J Erôme Perret

Rachid Alami

PLANNING WITH NON-DETERMINISTIC EVENTS FOR ENHANCED ROBOT AUTONOMY

Keywords: Robotics, Reaction Planning, Autonomous Systems, Plan Execution

Beyond pure academic research, a number of application elds raise a challenge. In activities such as planetary exploration, undersea servicing, wo r k i n n uclear plants, or disaster intervention, the dynamics of the environment and the strong constraints on data transmissions call for advanced robot autonomy. In this paper we propose a cooperative robot control system architecture based on a reaction planner. We d e v elop our representation for action and event operators and present a simple algorithm for building robust plans. Finally, w e discuss plan execution and give hints of possible future developments.

INTRODUCTION

An autonomous robot system operating in an environment i n w h i c h there is uncertainty a n d change needs to combine reasoning with reaction. Reasoning means the ability to decide what to do the reasoning activity w e are interested in here is planning, as the action of projecting the current situation into the future in order to gure out a sequence of actions leading to a goal. Reaction means the ability to act in order to avoid the negative consequences of a situation, or on the contrary to bene t from its positive e ects.

The choice of the \good" reaction is usually not trivial, and might require planning. However, in the case of an automatic planning system, the time needed to produce a plan can be very long, which contradicts the notion of \reaction" itself.

In this context, several approaches have been proposed, which g i v e a partial solution to the problem. We will distinguish here three main strategies:

Anytime planning: (Dean and Boddy, 1 9 8 8) Anytime algorithms have the ability to produce a plan within a given bounded time compatible with the necessary reaction. This approach t r i e s to bring reasoning nearer to reactivity. The price to pay for this is the poor quality of the plan when the time allocated to planning is short. Moreover, in order to build a complete control system, there is a need for a meta-supervision level in charge of deciding when to plan and how m uch time to allocate to planning in a given situation.

Probabilistic planning: [START_REF] Kushmeric | An Algorithm for Probabilistic Planning[END_REF] The purpose of this approach is to plan for a sequence of actions which, whatever the initial state of the environment and whatever its evolution, will lead to the goal with a su ciently high probability. In that way, uncertainty in the environment is accounted for, and the control system does not have t o r e l y h e a vily on the poor perception capabilities of the robot. The problem is the existence of such plans, and the complexity o f their construction.

Reaction planning: [START_REF] Thi Ebaux | A Semi-Reactive Planner Based on a Possible Models Action Formalization[END_REF] Reaction planning means to foresee the changes in the environment and to produce reactions in advance. The strong hypothesis in this approach is the complete knowledge of the world and its possible evolution, and of the consequences of the robot's actions.

Finally, a n umber of recent w orks try to bring these approaches together and associate them [START_REF] Drummond | Anytime Synthetic Projection: Maximizing the Probability of Goal Satisfaction[END_REF]. However, they hit the full complexity of the problem and are forced to make compromises.

Our claim is that reasoning and reaction are two activities which m ust remain distinct, and cooperate. In that way, w e de nitively place ourselves in the third strategy, reaction planning. The key point is the interaction between the two processes, and previous works defer largely there.

In section 2, we will discuss this interaction, and establish what conditions it imposes on produced plans. In section 3 we will describe the class of problems we a r e i n terested in here. In section 4 we Supervisor Planner

World

Figure 1 The Planner-Supervisor paradigm will present our planning operators and in section 5 w e will propose a planning scheme for producing plans which satisfy the conditions introduced in section 2. Section 6 will deal with plan execution. Finally, w e will give a n o verview of our future work and a short conclusion.

DISCUSSION

Our system design is simple and now rather commonplace (see g. 1). Several authors use the same description, such as [START_REF] Fikes | Learning and Executing Generalized Plans[END_REF], [START_REF] Drummond | Anytime Synthetic Projection: Maximizing the Probability of Goal Satisfaction[END_REF], [START_REF] Kabanza | Reactive Planning of Immediate Actions[END_REF], [START_REF] Musliner | CIRCA: A Cooperative I n telligent Real-Time Control Architecture[END_REF].

The responsibility of \closing the loop" at the level of plan execution control is entirely devoted to the supervisor. In order to achieve it, the supervisor makes use only of deliberation algorithms which are guaranteed to be time-bounded and compatible with the dynamics of the controlled system. Indeed, all deliberation algorithms which d o n o t verify this property are actually performed by the planner upon request of the supervisor.

We are primarily interested here in the planning module, so we will develop the conditions which the plans have to ful l, and we will come back t o the supervision at the end of the article.

