N
N

N

HAL

open science

A plan manager for multi-robot systems

Sylvain Joyeux, Rachid Alami, Simon Lacroix, Roland Philippsen

» To cite this version:

Sylvain Joyeux, Rachid Alami, Simon Lacroix, Roland Philippsen. A plan manager for multi-robot
systems. The International Journal of Robotics Research, 2009, 28 (2), pp.220-240. hal-01979786

HAL Id: hal-01979786
https://laas.hal.science/hal-01979786
Submitted on 13 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://laas.hal.science/hal-01979786
https://hal.archives-ouvertes.fr

A plan manager for multi-robot systems

Sylvain Joyeux!?, Rachid Alami® and Simon Lacroix! and Roland Philippsen?

1LAAS—CNRS, Université de Toulouse

sylvain. joyeux@m4x.org, simon@laas.fr, rachid@laas.fr
2Currently affiliated with DFKI Robotik Lab, Bremen

3 Artificial Intelligence Laboratory, Stanford University
roland.philippsen@gmx.net

Abstract

This paper presents a software component, the plan manager, which provides the
services needed to build and execute plans in a multi-robot context. This plan man-
ager handles fully dynamic plans (insertion and removal of tasks), provides tools for safe
concurrent execution and modification of plans, and handles distributed plan supervision
without permanent robot-to-robot communication. The proposed concept is illustrated by
a scenario which involves the navigation of a rover and an UAV in an initially unmapped
environment.

1 Introduction

The experience gained in the last ten years of robotic architectures can lead to the definition of
a generic architecture where the place for integration is a single plan management component:
the integration of decision-making is done through the plan object, which has to be revised
continuously during execution. This section analyzes the main existing approaches for single
robot and multi-robot planning architectures, introduces the notion of plan management
through previous approaches that use the same central idea, and outlines the rest of the

paper.

1.1 Hybrid architectures for mono and multi-robot systems

Hybrid architectures, in which a reactive layer is coupled with a decision layer, have shown
to yield efficient intelligent behaviors. Within such architectures, there is a need to integrate
different kinds of decision making tools centered on anticipation for the following three reasons:

e there is no universal planning model and planning algorithm. One should therefore select
the right model and tool for a specific application and/or situation. Planning is therefore
a decentralized operation within a robot — and even more in a multi-robot system. A
successful all-purpose robotic architecture should therefore allow for a dynamic selection
and configuration of the decision-making tools.



e the planning problem is hard to compute. Generating the plan for a whole robot mission
— and even more for a robot team — is hardly tractable. Thus architectures must allow
to split the problem of building the whole system plan into smaller problems, which can
be managed by plan generation tools, and then to execute the set of sub-solutions in a
coherent way.

e humans are to be integrated in the decision-making process: the robot highest-level
goals are defined by humans, and humans may have wider knowledge than the robots.
Integrating humans in the decision-making and in the plan execution loops yields to
more efficient robot systems.

A strong trend in the robotic architecture community has been to make the representa-
tion of the plan follow the separation of planning tools: pairings of planning tool/execution
engine are defined, each of them only knowing its own plan and a small subset of the other’s.
Examples of this kind of approach is the LAAS architecture [Alami et al., 1998a] where plan-
ning/supervision pairs are stacked, or the IDEA architecture [Muscettola et al., 2002] in which
planners/execution engine pairs are integrated in a network.

Both approaches share a common problem: they do not exhibit any representation of
the whole system plan. This is because these architectures are centered on planning: since
planners cannot generate the whole system plan, there is no point in representing it. Moreover,
the various planners involved may not even employ the same model, so it is not possible to
merge their result in a global plan. Splitting the global plan in various models forbids the
integration of generic plan analysis tools, e.g. for diagnostics or state projection.

For multi-robot systems, the first trend has been to adapt existing mono-robot architec-
tures to the distributed nature of the problem. Such an adaptation has been made along two
main schemes:

e On the one hand, some approaches rely on a team-management layer which sends orders
to a mono-robot supervision system (for instance Teamwork [Tambe, 1996] and Trader-
Bots [Dias, 2004]). Such a scheme cannot pro-actively anticipate interactions within the
plan structure, because interactions between robots are handled reactively. Also, the
team-management layer is limited to managing high-level tasks, which makes it diffi-
cult to handle tighter interaction modalities, like opportunistic cooperation, which take
place at a lower abstraction level.

e On the other hand, some approaches rely on the coupling of a team-management layer
on top of a modified mono-robot supervision systems that can send orders transparently
to other robots: FIRE [Simmons et al., 2002] is for instance a modified TDL system cou-
pled with a Contract-Net Protocol [Smith, 1980] task allocation scheme. The resulting
system has two flaws: first, the modified TDL system, in which a robot can change the
state of a remote robot, does not act pro-actively — it does not act on plans. It therefore
assumes that communication is available at all times since one robot cannot act on the
basis of the predicted behaviour of another robot. The second flaw is the same as for
the layered mono-robot architectures: the two layers do not share all the information
they have, and so the interaction managed by the upper layer can only loosely take into
account the interaction in the lowest one. A common place in which all the interactions
in place are described is missing.

Of course, other architectures have also been defined from the ground up with multi-
robot aspects in mind. One can distinguish four important plan-based approaches in the



literature: the M+ architecture [Botelho and Alami, 1999], GPGP and its associated task
representation TAEMS [Lesser et al., 2004], the COMETS architecture [Gancet et al., 2005
and Machinetta [Schurr et al., 2005].

The M+ architecture is based on mapping a planning/executive pair on one robot onto a
corresponding pair on another, and therefore limits the interaction possibilities to the subplans
each pair currently know. In COMETS, a plan which can contain joint tasks' is produced
by a Shop2 planner. The joint tasks are then negotiated among the team by an “Interaction
Manager”. The resulting plan (developed joint tasks and mono-robot tasks) is then sent as
a unique plan to an execution component. In GPGP, the joint plan is modified through a
whiteboard mechanism by all involved robots. When they all agree on the result, each robot
sends it to its own scheduler which starts its execution, the execution mechanism being able
to take the specificities of robot-to-robot interactions into account. Machinetta is based on
teamwork mechanisms, in which proxy agents represent each member of the team. These
proxy agents manipulate a team plan, but with only a partial knowledge of the plan of the
member they represent. The main contribution of Machinetta is that, based on this team
plan, each proxy agent is able to act upon the predicted behaviour of the other members of
the team without explicit communication. The main focus of COMETS and Machinetta is to
define a generic team management system and the focus of GPGP is multi-robot planning
and scheduling.

All these approaches are tied to their particular interaction scheme: none has been de-
signed to be flexible enough to integrate different plan production mechanisms and different
team management schemes.

1.2 A plan management approach

We advocate that the integration of the various tools centered on plans — planners, plan anal-
ysis and interaction mechanisms — should be done through the construction and adaptation
of a representation of the whole system plan. We therefore introduce a plan management
component, whose role is to allow the construction, execution and continuous adaptation of
such a plan, either in mono-robot or multi-robot contexts. This component is not centered
on planning per se. Instead, it allows integrating the aforementioned tools, by providing a
plan model, an execution scheme, and related basic services.

The plan management component is the place where various interaction protocols can be
integrated: it relies on the definition of (i) a plan model in which the various approaches of
multi-robot plan representation are integrated, (ii) an execution scheme for this plan model,
and (1) a plan modification tool which can be used to integrate various negotiation protocols
based on plans.

This component is also a mean to integrate humans in the loop. Humans may want to
change plans locally, but without being able to grasp the consequences of those small changes
on the whole system plan. This is one of the focus of mixed-initiative planning ([Bresina et al., 2005,
Myers, 1996, Myers et al., 2003]): allowing a user to change an automatically generated plan,
while being able to represent the consequences of these changes on the whole plan, and —
if needed — the incompatibilities between the user’s decision and the plan itself. In our ap-
proach, this issue can be tackled at the planner level if the planner allows user integration,
but especially at the plan level: since our system represents the whole system plan, it is able

LA joint task is a task which is executed by more than one robot at a time



to represent the consequences of the user’s change on this plan. From the plan manager point
of view, the user is only an additional decision-making agent. As for human intervention
on the executed plan, it becomes a problem of authority management: in case of conflicts,
the system must be able to decide whether the user change is of higher priority than the
previously taken decisions.

