
mentation of the decisional architecture and algorithms introduced here.

Approach and outline

The overall system architecture follows a classic ground station / flying seg-
ment scheme. The central ground station is endowed with all the necessary
monitoring facilities (in particular, it can include a data processing module
that help the operators to assess the situations). It also has some UAV control
means, and mission design and planning abilities.

Decision making in multi-UAVs systems 3

The ability to integrate heterogeneous UAVs1 and to exhibit adjustable
autonomy is mainly brought by the design of the UAV on-board architec-
ture and associated tools. Section 2 depicts this architecture, that provides
with the possibility to configure dynamically the overall decisional scheme,
depending on the available robots and on the operational context. A taxon-
omy of robots decisional autonomy is introduced, and used as a foundation to
state the proposed architecture. It incrementally describes increasing schemes
of autonomous decision-making, ranging from no decision-making capabilities
up to autonomous task planning capabilities, autonomous coordination and
even autonomous dynamic task re-allocation among the UAVs.

Many single UAV missions can be achieved only with operational auton-
omy abilities: the UAV receive a pre-planned sequence of tasks to achieve, and
do not need high level decisional skills. But multi-UAV systems involve more
temporal constraints and higher uncertainties on tasks execution: they can re-
quire higher autonomy abilities, ranging from coordinated execution control
to task allocation. Sections 3 to 5 presents a set of algorithms that enable
various levels of autonomous abilities :

• section 3 depicts an executive system that handles the coordination and
task execution issues,

• section 4 presents a mission planning scheme based on a Hierarchical Task
Networks planner completed with plan-refiners that consider the actual
domain models,

• and section 5 presents a distributed allocation scheme based on a contract-
net protocol, that can handle complex multi-UAV missions with temporal
constraints between tasks.

2 UAV architecture

Numerous robots architectures have been proposed in the literature. Sub-
sumption architectures [15, 16], exhibit behavioral robots models built upon
reactive capabilities, whereas layered models explicitly divide up robots capa-
bilities, as in the three-layers architectures (deliberative, executive and func-
tional) [17, 18], or the 2-tiered CLARATy architecture [19]. Multi-robot archi-
tectures embrace additional concerns: designing a multi-robot architecture re-
quires the definition of the decision making scheme and the specification of the
interaction framework between the different robots, which of course influences
the definition of the individual robots architecture. ALLIANCE [21] provides
a behavior-oriented solution, enabling the design of totally distributed, fault
tolerant multi-robot systems, whereas Simmons & al. [20] extend the three-
layers architecture model within a multi-robot framework, where interactions
between robots may occur along the different layers.
1 the word “heterogeneous” being essentially related to decisional autonomy capa-

bilities

4 Lacroix, Alami, Hattenberger, Lemaire and Gancet

Each of these multi-robot architectures enables the coordination and coop-
eration of several robots, but assumes a given homogeneous level of decisional
autonomy for all the robots. They can enable the integration of physically
heterogeneous robots, but can not cope with heterogeneous robots in terms
of decisional capabilities.

2.1 A taxonomy of decisional autonomy capabilities

In any multi-robot system, decisional autonomy encompasses the following
four abilities:

• Task allocation: How to distribute tasks among the robots ? This requires
to define both a task assignment protocol in the system, and some metrics
to assess the relevance of assigning given tasks to such or such robot.

• Mission refinement, planning and scheduling: How to transform a task
or a mission into an executable sequence of actions ? These decisional
activities are dedicated to plan building, considering models of the actions
of the involved UAV, and of the environment.

• Coordination: How to ensure the consistency of the activities within a
group of robots ? This requires the definition of mechanisms dedicated to
prevent or solve possible resource conflicts (time and space resources), as
well as mechanisms to plan and control the execution of joint cooperative
tasks.

• Supervision and execution control: How to ensure that the planned tasks
are correctly executed ? A system that manages the task execution and
consider the encountered contingencies is required for that purpose.

These decisional components can be implemented according to different
multi-robot systems configurations: they can be gathered within a central
decisional node, or be partially (or even totally) distributed among the robots
themselves. We define the “level of autonomy” of a robot as the amount of
decisional components it is endowed with, and consider the following five levels
(figure 1):

• Level 1: no autonomy on board the robot. The robot is only able to
directly execute elementary tasks requested by the central decisional node.

• Level 2: executive capabilities. The robot is able to manage partially
ordered sequences of elementary tasks, and to return execution status of
the tasks.

• Level 3: same as level 2, plus coordination capabilities. The robot may
manage on-line simple interactions (synchronizations) directly with other
robots endowed with at least the same level of decisional autonomy.

• Level 4: distributed deliberative capabilities. High level tasks requests
are managed (task planning and scheduling), and the multi-robot tasks
coordination is autonomously ensured in a distributed way among robots
endowed with at least the same level of autonomy.

Decision making in multi-UAVs systems 5

• Level 5: same as level 4, plus tasks re-allocation capabilities. The robots
may opportunistically re-allocate tasks and accept new tasks from other
robots of the system endowed with the same level of autonomy.

Fig. 1. 5 levels of decisional autonomy. C stands for ”Centralized”, and D stands
for ”Distributed”.

This taxonomy is characterized by a large gap between levels 3 and 4:
up to level 3, a Centralized Decisional Node (CDN) is expected to ensure
the global consistence of the system’s activity: levels 1 to 3 are considered
as “low levels” of decisional autonomy. Whereas levels 4 and 5 introduce
the possibility to delegate coordination and mission refinement activities in
a distributed way (“high levels” of decisional autonomy, embedded in the
Distributed Decision Nodes – DDN), robots belonging to the fifth level being
able to dynamically refine the allocation of tasks between them.

This taxonomy is to be understood in terms of incremental delegation
of decisional capabilities by the multi-UAV system’s user toward the UAVs.
From the user’s point of view, level 1 means a centralized full control of the
system (centralized should be considered as available for operator). Level 2
enables an autonomous execution of partially ordered plan. Level 3 provides
autonomous inter-UAV synchronization capabilities. Then a large gap appears
between levels 3 and 4: up to the level 3, the CDN performs tasks planning
and ensures the global consistency of the UAVs activities. Whereas level 4 is
related to delegating mission refinement and planning activities to the UAV.
Finally, level 5 enables autonomous tasks re-allocation : this is the highest
delegation of decision making (i.e. the CDN only expresses high level goals to
be achieved.

2.2 Decisional architecture

Figure 2 depict the overall architecture of the UAVs, for both low levels and
high levels of decisional autonomy. A CDN communicates with robots, ex-

6 Lacroix, Alami, Hattenberger, Lemaire and Gancet

changing messages whose abstraction is defined according to the robots levels
of autonomy. Each robot has a number of functional components, and is en-
dowed with a generic Distributed Decisional Node (DDN) that enables var-
ious configurations of decisional autonomy, ranging from the simplest up to
the highest decisional capabilities. It encompasses an executive (this executive
being actually common to all levels, we denote it as the Multi-Level Executive
- MLE), and a Deliberative Layer (DL) which provides robots with higher
levels of decisional capabilities.

• The Multi Level Executive. For the low levels, the DDN is restricted
to an executive. For level 1, the MLE behaves as a transparent connecting
point between the CDN and the robot’s functional components. For levels
2 and 3, it manages tasks sequences execution, and at level 3 it enables
simple coordination interactions with other robots of the same level (these
mechanisms are detailed in section 3). It acts in the same way for levels 4
and 5, the only difference being that it is interfaced with the UAV’s DL
instead of the CDN.