We s a y that, in order to insure the completion of the task and the safety of the robot, the plans have to be: safe, complete, and goal-achieving. We call such a plan robust.

Safe means it shouldn't lead the robot into a dangerous situation and leave it there without a handy reaction. Complete means all courses of events are accounted for. Goal-achieving means the plan leads to the goal.

Given our strong hypotheses and the complexity, the task of building a robust plan is way b e y ond our reach. Thus we adopt a moderated de nition of robustness, based on the three following rules:

1. safety: while applying the plan to the known initial state of the world, given its foreseeable evolution, no situation shall arise where the safety condition is unsatis ed 2. completeness: every foreseeable course of events shall be accounted for, i.e. followed by an action or a replan statement n o replan statement shall take care of a situation which could foreseeably become dangerous while replanning (replanning can take a n u n k n o wn unbounded time). This is a key point i n our approach, which helps us limit the exploration, and thus envisage to address more ambitious problems 3. goal-achieving: the probability of reaching the goal by applying the plan to the known initial state of the world, given its foreseeable evolution, shall be non-null (and superior to a given threshold)

Several previous works give partial answers to theses rules: (Kabanza, 1992 Godefroid and[START_REF] Godefroid | An E cient Reactive Planner for Synthesizing Reactive Plans[END_REF]: F. Kabanza proposes a search algorithm in a graph of states which transitions correspond to actions (operators which the system can control) or events (operators over which the system has no control) his system uses the search itself for generating liveness rules (leading towards the goal), safety rules (leading away from danger), and heuristic rules (which can be used at runtime to deal with an unforeseen situation). Ecient a s i t m a y be for a speci c class of problems, the search in a graph of states hits the full combinatorial complexity i n a n y closer-to-reality w orld. Moreover, Kabanza cannot avoid to manage the con icts between generated rules, which can turn o u t t o b e v ery dangerous in the end. (Musliner et al., 1 9 9 2) : CIRCA is a complete integration example for a robot control system by reasoning on a graph model of RTS/environment interaction, it generates reactions which are necessary to achieve the goals from these reactions, it computes a cyclic schedule to be executed by t h e RTS. However, the graph model representation appears to be very complex and di cult to expand to a realistic world domain this compels CIRCA to remain a low-level control system, which a c t ually is its primary purpose.

(Thi ebaux and Hertzberg, 1992): S.

Thi ebaux and J. Hertzberg propose a nondeterministic action model and a planning method which produces plans as T-M graphs these plans can in turn be translated into nite state automata, which m a k es them executable and enlarges their applicability s c o p e . However, they avoid modelling foreseeable changes in the environment, which are indeed partly responsible of the non-determinism of the actions.

OUR CLASS OF PROBLEMS

Our domain is mobile robots in changing environments. We de ne a class of problems characterized as follows:

the robot system has an exact knowledge of the characteristics of its environment r e l e v ant to its task, or it can nd them out by executing a speci c action these characteristics include the state of the environment and its reactivity, i.e. its foreseeable evolution in the context of robot activity moreover, it has an exact model of the actions it can execute this model includes their nondeterministic consequences and their probability.

Following are two example worlds which belong to this class of problems:

First example: The robot's task is to enter a building in which a c hemical incident occurred it carries a spray which can neutralize one of the contaminating chemicals (but not all that may h a ve been spilled) it can be itself contaminated if in presence of a corrosive c hemical for too long, and the contamination is fatal in the short term it can decontaminate itself by going out of the building and into a cleaning area.

Second example: The robot's task is to carry objects around inside a factory the production process implies strong unscheduled constraints on its movements moreover, it is dangerous to stay at some crossings because of heavy carriers.

We will develop the rst example in the following sections.

REPRESENTATION

Our planning operators are variants of STRIPS operators with pre and postconditions. As in (Thi ebaux and Hertzberg, 1992) and [START_REF] Kushmeric | An Algorithm for Probabilistic Planning[END_REF], we a l l o w for alternative outcomes of actions applied in the same situation, and to every set of consequences of the application of an operator, we associate a probability.

We distinguish between actions and events. A ctions are operators over which the robot system Figure 3 Two sample events has full control, therefore they are akin to the STRIPS planning operators. On the other hand, events are operators over which the robot system has no control the preconditions of an event are its trigger, and the postconditions are its consequences. The total probability of all outcomes of an action has to be 1, whereas for an event it can be lower (meaning that an event m a y o r may not occur). Figures 2 and3 present some sample operators, actions and events. Please note that event robot-dead-contaminated violates the safety condition (robot-safe), w h i c h no action can re-assert.