1.3 Related work

This kind of approach, centered on the plan object, is something which has already been ad-
vocated in the Claraty architecture [Volpe et al., 2001], for the development of their CLEaR
component, which was originally envisioned as the place where a Casper [Chien et al., 2004]
planner and a TDL [Simmons and Apfelbaum, 1998] executive could interact via the repre-
sentation of the whole system plan. However, it seems that this approach has been aban-
doned since. Another plan-centric approach is the Concurrent Reactive Plans of Beetz et
al. [Beetz, 2000, Beetz et al., 2001]. From Beetz’s point of view, such a component is a way
to make the use of plan libraries robust in the real world: he developed the idea of transfor-
mation planning as a way to adapt plan libraries to the execution context, and integrated
generic plan-based methods to detect plan flaws through state projection and forestall them
through proactive plan adaptation. From our point of view, this body of work shows that
it is possible to build a system in which, given a well-formed plan, there are tools to adapt
this plan continuously, regardless of the tool which generated them. Thus, it is possible to
integrate rich schemes in a generic plan management component.

These few approaches, while working directly on the idea of a plan, are not centered on
plan management. As the authors of [Pollack and Horty, 1999] describe it, plan management
is more than having a plan itself. According to them, the raison d’étre of a plan management
system is the following functionalities:

e plan generation: being able to produce plans

e commitment management: being able to decide what to keep and what to drop, in light
of new information and new goals.

e environment monitoring: on one hand, check that the current state of the world is
compatible with what is needed for your own plan. On the other hand, also monitor
the conditions that led you to reject other opportunities.

e alternative assessment: the ability to take decisions between exclusive alternatives (al-
ternatives where you have to chose one over the others).

e plan elaboration: view the plan production process as a dynamic process itself, allowing
executing unfinished plans, while constraining the planning process to be sure that plans
are available “at the right time”.

e coordination with the other agents: being able continuously build and execute dis-
tributed plans, in an environment where communication cannot be taken for granted,
and where agents can take individual decisions that go against the current state of the
multi-robot plan.

The authors then presents the Plan Management Architecture (PMA), as an example of
an architecture partially answering these points. This architecture is designed to be a plan-
management assistant for human operators (smartly managing the schedules of the humans).
In our opinion, this architecture is not suitable as-is for robotic purposes, particularly for



_— N ' e )
- Decision<*- :

%becision k
*._control _® Plan Tea”.“ management Plan ._control ¢
_ generation Multl—lrobot conflict generation e
\ solving f

| pan tanager | { pian wanager |

Plan and transaction
updates

Functional layer Execution status Functional layer

A / AN /

A 4

Figure 1: In this architecture, each robot plan is managed by its own plan manager. Parts
of these plans are shared among plan managers. Decision control manages plan generation,
team management and solves conflicts between execution and planning

multi-robot systems, as it does not take into account fundamental issues such as continuous
planning and execution, failure representation and monitoring, and possible communication
problems. A follow-up work of PMA, the Continuous Planning and Execution Framework
(CPEF, [Myers, 1998]) has improved on these points in the framework of HTN plans. Because
of the choice of this model, this work lacks the ability to represent in its plans the relations
between parallel activities as GPGP/TAEMS (HTNs represent only refinement relations,
where child actions are less abstract representations of their parents). This ability is, in our
opinion, fundamental in multi-robot systems.

1.4 Outline

The next section gives an overview of the plan management component. It defines its structure
and integration within an hybrid architecture, and presents the basics of the plan represen-
tation and of the mechanisms that manipulate plans to ensure their consistent execution and
modification. The section then introduces a supporting scenario that involves the cooperation
of a rover and a UAV, which is used as an illustration throughout the paper, and has been
implemented both in simulation and on real robots using our software component. Section 3
depicts the plan representation, and sections 4 and 5 respectively depicts the plan execution
and adaptation mechanisms. Section 6 finally illustrates the achievement of the rover/UAV
scenario.

2 Approach overview: an architecture with plan management
at its core

2.1 Role of the Plan Manager

The role of our plan manager component is to provide the services required to represent,
build, execute and adapt multi-robot plans. The component is generically designed: it is not
associated to specific plan generation systems or specific team management schemes. This
plan manager acts as a broker between the functional layer and plan generation components
(Fig. 1). In this architecture, the planners are responsible for producing coherent plans



[PIan Manager P ]
Plan

Other robots Executes g} gpplication
Functional layer code |
User —_— Modifies=

Executes

| application |
code

Models j—
k ) e ——

Figure 2: Composition of the plan management component: the executive calls application
code based on the plan and a set of external events. This application code can then adapt
the plan and the models.

either for the robot alone or for the team, and the functional layer provides services such
as perception and action algorithms that interface the robot with the real world. Between
these two, we introduce two components: the plan manager maintains a plan, which is a
graph of tasks and events defining what the robot may do in the future and how it will do
it. The plan manager is also responsible to execute this plan, which means that it sends
commands to the functional layer and interprets its feedback information according to what
is expected in the plan. Then, the decision control component has two roles: first, it may
call the planners for instance to adapt the plan for new missions, for contingency planning
and because of cooperation opportunities with other robots. Second, it handles the choices
that have to be made during execution: since our system allows simultaneous planning and
execution, conflicts will arise between the executed plan and the partial plans being built. In
a multi-robot context, it also solves conflicts between the needs of the robot and the needs of
the team.

2.2 Structure of the Plan Manager

The plan manager itself is based on the definition of various objects (Fig. 2):

e a set of models, based on a generic plan model designed for the representation of multi-
robot execution situations.

e an ezecutive that ensures the proper execution of plans — and in particular of joint plans.

e a way to safely modify plans as they are executed.

Plan model. The plan model is designed with supervision in mind: its goal is not to offer
a planning model, but a model rich enough to represent the interactions between systems,
for execution and situation assessment (in particular error representation and recovery). Un-
like other plan-based systems, our model is neither solely based on a combination of tasks
(like what can be found on HTN-like or procedural models like CRPs [Beetz et al., 2001]),
nor based on scheduling constraints (temporal ordering of the beginning and end of tasks).
Instead, our plan model separates the information into two dimensions:

e the activity information is represented by tasks, which are structured through a set of
typed relations. There is no distinction, like in HT'Ns, between an abstract level and an



atomic level. Instead, all tasks are representation of activities running in parallel. The
task structure is then — alike to the GPGP/TAEMS model — what defines the various
interactions between tasks, as for instance dependency, influence, ...

e the temporal information is represented by two objects. Events represent the particular
situations that are useful for the plan execution. FEvent graphs then represent the desired
reaction to these events.

One singular property of our model is that the task relations are directed acyclic graphs
(DAGs) of tasks. It has to be compared to existing systems where tasks are maintained
in trees. In multi-robot systems, this DAG structure makes the representation and execu-
tion of plan-merging results natural, allowing for the exploitation of opportunistic situations.
For instance, in [Clement and Durfee, 1999b, Clement and Durfee, 1999a] HTN-like plans are
synchronized to make multi-robot plans, but introduces for that explicit multi-robot primi-
tives. Their work do not deal with the execution and error handling of the resulting plan, but
it is clear that the same mechanisms that could be implemented in each separate plan would
not be applicable in the merged plan: the structure of the merged plan is not simply a merge
of both plan structures (the refinement relations coming from the HTN tree are replaced by
cross-plan synchronization primitives).

Finally, a single plan manager can represent both its tasks and tasks that are exe-
cuted/managed by other managers: it is possible to link events and tasks of two different
plan managers by the same relations. In order to represent in the same plan tasks that are
executed by the local plan manager, tasks that are executed by another plan managers and
joint tasks, two means are available: the notion of role [Tambe, 1996], and the notion of
ownership (who does what).