• The Deliberative Layer. For the high autonomy levels, the DL deals
with missions and tasks refinements, coordination activities, and task re-
allocation (for level 5). It encompasses the following components (figure
2):
– The symbolic planner builds flexible plans skeletons: it transforms high

level missions requests into partially ordered plans. For that purpose,
it uses the algorithms of the specialized refiners (4.3).

– The specialized refiners gather a set of features to support tasks decom-
positions and refinements during planning and coordination, relying on
the UAVs and the environment’s models.

– The interaction manager provides the means to coordinate UAVs activ-
ities, relying on distributed negotiation mechanisms, as Contract Net
protocol to handle task allocations for instance.

– The supervisor has a central position in the DL: it transmits missions
refinement requests to the symbolic planner, then triggers negotiation
sessions with the interaction manager in order to coordinate the result-
ing plans. It finally sends plans to be executed toward the MLE, and
monitors returned tasks / plans execution status.

3 Execution control

We focus here on the functionalities of the Multi-Level Executive, using the
context of an environment surveillance mission as a support example.

3.1 General task model and assumptions

The task model is built around elementary events processing: these events
are expected to occur whenever the states of tasks evolves. Events can also

Decision making in multi-UAVs systems 7

Fig. 2. DDN’s components

correspond to other noticeable activities evolution, such as the reception of a
message, or the elapsing of a certain amount of time. Tasks have a temporal
extent: a task starts, then ends after a certain amount of time. The starting
event is the only controllable event: all other kind of events related to a task
are contingent, i.e. the system can not guarantee that such an event will occur,
neither exactly when it may occur. A task can give rise to several, partially
ordered contingent events during its execution.

For the low levels of autonomy, the Central Decisional Node (CDN) is
supposed to be able to elaborate a safe and consistent multi-robot plan, and
therefore to provide the robots with the tasks to be processed, according to a
task communication formalism. On the other side, the minimal requirement
expected from a robot is its capability to execute elementary tasks, i.e. unitary
“simple” tasks that can be handled by robot’s functional components. In the
an environment surveillance mission, the following tasks are expected to be
processable by a robot integrated in the system: take-off (TO), go-to (GT),
take-shot (TS), wait (WT), and land (LD).

Integrating an UAV in the whole system requires to have this UAV en-
dowed with a basic interface enabling elementary tasks information transmis-
sion (request, status, execution’s result). For that purpose, an elementary task
formalism has been developed (figure 3 – its specification is not necessary to
detail here).

3.2 Executive’s mechanisms

For the first level of decisional autonomy, the MLE is passive: it only transmits
the elementary tasks requested by the CDN to the functional components of
the robot, and sends back execution status.

8 Lacroix, Alami, Hattenberger, Lemaire and Gancet

Fig. 3. Communication formalisms in the low decisional autonomy levels configu-
rations

For the second decisional autonomy level, the MLE manages partially or-
dered sequences of tasks in a consistent way and in a timely and safe manner.
Two main mechanisms are involved for this purpose:

• dynamic tasks insertion: this enables the possibility to request tasks
insertion in the current task plan, according to an insertion mode that will
characterize the relative order of the newly inserted task versus the current
partial order of the already scheduled tasks. Four possible insertion modes
are defined:
– SEQuential (SEQ) mode: This is the most common possibility to

insert a new task in the plan. The task has to be provided with a
certain number of preconditions (in terms of expected events), which
satisfaction can be specified either as mandatory or optional : in the
first case, the satisfiability itself should be permanently satisfied, i.e. if
the precondition happens not to be satisfiable anymore, then the task
is aborted. On the contrary, an optional precondition is considered as
satisfied (and hence removed from the task’s list of preconditions) if it
is actually satisfied or if it happens that its own satisfiability becomes
unsatisfiable. In this case, the task is not aborted. Figure 4 illustrates
these precondition mechanisms.

– Very Urgent Task (VUT) mode: this mode is a way to trigger a
priority task, preventing any incompatible task to be executed during
this time: the list of incompatible tasks to prevent should be provided
as parameters of the task insertion. If an incompatible task is already
running, it is interrupted. Otherwise, if an incompatible task is sched-
uled, then it can be either canceled (and de-scheduled) or only delayed
(its preconditions are updated taking into account the task being in-
serted in VUT mode). The expected effect on scheduled incompatible
tasks should be specified as well in the parameters of the task being
inserted.

– DEPendant (DEP) mode: it is a shortcut to insert a task with as
many preconditions as tasks currently scheduled: each precondition is
satisfied when the corresponding task triggers its “end of task” event.

Decision making in multi-UAVs systems 9

Moreover, these are mandatory preconditions (i.e. as defined in the
SEQ insertion mode).

– Non Urgent Task (NUT) mode: it is also a shortcut to insert a
task, setting as many preconditions as tasks currently scheduled: each
precondition is satisfied when the corresponding task triggers its “end
of task” event. However, contrary to the DEP mode, these are optional
preconditions (i.e. as defined in the SEQ insertion mode).

Fig. 4. Top: Examples of tasks insertion and illustration of the corresponding
preconditions dependencies. (1): a VUT task and SEQ tasks with single mandatory
precondition. (2): SEQ tasks with both mandatory and optional preconditions. (3):
NUT task. Bottom: Examples of tasks aborting (1) and illustration of aborting
propagation to dependent tasks having mandatory preconditions (2) and (3)

• dynamic tasks aborting: this mechanism enables the possibility to re-
quest tasks abortion in the current plan. If the task is already running,
then the abortion of the task is an interruption. If the task is not yet
running, then the abortion is a cancellation (the task is de-scheduled).
The abortion triggers a propagation mechanism, that checks which of the
scheduled tasks depend on the aborted task (i.e. the tasks having a precon-
dition expecting an event from the aborted task, like a “end-of-execution”
event): if the dependence is a mandatory precondition, then this task is
also aborted, and so on. If the dependence is an optional precondition,
then the dependence is removed as if the precondition was satisfied, and

10 Lacroix, Alami, Hattenberger, Lemaire and Gancet

the corresponding task is not aborted.

The level 3 of decisional autonomy introduces an additional mechanism
intended to enable autonomous synchronizations from different robots MLEs.
A synchronization can be requested to a given MLE as a particular task, that
produces events (start, running, end...) in the same way as usual tasks do.
It is also possible to insert a synchronization task with particular insertion
modes as defined previously. Two “roles” are specified as parameters of a
synchronization task: sender (S), and receiver (R): S and R are the set of
robots considered respectively as senders and receivers of the synchronization.
When a synchronization task is processed, the MLE checks whether its own
ID is noticed in the S or R sets. Three situations may occur:

• ID ∈ S (only): the MLE has to send a synchronization signal to all robots
which ID belongs to set R. This signal contains the synchronization task’s
ID, and also this robot’s ID. From this robot point of view, the task is
considered achieved.

• ID ∈ R (only): the robot expects to receive synchronization signals from
all robots which IDs belong to the set S. From the point of view of this
robot, the synchronization task is considered achieved as soon as all signals
are received.

• ID ∈ S and ID ∈ R: the robot should both send its own synchronization
signal then wait for signals from all other robots specified in the set S.
The synchronization task is considered achieved as soon as all signals are
received. If S=R, then the synchronization is a general “rendez-vous”
between all robots.

Figure 5 illustrates this synchronization mechanisms.

Fig. 5. Illustration of a synchronization task with 3 robots, in the case of a general
“rendez-vous”

Decision making in multi-UAVs systems 11

3.3 Illustration

These various mechanisms have been instanciated within the COMETS
project[24], and exploited in a scenario that implied a fire detection, confirma-
tion and monitoring task, plus a mapping task. A video depicting the various
phases of the scenario can be seen at www.laas.fr/˜ simon/eden/gallery/videos.php.

4 Multi-UAV distributed mission-planning

4.1 General considerations related to the planning scheme

The symbolic planner we use is based on the Shop 2 HTN planner [23], ex-
ploiting a hierarchical definition of the planning domain. According to this
paradigm, high level methods are decomposed into lower level tasks (either
other methods or operators) when methods’ preconditions are satisfied, until
the planner reaches primitive tasks (operators).

We introduce time thanks to a particular encoding of the domain based on
Multi-Timeline Preprocessing (MTL), according to [23]. This scheme enables
to express durative and concurrent actions, which is very relevant in robot’s
tasks planning.

Moreover, we allow, for every task, the possibility to deal with temporal
constraints: these time constraints are related to wishes or requirements, ex-
pressed in missions requests. Four possible time constraints are enabled in
this way: start before, start after, end before, end after. When a method gen-
erates sub-tasks during its decomposition, these sub-tasks inherit the time
constraints.

We distinguish two kinds of operators: actual operators (AO), correspond-
ing to explicit tasks in the generated plan, and convenience operators (CO),
manipulating intermediary data, but not directly dealing with actual robot’s
tasks.

AOs have the following properties:

• An unique ID (generated during the planning process)
• A dependence list: dependencies dealing with other (previous) operators.

This list built using the MTL properties is used when the MLE receives a
plan to execute: the dependencies are then turned into preconditions.

• A relative starting time: a time interval where the task’s starting should
be triggered.

• A duration: provided by the specialized refiners.
• Time constraints, inherited from higher level methods decomposition, dur-

ing planning.
• Some parameters, according to the operation’s type.

These AOs mainly match the elementary tasks defined previously (e.g take-
off, gotoXYZ, etc.). AOs may also match highest level tasks which can not be

12 Lacroix, Alami, Hattenberger, Lemaire and Gancet

refined in the only UAV’s context : such tasks require multi-UAV refinements,
which occur in a second step, trough the interactions manager. The duration
of such a Joint Task (JT) is not necessarily relevant during plan building,
since it may depend on the task refinement issue in the multi-UAV context:
in this case, the duration is let ”unknown” for this task.

On the other hand, the COs are related to intermediary operations, such as
calling the specialized refiners during planning. Applying such a CO operator
is required before applying any AO operator, since it provides a way to link
symbolic knowledge with actual models of the world: environment, UAVs,
communications, etc.

4.2 Exploiting the specialized refiners during the planning process

Fig. 6. A Shop method for the generation of a ”gotoXYZ” primitive

Fig. 7. CO example: calls the specialized refiners features

Figures 6, 7, 8, illustrate a ”gotoXYZ” method (fig. 6) giving rise first to
the computation (CO, fig. 7) of data related to ”gotoXYZ” task, then applying
the primitive ”gotoXYZ” task (AO, fig. 8). The ”compute-gotoXYZ” operator
sends a request to the specialized refiners for the refinement of the ”gotoXYZ”
task, taking into account initial location and destination location, and the
returned result is added in the current planning state (through the logical

Decision making in multi-UAVs systems 13

Fig. 8. AO example: the ”gotoXYZ” operator

atom ”eval-ok...”, in the operator’s ”add list” field). Then the ”gotoXYZ”
operator exploits the corresponding result (line (1) on fig. 8). Finally, the
result is parsed into the different relevant data, e.g. duration, waypoints and
costs associated to the ”gotoXYZ” operation application (resp. lines (2), (3)
and (4) on fig. 8).

Figure 9 illustrates an instance of ”gotoXYZ” task, as it appears in a final
plan.

Fig. 9. ”GotoXYZ” task, ready to be executed

Actually, the specialized refiners have the means to process data for much
more complex tasks, such as tasks requiring both refinements for perceptions
and path planning (e.g. TSP with planned perceptions, see section 4.3).

14 Lacroix, Alami, Hattenberger, Lemaire and Gancet

Exploiting resulting plans - multi-UAV coordination issues

Only the AOs are notified in the final plan. Such a plan is ready to be executed
iff it does not contain any task requiring coordination with other UAVs, i.e.
JTs. However, if the plan contains JTs, the plan coordination is performed in
a second step, through the interaction manager.

The interaction manager provides the means to coordinate UAVs activities,
relying on distributed negotiation mechanisms. All the tasks requiring multi-
UAV interactions (simple synchronization or more complex JTs) are processed
in the interactions manager, so that the joint operations can be coordinated,
for each involved UAV, in terms of space and time.

Detail related to the interactions manager is not provided here, since still
ongoing work. Mainly three issues are tackled:

• Temporal coordination: achieved relying on UAVs synchronizations. We
defined and implemented a scheme to enable incremental negotiations re-
lated to possible time intervals synchronization. As a result, a group of
UAVs acknowledge a common time interval in which the synchronization
should occur.

• Spatial coordination: we consider interactions models, to reason about the
interactions requirements within the JTs. Afterward, during plan execu-
tion, collision avoidance can be safely achieved applying a Plan Merging
Protocol [22] on the planned trajectories of UAVs.

• Tasks re-allocations: this issue consist in enhancing the global activity of
the UAVs, allowing them to re-distribute some tasks, when relevant. For
each UAV, the relevance should be assessed w.r.t. the current tasks costs
/ utility in the current plan (see section 5).

During coordination, the interaction manager may as well request com-
putations / refinements related to the environment and UAVs models, i.e.
relying on the specialized refiners.

As a result of these coordination processes, a coordinated, ready-to-be-
executed (but not necessarily definite) sequence of tasks is provided and in-
serted in the current MLE’s plan.

4.3 The specialized refiners tool-box: overview

The specialized refiners provide a wide set of features to support tasks de-
compositions and refinements during planning and coordination. They rely on
different models (environment, UAV, etc) regularly updated during the UAV’s
activity, and offer (through a common interface) a set of services related to
paths generation, perception planning and communication constraints satis-
faction checking. These different processes are performed in a timely manner,
so that the symbolic planner may use them in a transparent way during plan
building.

Decision making in multi-UAVs systems 15

The main point here it to provide the planner and the interaction manager
with information that will allow them to estimate the ability of the robot to
perform a given task in a given (dynamic) context, to compute the various
costs and to weight the consequences of inserting a given task into the cur-
rent robot plan. Hence such information should be sufficiently realistic and
produced in an efficient way in order to be used on-line. Indeed, the overall
process is incremental and is subject to frequent revisions.

Models

The environment model developed provides two kinds of information: ground
surface data and airspace data. The ground model is a 2D array composed
of square cells whose attributes are related to fire, mapping and alarm mon-
itoring. A burning factor representing the burning risk is associated to each
cell. The airspace model is represented by a 3D array of voxels, and gives
relevant information for trajectories and perceptions planning. It indicates
whether a voxel is free (and safe) for flying or not. Moreover, considering
the communication model (described hereafter), we are aware of the voxel’s
communication coverage (regarding a control center for instance). Potential
waypoints for trajectories planning are nodes located at the center of voxels’
facets. A single voxel has 6 nodes and shares each of them with a neighbor.
Nodes are connected by edges. Each edge is labeled with the cost for the UAV
to move from one node to another adjacent node.