The executive. The role of the executive is to use the plan object to determine the desired
system reaction to particular situations, and in particular to represent execution errors and
react to them. For multi-robot systems. it must be able to handle the fact that robots cannot
communicate at all times, and that lack of synchronization in the plan may lead to problems
during plan execution. Execution is a cyclic process of three steps (Fig. 3).

Plan adaptation. Our plan manager defines transactions, a tool for robust plan adaptation.
This tool provides the services required to build multi-robot plans, and to use plans as a basis
for negotiation. In a plan manager, one can build plans that involve multiple robots, make
these robots negotiate about the new plan (distributed plan modification) and, if they agree,
commit them to the result.

2.3 Plan-based cooperation in a rover/UAV scenario

In order to illustrate the concepts associated with the plan manager (that are detailed in the
next three sections), we outline here a scenario which has been realized in simulation, and
partially tested on real robots.

In this scenario, the mission to achieve is a rover MoveTo task in an initially unknown ter-
rain. For that purpose, the rover is endowed with algorithms which build a traversability map
from perceived data (Bitmap module), and a now classical two-layered approach to generate
motions: the Nav module plans a long range path in the traversability map [Gancet and Lacroix, 2003],



detect errors as violation of the
constraints defined by the
relation graphs, and try to
recover from them.

determine what events should
be emitted and/or called, and
propagate the events in the
event relation graphs.

1. Event
Propagation

2. Error
Handling

3. Garbage
Collection

kill and remove the tasks that are either not
useful for the completion of the robot goals,
or for which errors have not been recovered.

Figure 3: Overview of the execution cycle

and the path is transmitted to the P3D module, a local planner that generates motion com-
mands in an elevation map [Bonnafous et al., 2001]. This perception/decision/action loop is
summarized in the plans by respectively the Bitmap: :Mapping, Nav: :Path and P3d: : TrackPath
tasks. The rover is assisted by an UAV, which builds traversability maps from vision data.
We assume the UAV flies at an obstacle free elevation, so that its movement can be handled
by a simple waypoint navigation scheme.

On the basis of this scenario, we express the rover-UAV cooperation as relations between
individual robot plans, and then show how this joint plan is handled in our plan manager.
Fig. 4 presents the initial rover plan, in which P3d: : TrackPath follows Nav: :Path, the way-
point list established by Nav: : PathPlanning based on the results of Bitmap: :Mapping?. The
arrows between tasks express relationships which are described in section 3.1.

We implemented an opportunistic method to initialize the interaction for this scenario:
the rover does not know beforehand that an UAV will help to realize its mission. When the
UAV detects the rover by using an automatic network discovery mechanism, it adds triggers
on the rover’s plan. A trigger is a mechanism that allows a plan manager to be notified of
changes to another robot’s plan, making it possible for instance to initiate new interactions.
We use a pattern matching approach that detects when certain tasks or relationships between
tasks exist on the sending side of the trigger. When a trigger matches, the receiving plan
manager is notified of this fact along with a description of the involved tasks and relations.

Fig. 5 shows an example with a trigger representing a situation upon which the UAV is
able to act: as soon as the pattern matches, the rover sends the tasks to the UAV which
integrates this information in its own plan. The UAV can then use a planner to adapt the
plan for interaction, based on its partial knowledge of the rover’s plan. This planner cannot
directly change the current rover plan: first, partial plans are not sound (i.e. they miss
for instance some activities or the representation of constraints), and second, if the UAV
had such an ability, it would mean that the rover is not able to fully control its plan. We

2POM: :Localization summarizes all the localization processes on-board the rover



/ Nav::MoveTo(to: C) \

realized_by Nav::Path

planned_by
P3d::TrackPath Nav::PathPlanning

POM::Localization Bitmap::Mapping

- /

Initial rover plan (partial view).

~ N
Nav::MoveTo(to: C) RemoteMapping

P3d::TrackPath planned_by

tinfluenced_by

o av::PathPlanning E
POM::Localization . o
Bitmap::Mapping

" /

Final rover plan (partial view). The part with blue background is the partial view
the rover has of the UAV plan. The DataTransfer task, which is in-between, is a
joint task.

Figure 4: (top) partial view of the initial rover plan. (bottom) the cooperative plan built by
negotiation. The interaction is based on rover-provided information on the regions which are
of interest for its navigation. These zones are represented by the RegionsOf Interest task.



Services:: RemoteTrastabilityMapping

Bitmap::Mapping

(<]
Legend start
Task not yet runningw RemoteTrvMapping::Planning
Running task
® Emitted event J

Figure 5: When the trigger matches, the UAV is notified of the correspond-
ing tasks (Bitmap::Mapping task). Then, the UAV inserts two tasks: a
Services: :RemoteTraversabilityMapping task which is an abstract representation of its
possible mapping activity and a PlanningTask which represents the negotiation activity re-
quired to build the joint plan. This negotiation activity is linked with the mapping activity
through a specific relation which represents that PlanningTask generates the plan for the
remote mapping.

therefore need a way to transform plans without directly changing the plan being executed,
so that (i) the executive only sees complete plans and (ii) one robot can propose a plan
modification to another. This is achieved by transactions, which represent a plan changeset,
i.e. set of modifications required to get from the current executed plan to the desired final
plan. Transactions can be shared and synchronized across plan managers.

So, while the UAV generates its proposal, the rover is not aware of the transaction. Once
the transaction is complete from the UAV point of view, the transaction is sent to the rover.
The rover can modify it, in which case the changes are sent back to the UAV: both robots use
the transaction as a whiteboard to build their joint plan. Once both agree on the new plan,
they change their executed plan accordingly at the same time, and can start its execution. If
a joint plan cannot be found, the transaction is simply discarded.

3 Plan Model

Our plan manager has been designed with multi-robot systems in mind: in a multi-robot
context, a single plan manager is able to express and manipulate plans where tasks executed
by the local robot (local tasks) are interacting with tasks executed by other robots (remote
tasks), or even the joint tasks, which imply more than a single robot. Note that in order to
reduce plan complexity, there is no need for one robot to know everything about another’s
plan: a plan manager is informed only about the remote tasks it is interacting with (section 5).
This allows to keep each plan at a tractable size regardless of the number of plan managers
currently interacting.

This section first describes the plan manager model of tasks and events, and how their

the model represents which robot is responsible for doing what, and more particularly how
team plans are represented.

10



3.1 Execution milestones: events

The basic element of execution is the event: the set of events in the system represent the
observable situations during execution. To be represented in our system, the situations that
are of concern for the robot supervision must have an associated event, or be built as a
combination of other events (temporal combinators and, or and until are for instance built
by using only the core event model). When the situation that is represented by a given event
is reached, the event is emitted. Example of events are timer events (emitted periodically) or
task events, which describe the progress of the task they are attached to — like the stop event
of a task.
From a control point of view, events come into two categories:

e an event is controllable if the system can make sure it will be emitted. In this case,
event command is the procedure able to make that happen.
e an event is contingent if the system has no direct control on its emission.

Moreover, specific procedures called event handlers can be attached to events. These
procedures are called every time the event is emitted, allowing for reactions that are not
encoded in the plan itself.

Finally, if an event cannot be emitted anymore (i.e. the underlying situation cannot be
reached anymore), it is unreachable. This property is very useful for supervision as it allows
to describe error conditions as the negation of a desired situation (i.e. an error occurs if a
goal event cannot be reached).

3.2 Execution flow: event relations

With events, our plan model is able to represent the milestones of execution. The associated
relation graphs then allow to represent the execution flow: how the system should react to a
given situation.

Two relations are defined in our plan model:

e if a signal relation e 29, es exists, the command of ey is emitted when the e; event is
emitted. fd
e if a forward relation e; —— e exists, then ey is emitted as soon as e; is.

From a semantic point of view, those two relations represent complementary things. The

signal relation represents the system reaction: what actions the system should take when a

. . . . . . . . fwd
given situation is reached. The forward relation represents event generalization: in e; —— eo,

eg 1s emitted in all situations where e is — but can be emitted in situations where e; is not.
The situations represented by e are therefore a superset of the ones represented by e;. This
is used to classify situations, like the different fault modes of an activity which are forwarded
to the generic failed event of the same activity, itself forwarded to stop. See Fig. 6 for a
real-world example of the use of these event relations.