We also use a generic UAV model that provides information concerning
flight capabilities and available resources. It is mainly used for flight time
estimation purposes; it also gives information about possible orientation for
perception devices. The perception model contains technical characteristics
related to perception devices (e.g. expected coverage. . .), and informs about
the availability of the sensors. Finally, We have also implemented a (quite sim-
ple) communication model that allows to estimate the ability to communicate
between two entities. With omni-directional antennas and no solid obstacle
between the sender and the receiver, the following conditions must be satisfied:

powersender

4π
(
distancesender/receiver

)2 > sensibilityreceiver (1)

According to these models, various ”services” can be provided: the next
section provides algorithmic details related to these features.

Algorithms

Simple path planning

Path planning is performed here, in a simple way (A* based), in order to
compute a path in a discretized 3D environment (section 4.3). The planner
takes into account obstacles (hilly ground) and no-flying zones (Figure 10).

16 Lacroix, Alami, Hattenberger, Lemaire and Gancet

Fig. 10. Simulation for path finding

This planner is used to compute all possible trajectories between all po-
tential robot’s mission objectives. We use an extension of this scheme to find
the shortest path between several points (i.e. Traveling Salesman Problem
(TSP)). This is used by the planner and the interaction manager to compute
the best way to insert a new task and to estimate the cost of its insertion in
the robot plan.

The TSP is approximated here with a simple stochastic algorithm, using
two operations: insertion and permutation. At each iteration, a local minimum
is found from an initial random solution. After a given number of iterations
the best result is kept as the global solution. The number of iterations has
been chosen experimentally, as a trade-off between the quality of the solution
and the computation time. The algorithm gives quite homogeneous results (as
far as the number of points is not less than 30, which is largely enough for a
complete UAV mission).

Mapping

The goal of the mapping task is to cover a whole given area in the shortest
time. In this problem, we try to minimize the number of turns, according to
[25], where authors introduce an efficient method of area decomposition for
multi-UAV contexts and a relevant way to apply sweeping patterns. Turning

Decision making in multi-UAVs systems 17

is considered as critical because an UAV may slow down as its direction is
changing. Moreover, trajectories are more difficult to follow in turns, hence
perception can’t be achieved as efficiently as in straight lines. The principle
of the mapping algorithm is to select a favored direction (along the longest
straight line inside the area), and then to apply a sweeping pattern considering
this direction, as shown on fig. 11. We assume that areas are (or can be
divided) into convex polygons.

Fig. 11. Example of sweeping pattern, for mapping/coverage applications

Detection

This activity requires the UAV to fly over an area during a given amount of
time, trying to minimize the time between two flights over a given ground cell.
Moreover, different priorities can be associated to the cells. For instance in the
context of the COMETS project, dry vegetation is more likely to burn than
water pools: detection activity should be performed with respect to terrain’s
burnability.

We propose an algorithm based on potential fields. Each cell of the ground
is associated to a point of the field, initiated to its maximum, and decreasing
with the time according to the equation :

P = e−r·∆T , (2)

where P is the potential of the considered point, r ∈ [0, 1] is the risk factor
and ∆T is the time since the last visit. Perception is not limited to a single
cell, depending on the perception device’s aperture and flying altitude. At
each step of time, ∆T is incremented according to the factor

1− e
−
(

(x−xu)2+(y−yu)2

σ2

)
, (3)

where (x, y) is the location of a cell, (xu, yu) is the location of the UAV and
σ is a parameter representing the sensor’s aperture (and so its influence on
adjacent cells). After each increment, the value ∆T of the cell located under
the UAV is set to zero, corresponding to the maximum of P . The next move

18 Lacroix, Alami, Hattenberger, Lemaire and Gancet

follows the steepest gradient in the potential field. Fig. 12 shows the state of
the potential field during a simulation.

Fig. 12. Example of potential field for detection applications

Fig. 13. Simulation results for detection over an heterogeneous area

Decision making in multi-UAVs systems 19

Fig. 13 provides an example of path followed by an UAV over an area with
heterogeneous parts : high risk parts clearly appear with a large number of
flights, whereas low risk areas are rarely visited. Even for very low risk area,
the potential slowly decreases until reaching a lower value than high risk areas,
and hence also attracts the UAV after a given lapse of time. As a consequence,
except if r is equal to zero, every cells are explored at least once, after a long
enough time.

Constraining basic requests

When communications need to be maintained between an UAV and another
entity (e.g. other UAV or control center...) during a flight, we have to check
if related voxels are in communication range with the entities. If it is not the
case, a ”filter” can be enabled in order to prevent the path planner to build
paths across these voxels (increasing the traversability cost of these voxels, for
instance). Other types of constraints can be applied through basic requests,
such as a preliminary path computation: the refiner should take into account
a preliminary path, before to perform the requested refinement. Indeed, the
initial location can have an influence on the refinement issue.

4.4 Illustration

This section illustrates the developed planning scheme in the context of sce-
nario that involves three UAVs.

Mission and scenario

Mission

The general mission’s goal is to perform fire detection and fire monitoring over
a given area A. The initial task allocation is performed by a human operator.
Fire alarm detection should be performed by one UAV over A. Every located
alarm should be confirmed by another UAV. If an alarm is confirmed, then 2
UAVs should perform coordinated monitoring around the fire.

Scenario

Three UAVs are introduced in this scenario: one blimp (K), not very maneu-
verable but well adapted to high altitude flights, and two copters (H and M),
much more maneuverable, having hovering capabilities, well adapted to low
altitude flight.

K is requested to perform detection over A. After a certain amount of
time, a first fire alarm is raised over the location L1, then a second fire alarm
is raised over the location L2: H is requested to make perceptions around L1,
and M should make perceptions around L2. In L1, the alarm is infirmed (false
alarm). In L2, the alarm is confirmed: H is requested to perform coordinated

20 Lacroix, Alami, Hattenberger, Lemaire and Gancet

perceptions with M around L2, for monitoring purpose (requires a synchro-
nization of the monitoring). During this time, K keeps on performing fire
detection around L1 and L2. The monitoring activities performed by H and
M should go on until K’s detection activity is ended. After a certain amount
of time, K stops its detection activity: a synchronization signal is sent to H
and M. All the UAVs come back to the base station.

Running the scenario

A B

A B

Task B has a precondition on
ENDED event from task A
Task B has a precondition on
RUNNING event from task A

A B Task B has an exit-condition
on ENDED event from task A

Synchronization lines

Fig. 14. Example of scenario involving 3 UAVs: K,H and M’s plans

Requests hereafter deal with high level Shop methods: once requested to
Shop, they are decomposed into refined elementary tasks (resulting UAVs’
refined plans are illustrated on fig. 14), exploiting the specialized refiners abil-
ities. The sweeping pattern for fire detection is computed by the specialized
refiners, as well as the most fitted perception locations close to L1 and L2 (for
H and M), maximizing the perception utility (figure 15 depicts a simulated
instance of this scenario).

Decision making in multi-UAVs systems 21

K blimp’s mission

• K should perform detection over A during 15 minutes;
• THEN K should send sync.signal (S1) to H and M.
• THEN K should come back to the base station.

On fig. 14, task 11 is a ”goto” task leading to area A. Task 12 is a ”goto-list”
task associated to the detection pattern computed by the specialized refiners.
As task 12 is running, the perceptions are simultaneously triggered (task 13).
Then once the synchronization is achieved, the ”goto” task 15 makes K come
back to the base station.

H copter’s mission (part 1: H1)

L1 alarm raised (trough K’s perceptions): should be confirmed by H.

• H should make perceptions in L1 during 1 minute.
• THEN H should wait for further orders in secure mode.

Task 21 (fig. 14) is a ”goto” task leading to L1.

M copter’s mission (part 1: M1)

L2 alarm raised (trough K’s perception): should be confirmed by M.

• M should perform perceptions in L2 during 1 minute.
• THEN M should wait for further orders in secure mode.

Task 31 (fig. 14) is a ”goto” task leading to L2.

M copter’s mission (part 2: M2)

L2 confirmed (M’s perception): should perform coordinated monitoring.

• M should perform monitoring activity of L2 with H until receiving syn-
chronization signal from K.

• THEN M should come back to the base station.

On fig. 14, task 34 is the synchronization with H for monitoring (task
35). Task 36 is the synchronization with K, which achievement stands as exit
condition for task 35. Then task 37 is the ”goto” task back to the base station.

H copter’s mission (part 2: H2)

L1 alarm is wrong, and L2 is confirmed (trough M’s perception data process-
ing): should perform coordinated monitoring.

• H should perform monitoring activity of L2 with M until receiving syn-
chronization signal from K

• THEN M should come back to the base station.

On fig. 14, task 24 is a ”goto” task leading to L2. Then task 25 is the syn-
chronization with M for monitoring (task 26). Task 27 is the synchronization
with K, which achievement stands as exit condition for task 26. Then task 28
is the ”goto” task back to the base station.

22 Lacroix, Alami, Hattenberger, Lemaire and Gancet

Fig. 15. Level 4 features in simulation: coordinated monitoring over L2

5 Distributed task allocation

Problem statement

The focus in this section is put on the distributed task allocation issue, an
ability the level 5 robots must be endowed with. Given a system of several
robots, and given a mission defined as a a partially ordered set of tasks, we
want the robots to allocate all the tasks to each other and build their plans
accordingly in order to complete the mission. They should also be able to
dynamically modify the allocation, and consequently their plans, to adapt to
changes in the environment or to new requests issued by the operator. The
system must also satisfy constraints on energy resources and communication
ranges, that are both limited. Also, all the robots must ensure sufficient energy
to go back to their starting point when their tasks are achieved.

In the context of an environment surveillance mission, the tasks the sys-
tem of robots must achieve consist of (i) navigation tasks (i.e. reach a given
position), and (ii) perception tasks. The latter tasks can be achieved while
the UAV hovers at a given position, or while it follows a predefined path (e.g
circling around a given target), but they can also imply the simultaneous pres-
ence of several UAVs, hovering or moving according to predefined geometric
patterns. Therefore, two distinct problems must be solved:

1. allocation and planning of navigation tasks,
2. constraints on tasks schedules which enable the system to deal with com-

plex tasks that need synchronization of robots activities.

Decision making in multi-UAVs systems 23

The first problem is a multi Traveling Salesmen Problem (often referred
as m-TSP). The second problem is an extension of the previous one, in which
constraints on the execution dates of the tasks must be satisfied: it is possible
to stipulate for a task the date when it must be started with respect to the
start date of another task.

This section introduces a task allocation scheme based on Contract-Net,
that is innovative in two ways :

• For the first problem, we aim at minimizing a global criteria (the longest
trip) while Contract-Net only takes into account local data. We introduce
in Contract-Net a global parameter which helps the optimization the cri-
teria. It also helps to control the auctions generation in the system.

• For the second problem, the robots must share up-to-date data that de-
scribe the constraints on the tasks and need to plan the tasks that are
linked together accordingly, without disrupting the bidding process of
Contract-Net. This will be done with the temporary assignment of mas-
ter/slave role to the robots depending on the tasks that have been al-
located. The challenge lies in avoiding the use of a centralized planning
algorithm.

Related work

Rabideau et al. made a comparison of several methods for tasks allocation
in [26]. They emphasize algorithms with three degrees of distribution, the
most distributed one is based on the Contract-Net protocol. In [27] Belling-
ham et al. successfully implement in simulation an algorithm for the optimal
fleet coordination problem, their algorithm does not address the problem of
synchronization between tasks and can be classified in level 2 from [26]. Dias
and Stenz also studied various approaches to the task allocation problem with
multiple robots [28] and came to the point that distributed algorithms based
on Contract-Net suit the needs. Note that a number of distributed schemes
for task allocation in multi-robot domains have been proposed in the litera-
ture. One of the first is [29]. ALLIANCE [30] is a distributed behavior-based
architecture, which uses motivations that enable/inhibit behaviors, resulting
in tasks (re)allocation.

Contract-Net has been introduced by Smith in [31] and further developed
by Sandholm [32]. Since 1999 Contract-Net have been widely used in multi-
robot applications [33, 34, 35]. Stenz and Dias work on an architecture called
TraderBots in which leaders can optimize the plan of several other robots
[36, 37], Mataric explored various strategies for the Contract-Net protocol
in [38]. Several studies dealing with concrete mission such as buildings or
planetary exploration [39, 40, 41] or emergency handling [38], have shown the
feasibility and the performance of the Contract-Net architecture in real world
situations.

To our knowledge, on the problem of allocation and planning of non-
independent tasks in a distributed multi-robot system, only one paper from

24 Lacroix, Alami, Hattenberger, Lemaire and Gancet

Kalra and Stentz [42] presents preliminary results on the sweeping perimeter
problem. In this work, the temporal window taken into account is very small,
the coordination is explicit between a limited number of robots (one robot
and his two neighbors), and the market-based approach is not fully exploited
since the auctions imply three agents only.

The next section introduces an equity coefficient that is used in the bids
evaluation and to control the auction generation process within Contract-Net.
Quantitative simulation results obtained on the m-TSP problem illustrate the
improvements brought by the consideration of this coefficient with respect to a
plain Contract-Net approach. Section 5.2 deals with the introduction of time
constrained tasks. It shows that the introduction of simple execution date
constraints can help to cope with cooperative tasks, that are either requested
by an operator or automatically generated within the system, to establish
communication relays for instance.

5.1 Contract-Net with equity

In the classic market-based approach, each agent (for us robots) can make
a public auction for one of its tasks, and then the other robots can bid on
that task using a given cost function. The winner of the bidding process gets
the task and must insert it in its plan. In order to drive the process toward
an optimal solution, one agent can sell a task only if the bidden cost for the
execution of that task is at least less than a certain amount of its own execution
cost (generally 10% less). The cost function we will use here is simple and is
calculated from the distance the robot will travel.

Equity factor

The aim is to obtain an allocation that minimizes the length of the longest
trip, which also can be seen as minimizing the duration of the mission. Our
idea is to address this global optimization problem by considering two aspects:
first, Contract-Net is used to assign tasks to the robots at a low cost so as
to keep the total distance traveled by the team of robots not too far from
optimality, and second, equity is enforced between the robots so as to really
distribute the tasks among them and obtain a mission which is as short as
possible.