3.3 Activity representation: tasks

Similarly to TDL and other task-based systems, tasks describe the system activities. While
events represent execution milestones, specific situations that are reached by the system, tasks
represent the progressive activities that the system executes.

11



Picture(pos)
success

'3

© @ O po |
start SUCNO ‘1
MoveTo(pos) .

P C po

start success stop
TakePicture

Figure 6: Example of event propagation. The MoveTo and TakePicture tasks form a se-

quence (success 29, start). This sequence is the implementation of a higher-level task,
PictureAt, which is why success is forwarded from TakePicture to PictureAt. This is a
typical translation of a HTN-like hierarchy in our model.

In a very classic way, task models are defined by a type and a set of parameters needed to
define the activity in a concrete way. For instance, MoveTo(start, end) or Localization
are two task models. To be executable, a task model is instantiated by associating values to
the parameters. The set of running tasks therefore represents parallel executions. These task
models are put into a hierarchy (Fig. 7) in which the more abstract task models are refined
in more concrete ones.

In order for the system to track each activity progression, each task model also defines a
set of events, which are therefore milestones specific to the task execution. Example of such
events are the standard start and stop events, but also model-specific ones like for instance
a blocked event for a motion task.

In the plan, these models are used to define task instances, which are the active objects
in the system: they determine when their events should be emitted, and they handle their
event commands. These task instances can be abstract (i.e. non-executable): the initial
rover plan is for instance a single, generic MoveTo(x, y) task, representing thus what the
rover is planning to do but not yet how. For this activity to be executed, a specific MoveTo
implementation must be chosen by the system. Task models are therefore forming hierarchies
(Fig. 7) in which the more abstract task models are refined in more concrete ones.

Representing the relationships between models in this way has two advantages: it allows to
determine that two activities are equivalent, based on their common ancestry. From a multi-
robot point of view, it has the advantage that a robot does not necessarily have to know
all the models known by all the plan managers. Instead, it can use an intermediate level
of abstraction, without having any knowledge about another’s specific task implementation.
This has the advantage that the plan structure, as seen by the remote plan manager, is not
changed. Only less information is represented as activities are represented in a more abstract
way.

3.4 Activity structure: task relations

In a plan, tasks are structured in order to represent how one activity interacts with another.
This has multiple roles:

e provide a semantic structure for the understanding of the plans, for instance to be
interpreted by a human.

12



Root task model

TraversabilityMapping

Nav::MoveTo Bitmap::Mapping RemoteMapping

Figure 7: Task model hierarchy. Task models can inherit from other models, to express
specialization of generic activities. On the right, we can see the abstract representation of
a traversability mapping, which is implemented by the rover through the Bitmap: :Mapping
task and by the UAV through the RemoteMapping task.

e describe what effect one task has on another one, and what are the error conditions
that are specific to each given relation. This information is more specific to the plan
execution.

As we already stressed out, our activity structure is based on a set of directed acyclic
graphs. This is a very important features which singles-out our system, since it allows to repre-
sent dependencies on common services like localization and locomotion. Moreover, in a multi-

merging has been applied without representing local dependencies and cross-agents depen-
dencies, contrary to prior work [Alami et al., 1998b, Yang, 1997, Clement and Durfee, 1999b,
Clement and Durfee, 1999a]. ======= plans in which plan merging has been applied, rep-
resenting local dependencies and cross-agents dependencies in the same way, unlike what exists
in prior works [Alami et al., 1998b, Yang, 1997, Clement and Durfee, 1999b, Clement and Durfee, 1999a].
This has the noticeable advantage that the same supervision mechanisms (error detection and

Therefore, a relation is defined by the following:

e a parent and child task

e a set of requirements, which are what the parent task expects from the child task in the
context of this relation.

e a set of error conditions, which are what the parent considers undesirable situations in
the context of the relation. This always includes the failure to meet the requirements.

In its current iteration, our system defines three relations:

e the realized by relation is used to express hard dependency. In this relation, the parent
task requires that one event in a given set Flgyccess Of success events is emitted. A set
of Efgiture events are the set of events that are undesirable. A ¢, — ¢, realized by
relation is therefore defined by

realized_by(ta, tb, Esuccess; Efailure)

13



For instance, on Fig. 4, Nav::MoveTo requires that its two child tasks are executed
continuously. Therefore Fgyccess = ) and Eftgiture = stop. The refinement relation
used by HTN-based systems is a realized_by relation with FEgyccess = Success and
Efaiture = () (i.e. the error condition is the unreachability of the success event of the
child).

e the influenced by relation is used to express soft dependency: the rover motion
and the UAV traversability mapping do not have a strong dependency, but the ex-
ecution time and efficiency of the rover’s navigation can be greatly improved thanks
to the UAV traversability perception. Note that it is the basis for scheduling in
GPGP/TAEMS [Lesser et al., 2004], which greatly influenced its introduction in our
model.

This relation has no requirements and no error conditions.

e the planned by relation expresses that finding a way to execute an action is handled

by a specific task. It can be used for all kinds of planning: for instance to represent
the generation of task plans and the generation of paths (PathPlanning task in the
rover plan). Child tasks in this relation can have two roles: (i) find a first plan and (ii)
improve continuously this plan.
For that reason, there is no requirement in the second case — i.e. if the parent task of
the relation is not abstract. In the first case, the relation requirement is the emission
of an event which indicates that the task has found a plan (success on one-shot tasks,
another intermediate event on continuous planning tasks). There is no other error
conditions than the unreachability of this event.

3.5 Error and error handling

In our system, errors can come from multiple sources:
e violations of the constraints defined by the task relations

e violations of constraints detected by external plan analysis tools. For instance, temporal
constraints that are not described by the task relations.

e exceptions coming from the code itself: since the tasks are directly implemented using
an all-purpose programming language, it is subject to the normal language exception
handling mechanisms.

Regardless of the error source, the system describes errors by their type, and manage their
types in hierarchies — much alike what is done for exception handling in modern programming
languages. What is specific to our system is that errors may be tied to a particular plan object
(task or event), thus describing what is the source of the error.

If that information is not available, no error handling is possible since the plan model
does not provide enough information to represent what is the consequence of the error. If the
error source is known, then three different error handling mechanisms are available. Two of
these three mechanisms are already available in the literature but no system offer the three.
We will discuss why they are complementary.

Immediate repairs an event handler, tied to the faulty event, transforms the plan so
that, after the transformation, the event emission is not considered as an error anymore. For

14



instance, the event handler could restart the task that has faulted. The structure of the
execution cycle (propagate then analyze) allows this behaviour.

Exception handling an error handling procedure which is able to match the specific
error type is searched by going up in the realized by graph. When a matching proce-
dure is found, it is called and is supposed to repair the plan — for instance by replan-
ning. PRS [Ingrand et al., 1996] has a very narrowed-down version of this (the parent pro-
cedure tries to find a new alternative plan on exception, and exceptions are not typed).
TDL [Simmons and Apfelbaum, 1998] uses exception handling as present in modern pro-
gramming languages, since the procedural executive has a tree structure. Concurrent Reac-
tive Plans define adaptors which are akin to exception handlers as well. The specificity of
adaptors is that they explicitly transform the plan, which could allow for instance to stop the
current plan, perform some repairing actions and resume the normal course of actions.

This method represents the error repair mechanisms that are tied to the task hierarchy
(high-level transformations for low-level faults). Its limitation is that it requires the repair to
be done synchronously. Otherwise, a plan-based representation is required.

Plan repairs a task is tied to a possible fault, represented by an event. When the event is
emitted and represents a fault (for instance, because it is forbidden by a relation), the repair
task is started and its effect is expected to be the repair of the plan. When the task is running,
the plan is left as-is, thus containing both the error and the repair — representing therefore
the exact situation (the plan has failed and is being repaired). When the task is finished,
the repair task is not taken into consideration anymore and if the error is not repaired yet,
exception handling is used.