For this purpose, we introduce a measure of equity called equity coefficient
(Ceq). Each robot can compute its own workload (wl) using a cost function:
the workload is the cost of the whole plan of the robot. The robots broadcast
the value of their workload to the others and each one can compute its Ceq.
For the robot A the formula is :

CA
eq =

wl(A)− wl

wl
(4)

Decision making in multi-UAVs systems 25

Where wl is the mean of wl(.) over the robots for which A knows the
workload. Indeed, since we consider limited communication range, A may have
only a partial knowledge of the workloads. The meaning of this coefficient is :

• CA
eq < 0 : robot A has a too small plan with respect to the other robots.

• CA
eq > 0 : robot A is overloaded with respect to the other robots.

• CA
eq > CB

eq : robot A has more work than robot B.

Equity factor and task evaluation

In Contract-Net a task is allocated to the robot which can insert it in its plan
for the lowest cost; also the robot should not be too overloaded. For that the
evaluation the robot makes for a task is modified by taking into account its
Ceq. The utility the robot A computes for the task T1 (utA(T1)) is corrected
in ut′A(T1) by :

ut′A(T1) = utA(T1)− CA
eq × |utA(T1)|

This correction is applied to the utility computed by both the auctioneer
and the bidder. By this mean Contract-Net is influenced the way we want :

• A robot with a high workload will more easily reallocate its tasks and
will get new tasks with more difficulty because its utility for the tasks is
lowered.

• On the contrary, a robot with a low workload will be more easily allocated
new tasks but will give up its own tasks with more difficulty because its
utility for the tasks is increased.

Control of the auctions generation

The problem here is we do not want several auctions being launched at the
same time. Basically, the Contract-Net protocol does not provide any details
when the agents of the system can start an auction, and other papers do
not emphasize this point either. Our need is to keep the system entirely dis-
tributed, so we do not want an authority which would give the right to the
robots in turns, and we want to keep the system dynamic so we do not want to
give to each agent a static list which would define the turns for the auctions.

Our solution is inspired by the token-ring networks in which a token passes
from one computer to another to give them the authorization to send their
data over the network. Here the token allows the robot to make an auction.

Token circulation

The robot that has got the token is the auction leader. If another robot is
willing to make an auction, it can ask for the token to the current auction
leader. It sends its request along with its Ceq. The owner of the token collects

26 Lacroix, Alami, Hattenberger, Lemaire and Gancet

all the requests, it is also allowed to request for the token. It then randomly
chooses the next owner of the token, using a random distribution based on
the collected Ceq (the more a robot is overloaded, the higher chance it has
to get the token). This is done to help overloaded robots to reallocate their
tasks.

Token creation

When a robot wants to make an auction, but nobody has the token, it then
creates a token and uses itself to make an auction, the process is started
spontaneously ! Because of communication delay, it may happen that several
robots create a token at the same time, this is why we specify the following
behavior :

• If a robot that is not currently an auctioneer receives several auctions at
the same time, it then bids on the auction which has the higher priority ie
the higher Ceq (the auctioneer gives its Ceq along with the auction). The
other auctions are ignored.

• If a robot that is currently an auctioneer receives other auctions, it keeps
on its own auction only if it has the highest Ceq, else it cancels its auction
and can bid on the auction with the highest priority.

Results

A typical mission allocation and execution goes this way: (1) A set of tasks is
given to the system (either directly by an operator, or issued from a decom-
position process). (2) The base station is also a Contract-Net agent except
that it has a high priority (an artificially high equity factor) and will never
make a bid. The base starts making auctions with the tasks of the mission
and goes on until all tasks are allocated to the robots. (3) The base does
not keep the token any more and the robots can start making auctions. (4)
The process stops when none of the robots asks for the token. A robot stops
making auction when it has already auctioned all its tasks and no reallocation
has occurred. If not, the robot auctions again all its tasks. This stop criterion
is quite different from what has been done until now (usually a fixed number
of auctions turns). (5) The mission starts being executed by the robots. The
auction process starts again when new tasks are requested by the operator,
or when a robot fails to achieve its plan.

n the tests, we focus on steps 2 to 42. We based all our tests on the same
mission: 50 points picked up in the environment have to be visited by a team
of 4 robots. The points have been uniformly randomly generated once in this
environment. In order to show the interest of our equity coefficient, we run
scenarios with the coefficient disabled (we give it a fixed value so as to mimic
a plain Contract-Net protocol). Another important point is how the robots

2 The results were obtained with a multi-robot simulation developed in Java.

Decision making in multi-UAVs systems 27

are firstly distributed in the environment. If they are scattered (the usual
situation when Contract-Net is used) each robot is implicitly attributed a
different area, the area surrounding its initial position, because of the cost
function which is based on traveled distance. If they are initially grouped
around a same point (which is mostly the case in operational situation), the
problem is more difficult.

The results presented in table 16 show that the solution obtained with the
equity coefficient is improved by a factor of 2.4 over the standard Contract-
Net, if the robots are scattered, the improvement factor drops to 1.3. This is
due to the fact that the solution found by the standard protocol is already a
good one. The interest of our method is that it works well even if the initial
situation is not favorable. On the other side the allocation process is about
20% longer (more auctions are done) with the equity coefficient enabled.

scenario l σ(l) min(l) max(l) n

grouped/no equity 5248 674 3035 6150 133

grouped/equity 2195 264 1844 2954 156

scattered/no eq-
uity

2481 481 1724 4631 133

scattered/equity 1895 162 1581 2343 160

Fig. 16. This table summarizes the statistical results over 100 runs of the simulation
of four scenarios, considering a grouped or scattered start, and with or without the
use of the equity coefficient. l is the length of the maximal tour, and n is the number
of auctions of the allocation process.

5.2 Time-constrained tasks in a distributed environment

The problem of constrained tasks allocation and planning for a system of
multiple robots is commonly addressed with a centralized planner such as
GRAMMPS [43]. We sketch here how we deal with simple time constrained
tasks in our distributed environment.

Execution around date d

This constraint means that we will try to have a given task executed more or
less at a given date. This constraint enables the system to deal with constraints
on relative date of execution of several tasks expressed numerically: T1 and
T2 simultaneously or T1 n seconds before of after T2.

We choose to put the constraint execution around date d on the tasks for
several reasons :

• This constraint is soft, which means that there is an infinite number of
solutions that satisfy it, the distributed allocation algorithm will more
easily find a solution, even a bad one, and will not end to dead-lock.

28 Lacroix, Alami, Hattenberger, Lemaire and Gancet

• The quality of satisfaction for such a constraint is easily measurable, and
then we are able to take into consideration this measure when we evaluate
its utility for a given robot. The quality of satisfaction for the constraint
can be directly included in the bid of our Contract-Net protocol.

• The information needed to plan such constrained tasks is very limited and
will not overload the communication bandwidth between the robots.

Constrained tasks tree

Fig. 17. This tree shows up the hierarchical links between tasks.

The constraint can be used for example to enforce simultaneous execution
of two tasks. One task T1 which is planned for execution at date d1 puts on
task T2 the constraint execution around date d1. The task T1 is said to be the
mother task, and task T2 the child task.

Temporally, T1 is defined by a startDate d1 (the date when it can be
executed at the earliest), and a plannedStartDate (the date when it will
actually be executed). T2 has the same attributes plus an expectedStartDate
d1 (the preferred date for its execution).

The allocation process must allocate T1 before T2 (because we need to know
d1 for bidding on T2), but the tasks can be reallocated later. It is important
to note that only T2 is constrained, T1 is allocated and firstly planned as
usual. After the allocation process, the master robot RA (the one which will
be executing T1) will choose plannedStartDate for both T1 and T2, the robot
RB (the one which will be executing T2) is called the slave robot. Since the
system is dynamic, changes can be made to the plans of RA and RB . If it
happens, the slave robot only informs its master of the changes in its plan, it
sends the new startDate for that task and then the master robot computes a
new plannedStartDate for the execution of the two tasks which is acceptable
by both RA and RB .

Decision making in multi-UAVs systems 29

Fig. 18. This is an example of the plans of four robots after the allocation of four
constrained tasks.

The relation master/slave between the robots is local in time (only for
the execution of the considered tasks), and temporary because the tasks can
be reallocated to other robots. So this is quite different from the TraderBots
architecture [37].

Figure 17 presents a tree of tasks and focus on the data that are exchanged
in order to plan the tasks, and figure 18 sketches the allocated tasks from the
robot point of view. The synchronization between robots is actually accom-
plished with the introduction of idle periods in the robots plans.

Evaluation of the utility of a task

Now the quality of satisfaction for the constraints which weight on the tasks of
the plan is to be taken into account. Previously we computed the cost of a plan
with its length; now we add a term for each task which reflects the constraint
satisfaction quality. We call this term deltaDate, for the constrained task Ti

the formula is :

deltaDatei = |startDatei − expectedStartDatei| +
∑

j

deltaDateij

where deltaDateij comes from the children tasks Tij of task Ti. These
children tasks are either allocated to the same robot or to another one.

30 Lacroix, Alami, Hattenberger, Lemaire and Gancet

The utility of a plan can now be computed by the formula :

planUtility = −

movingCost + k ×
∑

taski∈plan

deltaDatei

The robot bids on a task with the value (planUtility′−planUtility) where

planUtility and planUtility′ are respectively the utility of the plan before and
after the insertion of the task.

The factor k is here to normalize the sum. In fact we add two quantities
movingCost and deltaDate which are not of the same nature. This becomes
false if the movingCost is computed with the time needed by the robots to go
from one point to another. One can understand k as a scale factor, k = 0.1 (it
is the typical value we use.) means that we find the periods when the robot
is idle 10 times less important than when the robot is active.

Time consistency of the plans

We must ensure that the time constrained tasks are planned correctly to
prevent the system from ending into deadlock. Here again we use a very
basic planner, not really efficient, but very easy to implement and which
clearly maintains consistency of the plans. Each child task is tagged with
an expectedStartDate, the planner will insert the task into the plan so as to
respect the local chronology between children tasks of this plan.

When a modification occurs in the plan, we use a simple but rough pro-
cess to maintain this local consistency: if two children tasks are not in the
chronological order, they are swapped.

Assuming that the plans are incrementally built, the local consistency
ensures the global consistency. Indeed, the synchronization is reached by in-
serting idle periods into the plans of the robots so a robot waits even a long
time for synchronization rather than trying to swap tasks.

Implemented tasks

Two new types of task have been implemented in our simulation to illustrate
constrained tasks: watchout and com-relay.

The watch-out task consists for the robot to travel around a rectangular
area to be monitored and the robot must keep communication with the base. If
the communication link between the base and the robot cannot be maintained
during the execution of the task, then the robot should generate a com-relay
task between it and the base which is to be executed by another robot at the
same time the watch-out task is executed. The com-relay task can be recur-
sive, which means that several robots can be needed to effectively maintain
communication between the base and the robot which will be watching out
the area. Figure 19 illustrates these two tasks.

Decision making in multi-UAVs systems 31

Fig. 19. This screenshot presents a plane pl1 which is watching out an area and
a blimp bp2 which is a communication relay between pl1 and the base. The pink
lines represent the communication links which are available (the link pl1→base is
not available). The red circle arcs enclose the area where the blimp can serve as a
communication relay, and the dots represent the discrete positions, the planner of
the blimp has chosen one of these positions.

Illustrations

Here the results are more qualitative. The simulator shows that even with
very simple planning algorithms in a distributed environment, we manage to
allocate and plan a mission correctly. Figure 20 presents what we obtain with
our simulator on some examples. It illustrates the strategy found by the team:
since for the watch-out tasks two robots are needed (one for the given task,
and one more for the com-relay), we can see that the four robots are split into
two teams of two robots and each team takes care of a part of the environment.
When there remains only three robots, the solution is more complex and less
structured, but is valid and does not appear to be very sub-optimal.

6 Summary

This chapter provided insights on the definition of the architecture and asso-
ciated algorithms to allow the deployment of a fleet of heterogeneous UAVs. It
introduces five levels of autonomy for an UAV integrated within a multi-robot
system, and proposes algorithms to fulfill three main decision-making func-
tionalities: an executive system common for all autonomy levels that handles
the coordination and task execution issues, a planning scheme based on a Hi-
erarchical Task Networks planner completed with plan-refiners that consider
the actual domain models, and an instance of the contract-net protocol that
can handle task allocation for complex multi-UAV missions.

Further developments should however be made towards the overall inte-
gration of the various concepts and algorithms. For instance, the planner used

32 Lacroix, Alami, Hattenberger, Lemaire and Gancet

Fig. 20. Top: some watch-out and goto tasks are allocated to the team of robots.
Bottom: The plane pl4 (top-left) has fallen out of order and the tasks have been
reallocated to the remaining robots.

Decision making in multi-UAVs systems 33

in the task allocation process to insert the tasks into the plans of the robots
is very simple, and the refiners could advantageously be used instead.

References

1. P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skar-
man, and J. Wiklund, (2000) The witas unmanned aerial vehicle project, in
Proc. of the 14th European Conference on Artificial Intelligence, Berlin, Ger-
many, pp. 747–755.

2. S. Sukkarieh, E. Nettleton, J-H. Kim, M. Ridley, A. Goktogan, and H. Durrant-
Whyte (2002). The anser project: Multi-uav data fusion, International Journal
on Robotics Research, 22:7–8, pp 505–540.

3. S. Sukkarieh, A. Goktokan, J-H. Kim, E. Nettleton, J. Randle, M. Ridley, S.
Wishart and H. Durrant-Whyte (2002). Cooperative data fusion and control
amongst multiple unihabited air vehicles, 8th International Symposium on Ex-
perimental Robotics, Sant’Angelo d’Ischia (Italy).

4. L. Buzogany, M. Pachter and J. D’Azzo (1993). Automated control of aircraft
in formation flight, AIAA Guidance, Navigation and Control Conference, Mon-
terey, CA (USA), pp. 1349–1370.

5. C. Schumacher and S.N. Singh (2000). Nonlinear control of multiple UAV in
close-coupled formation flight, AIAA Guidance, Navigation and Control Con-
ference, Denver, Co. (USA).

6. T. Balch and R. Arkin (1998). Behavior-based formation control for multirobot
teams, IEEE Transactions on Robotics and Automation, 14:6, pp 926–939.

7. F-L. Lian and M. Richard (2002). Real-time trajectory generation for the co-
operative path planning of multi-vehicle systems, 41st IEEE Conference on
Decision and Control.

8. R.L. Raffard, C. Tomlin and S.P. Boyd (2004). Distributed optimization for
cooperative agents: application to formation flight, 43rd IEEE Conference on
Decision and Control, Nassau (Bahamas).