This method allows to represent error handling as an alternative execution path in the
plan. Among other things, it allows to set error handling procedures that cross the boundaries
of the plan managers since the repairing subplan can use all the multi-robot features of our
plan manager. Finally, unlike the exception mechanism, it allows for non-synchronous repair
of the plan: the repair task is a progressive task and can take quite some time.

3.6 Joint plans: ownership and roles

We need one more information to represent multi-robot plans: in a given plan, who is supposed
to do what. To represent that, a task instance has an ownership attribute, which is the set of
plan managers which are responsible for this activity. For local tasks, ownership is naturally
set to the local plan manager only, for remote tasks it is set to the remote plan manager
which is handling the task, and for joint tasks it is set to all the plan managers involved in
the joint task.

This ownership attribute has two meanings: first, it describes the plan managers that
are actually executing the task. Second, it describes the plan managers which are allowed
to modify it: if it were possible to freely create relations between all plan objects, regardless
of the plan managers which own them, then one plan manager would be able to constrain
another into doing something. This should only be possible through negotiation: the golden
rule of multi-robot plan management in our system is that a remote plan manager cannot
change a robot plan without its consent. To ensure this decoupling, the following rules are in
effect:

15



e to remove a relation, it is sufficient to only own one of the two objects involved. A
plan manager can for instance freely remove a realized by relation between one of its
own task and a task owned by another plan manager (or a joint task). This is needed
because one robot should be able to remove itself from a joint plan without negotiation,
in cases of emergency for instance.

e any robot can remove itself at any time from the list of owners of a joint task. Ownership
removal is then notified to the other plan managers.

e as for the removal of task relations, to add or remove an event relation, the local plan
manager must be the owner of the child in the relation: it allows one plan manager to
synchronize itself on events of another plan manager, which does not really affect the
other plan manager.

Any other modification involving an object not exclusively owned by the local plan man-
ager is not allowed in the executed plan. To handle the negotiation process needed for such
modifications, we defined the transactions, which act as distributed whiteboard to change
plans (see section 5).

One other attribute, related to multi-robot, exists in our system: the notion of role. This
notion is now quite common in the domain of multi-agent and multi-robot systems. To quote
Tambe [Tambe, 1997], who is at the origin of this notion:

“A role is an abstract specification of the set of activities an individual or a
subteam undertakes in service of the team’s overall activity.”

One can clearly see that in our plan model, roles can be specified as “an individual or a
subteam” set of tasks that are depended-upon the joint task of the team. Representing this
notion of role explicitly in our plan model is important because doing so allows to directly
integrate team management tools. In our plan manager, roles can be represented in two ways:

e an explicit mapping from each role to the plan manager fullfilling it

e by combining a structure pattern matching object and the ownership attribute: the
corresponding role is fulfilled by the owner of the joint task which owns the tasks
matching the given pattern. This allows to automatically update the role mapping
when the plan structure is transformed.

Using events, our system can represent the execution flow in a way completely separate
from the activities. This way, it is possible to define combination of events in a much richer
way than in traditional supervision systems, in which the execution flow is built upon combi-
nations of activities. It allows in particular to represent interacting progressive tasks, which
is something other systems cannot do: for instance, one can easily represent the fact that,
in our scenario, the data transfer should be triggered when the traversability map of the
UAV is updated (see Fig. 8). Finally, we can represent situations which are defined outside a
particular activity (for instance a low_battery event).

16



ppl% Wth
update§ map

MapPgth

Nav: Reglo sOflnterest

loo
Plan |ngLo pulled

nsfersmk Nav::P hPIannlng

Bitmap::Mapping

~
Representation of
TrapsferSource event propagation
' signal —>
forwarding ~ --------- | 2
Dt Ce the command of the source
event called the command —>
of the destination event )

Figure 8: Data transfer after a map update on the UAV (experimental data). When the map-
ping is finished on the UAV, the rover is notified that new information is available. The data
itself is passed through another channel established by the TransferSink/TransferSource
pair. The rover integrates this new information and may update the list of regions of interest.

The second most important contribution of this plan model is the representation of joint
plans (similar to GPGP/TAEMS) in a rich task-based formulation like Tambe’s. This con-
tribution is important since we want our system to act as an integration place for interaction
schemes.

4 Plan Execution

In our system, the basis for multi-robot plan execution and multi-robot plan modification, is
a distributed object management protocol which is not extensively presented in this paper.
In this protocol, each plan manager knows, for each object (task or event) of its plan, what
are the other representations of the same objects on remote plan managers. When this object
is modified (through for instance event emission or relation modification), the plan manager
notifies the involved remote plan managers of this modification.

This section focuses on problems related to multi-robot plan execution: how the execution
of joint tasks in our system is related to the joint intention theory, how plan managers
communicate with each other and finally which are the possible synchronization problems
and how they are handled.

4.1 Joint tasks and joint intentions

Events of joint tasks cannot be handled as local events are: since these “joint events” are to
be handled by more than one plan manager, we have to put into place rules that guarantee

17



synchronization between the involved plan managers. The following rules are in effect:

1. when the command of a joint event is called, it is called on every plan manager owning
this event. The command which is called can be role-specific or do nothing, but all plan
managers that are involved in the management of this event must be called.

2. the event is emitted only when all the owning plan managers declare they are ready to
emit it.

The notification mechanism described in the previous section guarantees the application
of the first rule: a plan manager, when signalling the joint event, will notify all its owners
of this signal. The second rule is, however, truly multi-robot specific. It is implemented by
electing a master among the owning managers when the event is being emitted. This master
is notified when the remaining owners are ready to emit the event. When all owners have
done so, the master emits the event. Since the other managers are also subscribed to the joint
event, they are notified of the emission in the normal way. Note that this mechanism is not a
specific one: a mono-robot task being, in our plan, a task with a single owner, the joint tasks
and mono-robot tasks are not treated differently by the executive.

This handling of joint events is a representation of the establishment of a mutual belief
in the joint action theory of Cohen and Levesque [Cohen et al., 1998]: when a robot believes
that it must start a task (“goal” in the joint action theory), the system informs the other
robots of that fact and the robot can start its action only when all the involved robots have
(i) been informed that the joint action is to be executed and (ii) accepted to do their part.
The emission of a start event is therefore equivalent to establishing that the started task
should be realized as a joint persistent goal:

e all involved robots believe that the task is not yet achieved.

e they all accept to achieve the task (i.e. they want the task to be achieved).

e they continue until they reach the belief that either the task is achieved or it is not
achievable.

The rest of the information transmitted about the joint tasks helps to share the beliefs
about the possibility of success. For instance, if a child task fails, the other robots will be
notified as soon as possible of this fact: the robots which are affected by it will be eventually
notified of the failed event emission.

4.2 Communication management

Multi-robot systems cannot take communication for granted: interactions between plan man-
agers can therefore not rely on a permanent network link. In our system, two interacting plan
managers are connected. Connections are either alive if a communication link exists, or dead
if there is no communication link.

In the plan, connections are represented by ConnectionTask instances, with remote tasks
being dependent of this connection task. Therefore, if a separate component determines
that we cannot rely on the remote robot, for instance because the connection has been
dead for too long or the robot is late at a rendezvous, it simply stops the corresponding
ConnectionTask and lets the usual plan manager recovery mechanisms apply (not described
here, see [Joyeux et al., 2007] and [Joyeux, 2007]). These monitoring situations can also be
expressed in the plan, for instance by making the ConnectionTask realized by monitoring
tasks. That way, ConnectionTask will be marked as failed if the monitoring fails.

18



o) )
push pull failed
TransferSource TransferSink

1. the UAV sends a notification to the rover
2. communication delays

= TransferSink fails in the meantime
3. the rover receives the notification but the target does not exist anymore

= interpreted as a lack of synchronization in the plan

Figure 9: A situation in which a synchronization error during distributed plan execution is
interpreted by our system as a plan fault. This plan fault can then be repaired by the usual
means

Moreover, remote tasks are represented locally by task proxies, which are passive objects
in general. Specific proxies can be defined for specific task models to predict the remote
task state in a disconnected scenario, like the proxies of Machinetta [Schurr et al., 2005].
This allows to make the plan continue its execution without having a communication link.
However, recovering after a bad prediction is an unresolved issue.