9. F. Giulietti, L. Pollini abd M. Innocenti (2000). Autonomous formation flight,
Control Systems Magazine, 20:6, pp 34–44.

10. J. Sousa, T. Simsek and P. Varaiya (2004). Task planning and execution for
UAV teams, 43rd IEEE Conference on Decision and Control, Nassau (Ba-
hamas).

11. S. Zelinski, T.J. Koo and S. Sastry (2003). Hybrid system design for formations
of autonomous vehicles, 42nd IEEE Conference on Decision and Control.

12. R. Vidal, S. Sastry, J. Kim, O. Shakernia, and D. Shim, (2002) The berkeley
aerial robot project, in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Workshop on Aerial Robotics, Lausanne (Switzerland).

13. E. King, M. Alighanbari, Y. Kuwata, and J. How (2004). Coordination and
control experiments on a multi-vehicle testbed, IEEE American Control Con-
ference, Boston, Ma. (USA).

14. I. Mazza and A. Ollero (2004). Multiple UAV cooperative searching operation
using polygon area decomposition and efficient coverage algorithms, Distributed
Autonomous Robots Systems, Toulouse (France).

15. R. Brooks (1986). A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation 2:1, pp 14p-23.

34 Lacroix, Alami, Hattenberger, Lemaire and Gancet

16. R. Arkin (1990). Motor Schema-Base Mobile Robot Navigation. International
Journal of Robotics Research.

17. R. Alami, R. Chatila, S. Fleury, M. Ghallab and F. Ingrand (1998). An Archi-
tecture for autonomy. International Journal of Robotics Research. Volume 17,
pp 315–337.

18. E. Gat (1991). Integrating planning and reacting in a heterogeneous asyn-
chronous architecture for mobile robots. In SIGART Bulletin 2, pp 17–74.

19. R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das (2001).
The claraty architecture for robotic autonomy. Proceedings of the 2001 IEEE
Aerospace Conference, Big Sky, Mt. (USA).

20. R. Simmons, T. Smith, M. Dias, D. Goldberg, D. Hershberger, A. Stentz and R.
Zlot (2002). A Layered Architecture for Coordination of Mobile Robots. Multi-
Robot Systems: From Swarms to Intelligent Automata, Proceedings from the
2002 NRL Workshop on Multi-Robot Systems, Kluwer Academic Publishers.

21. L. Parker (1998). ALLIANCE: An architecture for fault-tolerant multi-robot
cooperation. In IEEE Transactions on Robotics and Automation, 14:2, pp 220–
240.

22. R. Alami, F. Ingrand and S. Qutub (1998). A Scheme for Coordinating Multi-
Robot Planning Activities and Plans Execution, European Conference on Ar-
tificial Intelligence.

23. D. Nau, T. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Yaman
(2003). shop2: an HTN planning system, Artificial Intelligence Research, vol.
20, pp. 379–404.

24. Ollero A. & Al.(2004). Control of Multiple Heterogeneous Unmmanned Aerial
Vehicles: Architecture and Perception issues in the COMETS project. IEEE
robotics and automation magazine, vol. 12, no. 2, pp. 46–57.

25. I. Mazza and A. Ollero, “Multiple uav cooperative searching operation us-
ing polygon area decomposition and efficient coverage algorithms,” in Proc. of
DARS’04, 2004.

26. S. Chien, A. Barrett, T. Estlin, and G. Rabideau, “A comparison of coordi-
nated planning methods for cooperating rovers,” in Proceedings of the Fourth
International Conference on Autonomous Agents, C. Sierra, M. Gini, and J. S.
Rosenschein, Eds. Barcelona, Catalonia, Spain: ACM Press, June 2000, pp.
100–101, poster announcement.

27. J. Bellingham, M. Tillerson, A. Richards, and J. P. How, ch. Multi-task alloca-
tion and path planning for cooperating UAVs.

28. M. B. Dias and A. T. Stentz, “A market approach to multirobot coordination,”
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech. Rep.
CMU-RI -TR-01-26, August 2001.

29. H. Asama and K. Ozaki, “Negotiation between multiple mobile robots and
an environment manager,” in IEEE Int. Conf. on Robotics and Automation
(ICRA’91), 1991, pp. 533–5382.

30. L. Parker, “Alliance: An architecture for fault tolerant multirobot cooperation,”
IEEE Trans. on Robotics and Automation, vol. 14, no. 2, pp. 220–239, 1998.

31. R. G. Smith, “The contract net protocol: High-level communication and control
in a distributed problem solver,” in IEEE Transaction on Computers, ser. C-29,
no. 12, 1980, pp. 1104–1113.

32. T. Sandholm, “An implementation of the contract net protocol based on
marginal cost calculations,” in Proceedings of the 11th National Conference

Decision making in multi-UAVs systems 35

on Artificial Intelligence. Menlo Park, CA, USA: AAAI Press, July 1993, pp.
256–263.

33. A. T. Stentz and M. B. Dias, “A free market architecture for coordinating
multiple robots,” Robotics Institute, Carnegie Mellon University, Pittsburgh,
PA, Tech. Rep. CMU-RI-TR-99-42, December 1999.

34. M. B. Dias and A. T. Stentz, “A free market architecture for distributed con-
trol of a multirobot system,” in 6th International Conference on Intelligent
Autonomous Systems (IAS-6), July 2000, pp. 115–122.

35. B. P. Gerkey and M. J. Mataric, “Sold!: Auction methods for multirobot co-
ordination,” in IEEE Transaction on Robotics and Automation, vol. 18, 2002,
pp. 758–768.

36. M. B. Dias and A. T. Stentz, “Enhanced negotiation and opportunistic
optimization for market-based multirobot coordination,” Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI -TR-02-18,
August 2002.

37. M. B. Dias and A. T. Stentz, “Traderbots: A market-based approach for re-
source, role, and task allocation in multirobot coordination,” Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI -TR-03-19,
August 2003.

38. M. J. Mataric’, G. S. Sukhatme, and E. Ostergaard, “Multi-robot task alloca-
tion in uncertain environments,” Autonomous Robots, 2003.

39. M. J. Mataric’ and G. Sukhatme, “Task-allocation and coordination of mul-
tiple robots for planetary exploration,” in 10th International Conference on
Advanced Robotics, August 2001, pp. 61–70.

40. R. M. Zlot, A. T. Stentz, M. B. Dias, and S. Thayer, “Multi-robot exploration
controlled by a market economy,” in IEEE International Conference on Robotics
and Automation, May 2002.

41. M. B. Dias, D. Goldberg, and A. T. Stentz, “Market-based multirobot coor-
dination for complex space applications,” in The 7th International Symposium
on Artificial Intelligence, Robotics and Automation in Space, May 2003.

42. N. Kalra and A. T. Stentz, “A market approach to tightly-coupled multi-robot
coordination: first results,” in CTA (Collaborative Technology Alliance) robotics
program, 2003. Available at http://www.frc.ri.cmu.edu/ axs/doc/cta03.pdf/

43. B. L. Brumitt and A. Stentz, “GRAMMPS: A generalized mission planner
for multiple mobile robots in unstructured environments,” in Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA-98).
Piscataway: IEEE Computer Society, May 16–20 1998, pp. 1564–1571.

44. E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, The
Traveling Salesman Problem. New York: John Wiley & Sons, 1985, ch. Em-
pirical analysis of heuristics, Heuristics for the TSP.