4.3 Synchronization issues during execution

For a single robot, our system has a synchronous event-based execution model. However, the
synchronous properties of event propagation are obviously lost when executing multi-robot
plans. This leads to interesting issues regarding synchronization during modification and
execution of distributed plans.

The transaction tool which is presented later properly handles synchronization during
plan modification. Synchronization for execution is less clear cut: each robot must be able to
execute as much of its own plan as possible without constantly relying on communication with
the other plan managers. This can lead to inconsistencies when a message, once processed,
refers to plan objects which do not exist anymore. Our communication protocol detects
such synchronization problems and usually interprets them as an error in the communication
layer, which terminates the connection. Automatic plan cleanup mechanisms, not presented
in this paper, then properly terminate the joint plan which was relying on the robot-to-robot
connection.

However, one instance of this problem is instead interpreted as a lack of synchronization
in the plan: the case of signalling/forwarding. Consider the situation represented in Fig. 9,
where a signal message has been sent by the manager which owns the source event towards
the manager owning the signal destination. In this case, a lack of synchronization generates a
plan error and can be handled by the normal error reporting mechanisms of our plan manager.

19



interacts with

Robot 1

Not dire

Robot 2

ctly interacting, but plans are connecte

Robot 3
Robot 4

Figure 10: How a chaining effect can lead to arbitrary plan sizes in multi-robot context: in
this schema, robots are only interacting with their direct neighbours. The whole system plan
is therefore the union of all the robots plans, while the interactions are kept simple.

/ \ Bitmap::l\-/»l,é,??i_hg

Path

Nav::PathPlanning Transfer$ink

TransferSource

Joint plan as seen by the rover: approx. 65 tasks, 2 remote tasks. The
TransferSource and TransferSink tasks are linked through event relations which
are not shown here.

TransferSource

Joint plan as seen by the UAV: approx. 17 tasks, 8 remote tasks. The UAV
explicitly subscribed to the rover’s Bitmap: :Mapping task, which is why the neigh-
borhood of this task is also present (see text for details).

Figure 11: Joint plan as seen by the two robots, taken from experimental data. This
figure illustrates how each robot has only a partial view of its peer’s plan. The
TransferSource/TransferSink pair is implementing the DataTransfer joint task presented
in the introduction, as the management of joint tasks was not ready at the time of the exper-
iment.

20



5 Plan Adaptation

5.1 Composition of partial plan views

In multi-robot system, it is impractible or even impossible to keep a full representation of
the whole multi-robot plan: communication is limited and chaining effects (see Fig. 10) can
indefinitely grow the size of the resulting plan®. Two mechanisms exist for handling, in each
plan manager, the partial view of the other robots’ plans.

The first one is an automatic scheme which maintains the minimal set of remote tasks
which must be represented for the distributed plan management to work properly. In our
system, this is the set of plan objects which are directly related to the robot’s own objects
through a task or event relation (Fig. 11): they are directly interacting with the robot’s own
plan.

The second one is a manual mechanism in which a plan manager subscribes to another’s
task or event. In that case, the subscribed plan manager will be notified of all changes
regarding the plan object, including changes in its neighborhood (i.e. relations in which the
subscribed object is involved, see Bitmap: :Mapping in the UAV plan on Fig. 11). One of
the roles of distributed plan building is to determine what tasks, outside of the automatically
subscribed ones, are relevant to the remote plan managers.

5.2 Plan-based negotiation

In a mono-robot plan manager, a transaction is a whiteboard used to build a set of plan
modifications without modifying the plan being executed. The plan manager can then syn-
chronously apply this changeset to the executed plan or discard it. It ensures that the executed
plan is always sound, provided that the planners themselves are producing sound changesets.

In a multi-robot context, transactions are shared among plan managers, and they can
change multiple plans at the same time. They can therefore be used as a basis for negotiation
(Fig. 12): one robot builds a partial multi-robot transaction, which can then be modified by
others, until an agreement has been found on the new joint plan, in which case the transaction
is committed into all the involved plans. The transaction is a sandbox in which every kind of
plan change can be proposed. Typical modifications are: task and event relations, ownership,
roles, and subscription.

More formally, a transaction is defined by a tuple (P, Opew, Oremoved, Oprowies, ), where:

e P is the plan the transaction applies on. It can either be the executed plan or another
transaction.

o O, 18 a set of tasks and events that are not in P.

® Oremoved 18 a set of tasks and events that are in P but should not be in the new plan. It
is usually empty as task removal is handled by the garbage collection mechanism: the
tasks that are not useful for the new plan are removed automatically.

® Oprozies is a set of tasks that are in the plan and have a representation in the transac-
tion. That transaction-specific representation also allows to change task attributes like
ownership, roles, ...

3The argument for full plan representation we made in the introduction holds for single robots only, where
plan size remains limited.

21



3
Bitmap::Mapping

=T

Services::RemoteTraversabilityMappin

Abstract proposal: the UAV builds a transaction to propose the interaction to
the rover. For now, the UAV did not choose the interaction modality it will use.

Nav::PathPlanning

::Mapping

Nav::RegionsOflinterest

Services::RemoteTraversabilityMapping

The rover accepts the transaction: the rover receives the transaction and ac-
cepts the proposed interaction. It adds a new RegionsOfInterest, not yet present
in its plan, to propose the corresponding service to the rover.

Nav::PathPlanning

Bitmap::

Mapping

v Nav::RegionsOfinterest

/‘W/;{m’n/g:fapAlon

TransferSource MapPath  PlanningLoop

TransferSink

Final state of the transaction: the UAV decides to use the proposed
RegionsOfInterest task and chooses the corresponding mapping modality
(MapAlongPath task). It then adds the tasks needed by that modality and for
the data transfer.

Figure 12: Negotiation steps between the UAV and the rover using a transaction (from
experimental data). The blue-and-white tasks are representation of tasks which are already
present in the plan and are modified by the transaction.

22



e Ris a set of relations between the objects in Opnew U Oprogies- This defines what should
be the set of relations between these objects in the new plan.

The transaction therefore defines the relations (R) between a set of objects in P and new
objects. Based on this information, the plan manager is able to determine if the plan changes
inferred by the execution violates the constraints defined in the transaction and — through
the decision control component — can initiate an adaptation step with the planner. For more
information on this mechanism, please refer to [Joyeux, 2007].

During the commit, the plan managers ensure that the changeset contained in the trans-
action is either applied at the same time on all involved plans or not at all. A robot can
therefore assume that, if new multi-robot relations have been added to its plan, the same
relations have been added on the other plan managers as well. Accepting a transaction can
therefore be interpreted as a form of weak contract: the contract represented by the plan in
the transaction is accepted at the time of the commit, but can be broken later, either through
re-negotiation, or because the evolution of the situation demands it.

Finally, the representation of a transaction as a plan transformation allows to make sure
that, because the robots continued their execution, the plan included in the transaction does
not become incoherent with the executed plan. A mechanism embedded in our system detects
such cases of execution/planning conflicts and forbids the transaction commit if one appears.
A negotiation protocol between the plan manager, the decision control component and the
planning tools then allow to solve these conflicts if possible.

6 Implementation and Results

The plan manager described in this paper is currently implemented in the Ruby programming
language, is Free Software and is available at http://roby.rubyforge.org. We use the
object-oriented capabilities of Ruby as a way to define task models and task instances as
classes and objects. In distributed contexts, Ruby allows to create classes on-the-fly, which
allows to map unknown remote models to anonymous local classes. Moreover, developing the
system in a general-purpose language promotes code reuse in supervisors. The development
of our controllers shows that a great level of modularity can be achieved by defining mixins
for patterns in task behaviours on the one hand, and libraries of often-used plan modification
operators on the other hand.

6.1 Robot-specific controllers

We use two robots for our experiments: one iRobot ATRV owned by the LAAS, and one
Yamaha RMAX helicopter owned by the french ONERA laboratory. Two controllers, one for
each, have been implemented.

In the case of the rover, the Roby controller controls an already existing set of Genom mod-
ules that implement the robots’ functional layer [Fleury et al., 1997]. Pocosim [Joyeux et al., 2005],
our simulation system, allowed us to use most of the modules in simulation without modifi-
cation. We only replaced the image acquisition chain by a simulation version of the elevation
mapping module, which reads a pre-computed traversability map. This module offer the same
interface as the real one: we keep the simulated functional layer as close as possible to the real
one, to use the same controller in simulated and real environments. However, since no noise
is added to perception, the functional layer output is much better than in real conditions.

23



On the UAV, the Roby controller is interfaced with the helicopter functional server through
a network socket and a custom protocol. In simulation, the functional server is replaced by a
compatible simulation-only server which reads pre-computed traversability maps.

In this implementation, we take into account the fact that the UAV can give traversability
information of different quality, based on its perception altitude. The initial terrain and the
apriori traversability maps used to simulate the UAV perception are shown on Fig. 13. The
UAV maps are generated based on the elevation data using limits on the terrain slope and
random confidence. For the high altitude map, the confidence is within the [0.12,0.25] range,
while it is within the [0.25,0.5] range for low altitude perception.

6.2 Plan execution

The joint plans built during negotiation include all the information required to manage its
execution. The plan manager offers two error recovery mechanisms: either errors are handled
in the plan (conditional plans), or an exception mechanism (not described here) is used. In
multi-robot contexts, exception handling is not distributed: it is supposed to be a synchronous
operation, and thus cannot be done in the asynchronous communication scheme we use. If
multi-robot error recovery is needed, it shall be either directly expressed in the plan or done
reactively by negotiation between the involved decision control components.

During execution, the UAV is therefore kept informed of any update of the rover’s path. It
can use this information to build and update its own mapping path and send the traversability
updates to the rover. The rover then replans its path, sends the updated path to the UAV,
and so on.

The interaction finishes either when (i) the influenced tasks (parent tasks in the influenced_by
relation) have successfully finished, which would announce the success of the joint plan, or
(74) when the plan structure from which the systems initiated the interaction has ceased to
exist. In that case, the rover’s plan manager will notify the UAV of this change, and the UAV
can then decide to change its plan accordingly. Note that this is not an automatic process of
the plan manager, but a decision to be taken by the UAV.

6.3 Experimental results

We used two scenarios to evaluate the plan managers: the rover alone, and rover/UAV coop-
eration with the UAV as a remote sensor. The single-robot case works as expected in both
simulation and real world and is not the focus of this paper.

In simulation, the whole rover/UAV navigation takes around 30 minutes for a 400 meters
navigation, at maximum 1 m/s speed for the rover. Key situations of the runs are shown in
Fig. 14. The generated plans are around 65 tasks for the rover and 17 for the UAV. Our execu-
tion system is based on a fixed-length execution cycle, which in this scenario implementation
has been fixed at 100 milliseconds, a speed which is easily reached by our implementation.
However, latency issues still exist due to problems with the robot OS (which is not realtime),
and with the garbage collector of the Ruby interpreter. Some key statistics of plan execution
are summarized on Table 1.

Real-world cooperation tests have partially validated the approach: the plan managers
work as expected, but implementation issues in the autonomous rover navigation did not
allow to finish the whole scenario.

24



Traversability and confidence maps for simulated low altitude perception

Figure 13: Maps used for the simulation of our rover/UAV scenario. The confidence maps
are random maps generated so that they form small “patches” of constant confidence. This
resembles the data obtained in the real setup, which uses a texture-based algorithm..

total | max p. cycle
event emissions 23490 24
event command calls | 11518 15
transaction commits | 1180 3

Table 1: Execution statistics during the execution of the rover/UAV scenario.

25



07 LAAS/CHRS

(i) the UAV perceived the first zone for (ii) the rover does not have any percep-
the rover. Low-altitude goals (blue cir- tion goal left for the UAV

cles) are generated in this newly per-

ceived zone. High altitude goals remain

for the terrain still unknown

07 LAAS/CHRS

(iii) new perception goals are injected
by the rover, to cover an unknown area
which may be of interest

(iv) final situation

Figure 14: Progression of the UAV /rover cooperation in simulation. The small red/green
spheres are the navigation waypoints of the rover, while the blue circles are the regions of
interest. The traversability information is displayed in green for fully traversable and red for
fully obstacle. Its transparency is proportional to the confidence we have in the information:
thus, brighter areas are high-confidence data and darker ones low-confidence.

26



6.4 From the experiment, back to the implementation

The implementation of both controllers and the cooperation scenario allowed to test the basic
concepts of the plan manager.

Transactions All plan generation in the rover is done asynchronously in order to test the
concept of transactions. Moreover, the use of distributed transactions and triggers for the
rover/UAV cooperation is an elegant way to implement the interaction between our two
robots.

Use of a central plan management component The management of all the robot
activities in a single system is a great asset for the development of our controllers: the
system can represent and safely handle problems during development, which particularly
assists debugging the functional layer.

Extensibility Building more complex objects on top of the basic system presented in this
paper is quite easy. The plan model and execution schemes are expressive enough to build
complex plans in our system. It also shows that our implementation allows to easily implement
these extensions.

7 Conclusion and Outlook

In this paper, we have presented multi-robot aspects of our plan manager component. Its
single-robot features, such as exception handling or details of the event and transaction mech-
anisms, are presented in prior publication [Joyeux, 2007, Joyeux et al., 2007]. The underlying
plan model separates task representation from execution, which provides (i) flexibility for de-
sign, implementation, and system integration; and (ii) allows to represent and execute joint
plans in multi-robot context. In particular, it allows to represent interactions between pro-
gressive tasks such as the mapping processes described in the example.

Based on this model, the main contribution is a generic and distributed plan manager
tool. It is generic with respect to the planners and the team management schemes used
on each robot and in the multi-robot system, thus providing a powerful tool for system
integration. The main advantage of distribution lies in the fact that it can handle non-
permanent communication while simultaneously executing the plan on each robot. Within
the plan manager, the transaction mechanism allows to build plans cooperatively, negotiate
plan modification, and express commitment of individual robots to the joint tasks.

Note that the plan model can express polymorphic task hierarchies, which allows us to
represent other robot’s tasks at an appropriate level of abstraction without sacrificing the
coherence of the overall plan. Thus, the full multi-robot plan is represented, with varying
degrees of simplification depending on the requirements of each joint task. We also presented
a trigger mechanism as an expressive way to define how a robot can take advantage of the
plan modifications that occur in its peers.

One can notice that the illustrating scenario used in this paper a bi-robot scenario, not a
multi-robot one. This is due to the current state of our implementation, which lacks robustness
for full-blown multi-robot interaction. However, the principles presented in this paper are in
no way limited to the bi-robot case:

27



e our whole model and execution engine is based on the representation of activities that are
running in parallel. This is a natural representation for the activity set of a multi-robot
systems, and as such the mechanisms built on top of it will also work for multi-robot
systems.

e role-based multi-robot task management is shown to be an efficient representation of
the place of each agents in the plan of themulti-robot system.

e from a plan-building point of view, the design has been driven by the necessity to
integrate multiple decision-making processes in a single robot ([Joyeux, 2007]). The
mechanisms put into place to handle this will naturally also handle the multi-robot
case, thanks to the distributed transaction tool.

However, the scalability question remains: how well will scale the communication mechanisms
needed to propagate events in networks of robots and to propagate plan changes.

Future work will address extensions to the model and the manager, as well as extended
usage for system integration in other projects. The implementation described in this paper
has shown promising results for the integration of a modular functional layer like Genom
in a plan management system, and for the development of interaction schemes. We expect
to use it in further projects to design and integrate interaction schemes, planning tools and
functional layers.

Concerning the plan model, the inclusion of temporal information will allow us to better
prepare for communication loss, for example by setting up rendezvous points. We expect
the event model used in our system to support this quite naturally: one can embed a time
propagation algorithm based on the event graphs and on temporal prediction provided by the
tasks.

On the level of plan management, we will work on defining and implementing negotiation
protocols between robots as well as between different planners on each robot. The scenario
presented in this paper remains a good testbed for such endeavour: the robustness of the
team could be greatly improved by explicitly handling communication loss during planning,
and by taking into account the UAV’s planned perception during the planning of the rover’s
navigation.

References

[Alami et al., 1998a] Alami, R., Chatila, R., Fleury, S., Ghallab, M., and Ingrand, F. (1998a).
An architecture for autonomy. International Journal of Robotics Research, 17(4):315-337.

[Alami et al., 1998b] Alami, R., Fleury, S., Herrb, M., Ingrand, F., and Robert, F. (1998b).
Multi-robot cooperation in the martha project. IEEE Robotics and Automation Magazine.

[Beetz, 2000] Beetz, M. (2000). Concurrent Reactive Plans. Springer-Verlag.

[Beetz et al., 2001] Beetz, M., Arbuckle, T., T.Belker, Cremers, A. B., Schultz, D., Ben-
newitz, M., Burgard, W., Hhnel, D., Fox, D., and Grosskreutz, H. (2001). Integrated,
plan-based control of autonomous robots in human environments. IFEFE Intelligent Sys-
tems.

28



[Bonnafous et al., 2001] Bonnafous, D., Lacroix, S., and Simon, T. (2001). Motion generation
for a rover on rough terrains. In International Conference on Intelligent Robots and Systems,

Maui, Hawai (USA).

[Botelho and Alami, 1999] Botelho, S. C. and Alami, R. (1999). M+: a scheme for multi-
robot cooperation through negotiated taskallocation and achievement. In Proceedings of
IEEE ICRA.

[Bresina et al., 2005] Bresina, J. L., Jonsson, A. K., Morris, P. H., and Rajan, K. (2005).
Mixed-initiative planning in MAPGEN: Capabilities and shortcomings. In Proceedings of
the ICAPS Workshop on Mized-Initiative Planning and Scheduling.

[Chien et al., 2004] Chien, S., Knight, R., Stechert, A., Sherwood, R., and Rabideau, G.
(2004). Using iterative repair to improve the responsiveness of planning and scheduling. In
Proceedings of AIPS.

[Clement and Durfee, 1999a] Clement, B. J. and Durfee, E. H. (1999a). Indentifying and re-
solving conflicts among agents with hierarchical plans. In Proceedings of the AAAI Work-
shop on Negotiation.

[Clement and Durfee, 1999b] Clement, B. J. and Durfee, E. H. (1999b). Top-down search for
coordinating the hierarchical plans of multiple agents. In Proceedings of the third annual
conference on Autonomous Agents.

[Cohen et al., 1998] Cohen, P., Levesque, H., and Smith, I. (1998). On team formation.
Contemporary Action Theory.

[Dias, 2004] Dias, B. (2004). TraderBots: A New Paradigm For Robust and Efficient Mul-
tirobot Coordination in Dynamic Environments. PhD thesis, The Robotics Institute -
Carnegie Mellon University.

[Fleury et al., 1997] Fleury, S., Herrb, M., and Chatila, R. (1997). Genom: A tool for the
specification and the implementation of operating modules in a distributed robot architec-
ture. In Proceedings of IROS.

[Gancet et al., 2005] Gancet, J., Hattenberger, G., Alami, R., and Lacroix, S. (2005). Task
planning and contrl for a multi-uav system: architecture and algorithms. In Proceedings of
IEEFE IROS.

[Gancet and Lacroix, 2003] Gancet, J. and Lacroix, S. (2003). Pg2p: A perception-guided
path planning approach for long range autonomous navigation in unknown natural envi-
ronments. In IEEE/RSJ International Conference on Intelligent Robots and Systems, Las
Vegas (USA).

[Ingrand et al., 1996] Ingrand, F., Chatila, R., Alami, R., and Robert, F. (1996). PRS: A
high level supervision and control language for autonomous mobile robots. In Proceedings
of the IEEE International Conference on Robotics and Automation.

[Joyeux, 2007] Joyeux, S. (2007). A Software Framework for Plan Management and Ezx-
ecution in Robotics: Application to Multi-Robot Systems. PhD thesis, ISAE. http:
//tel.archives-ouvertes.fr/tel-00283086/fr/.

29



[Joyeux et al., 2007] Joyeux, S., Lacroix, S., and Alami, R. (2007). A software component
for simultaneous plan execution and adaptation. In Proceedings of the IEEE IROS.

[Joyeux et al., 2005] Joyeux, S., Lampe, A., Lacroix, S., and Alami, R. (2005). Simulation in
the LAAS architecture. In Workshop in Software development in robotics, ICRA 2005.

[Lesser et al., 2004] Lesser, V., Decker, K., Wagner, T., Carver, N., Garvey, A., Horling, B.,
Neiman, D., Podorozhny, R., NagendraPrasad, M., Raja, A., Vincent, R., Xuan, P., and
Zhang, X. (2004). Evolution of the GPGP/TAEMS Domain-Independent Coordination
Framework. Autonomous Agents and Multi-Agent Systems, 9(1):87-143.

[Muscettola et al., 2002] Muscettola, N., Dorals, G. A., Fry, C., Levinson, R., and Plaunt, C.
(2002). IDEA: Planning at the core of autonomous reactive agents. In Proceedings of the
3rd International NASA Workshop on Planning and Scheduling for Space.

[Myers, 1996] Myers, K. L. (1996). Advisable planning systems. In Tate, A., editor, Advanced
Planning Technology. AAAI Press, Menlo Park, CA.

[Myers, 1998] Myers, K. L. (1998). Towards a framework for continuous planning and execu-
tion. In Proceedings of the AAAI Fall Symposium on Distributed Continual Planning.

[Myers et al., 2003] Myers, K. L., Jarvis, P. A., Tyson, W. M., and Wolverton, M. J. (2003).
A mixed-initiative framework for robust plan sketching. In Proceedings of the 2003 Inter-
national Conference on Automated Planning and Scheduling.

[Pollack and Horty, 1999] Pollack, M. E. and Horty, J. F. (1999). There’s more to life than
making plans: Plan management in dynamic, multiagent environments. AI Magazine.

[Schurr et al., 2005] Schurr, N., Okamoto, S., Maheswaran, R. T., Scerri, P., and Tambe, M.
(2005). Evolution of a teamwork model. Cognitive Modeling and Multi-Agent Interactions.

[Simmons and Apfelbaum, 1998] Simmons, R. and Apfelbaum, D. (1998). A task description
language for robot control. In Proceedings of IEEE IROS.

[Simmons et al., 2002] Simmons, R., Smith, T., Dias, M. B., Goldberg, D., Hershberger,
D., Stentz, A., and Zlot, R. M. (2002). A layered architecture for coordination of mobile
robots. In Proceedings From the NRL Workshop On Multi- Robot Systems. Kluwer Academic
Publishers.

[Smith, 1980] Smith, R. G. (1980). The contract net protocol: High-level communication and
control in a distributed problem solver. In IEEE Transaction on Computers, number 12 in
C-29, pages 1104-1113.

[Tambe, 1996] Tambe, M. (1996). Agent architectures for flexible, practical teamwork. In
Senator, T. and Buchanan, B., editors, Proceedings of the Fourteenth National Conference
On Artificial Intelligence and the Ninth Innovative Applications of Artificial Intelligence
Conference, pages 22-28, Menlo Park, California. American Association For Artificial In-
telligence, AAAI Press.

[Tambe, 1997] Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelli-
gence Research.

30



[Volpe et al., 2001] Volpe, R., Nesnas, I., Estlin, T., Mutz, D., Petras, R., and Das, H. (2001).
The claraty architecture for robotic autonomy. In Aerospace Conference, pages 121-132.

[Yang, 1997] Yang, Q. (1997). Intelligent planning: a decomposition and abstraction based
approach. Springer.

31