Action operators can be used to describe robot actions, reactions of the environment to robot actions (e.g. while spraying decontaminants, a smoke alarm could be raised automatically), and actions of the lower robot control layers (e.g. when moving along a corridor, the robot might stop because of an obstacle). Event operators account The planning problem is de ned as follows: given the initial state of the world (a set of predicates) and the goal, actions and events as described above, the safety condition not to be violated, the replan threshold and the goal achievement threshold, nd a robust plan (i.e. satisfying the conditions given in section 2). It may be that the goal can be achieved in a situation which i s n o t stable (in which e v ents can occur) in that case, the planner should continue to plan until it has reached a stable state. The concept of stability is fundamental in our approach we assume here that any stable situation is suitable for replanning. In that way, the planner can insure that it will be called again eventually, possibly with a new task to perform.

SIMPLE PLANNING ALGORITHM

We propose a rst simple planning algorithm, much in the fashion of Warren's WARPLAN-C [START_REF] Warren | Generating Conditional Plans and Programs[END_REF]. It is based on the deterministic non-linear planner SNLP (Mc Allester and Rosenblitt, 1991 [START_REF] Barrett | Partial Order Planning: Evaluating Possible E ciency Gains[END_REF]), but could be applied to other deterministic planners

The action operators are rst compiled into deterministic operators, one operator being created for every possible outcome of an action. Figure 4 presents the operators for the check-for-room-contamination action.

Given the initial state of the world and the compiled operators, a rst linear plan is build by the deterministic planner, consisting of a sequence of deterministic operators. Now, using the original actions and events, this plan is expanded into a tree structure akin to the T-M graphs of [START_REF] Thi Ebaux | A Semi-Reactive Planner Based on a Possible Models Action Formalization[END_REF] this structure is composed of three types of nodes: A (i.e. start of an action), E (i.e. event) and S (i.e. world state), and has the following properties:

the root is a S-node, as are all leaves, A-nodes and E-nodes have only one S-node as successor, non-leaf S-nodes have either one A-node or a number of E-nodes as successor.

The procedure for building the A-E-S tree is the following: the rst action of the linearized deterministic plan is expanded into one A-node (the start of the action) followed by one S-node (its execution state), itself followed by a n umber of E-nodes and corresponding S-nodes (one pair for each possible outcome of the action) then the execution S-node is tested for events, as well as all other new S-nodes which do not t in the deterministic plan for each S-node, all triggered events are sorted using their delay parameter, and tested for exclusiveness (i.e. incompatibility of e ects) the list is pruned after the rst event with a probability of 1 (if present), and one E-node is generated for every remaining (set of) event(s), along with its successor S-node and its probability o f o ccurrence. The root S-node is built from the initial world state, and the procedure is carried on with every S-node along the deterministic plan, until all actions have been translated into A-nodes and no event is applicable in any leaf S-node. The resulting structure may o r m a y not lead to the goal, depending on the triggered events.

For Now, all new S-nodes are tested for the safety condition (e.g. in our example, (robot-safe)). Should this condition be false in state S, t h e n w e have to plan for a reaction avoiding S. I f S's father is an A-node A, t h e n w e prune the plan before

S i A S A E A1 E A2 S A1 S A2 E E1 S E1 B S B E B1 E E2

S B1 S E2

Figure 5 A-E-S tree example

A and look for an other linear plan starting from the new leave. If S's father is an E-node E, again we call the deterministic planner in order to nd a new plan, which rst action will inhibit E. T h e r e are several means to nd a new plan: either by using the negation of one of the preconditions of E as new goal, or by inserting any applicable action compatible with the delay o f E and planning again from there on. If no plan is found, then the problem is declared unsolved.

If all new S-nodes are safe, then a new S-node with a probability a b o ve t h e replan threshold is chosen, among all S-nodes which h a ve no successor A-node. The S-node becomes the initial state, and the deterministic planner is used to build a new plan towards the goal.

In the end, all pending S-nodes which a r e b e l o w the replan threshold are agged with the replan statement. The resulting plan is solution if the sum of the probabilities of all goal states is above the goal achievement threshold. Figure 6 gives an example of a plan after the rst planning step, and at the end of the re nement phase.

Why is our algorithm sound? We can demonstrate that, prov i d e d n o e v ent loop with a 1 probability exists (which can be easily checked for), the probability k eeps decreasing along all branches of the A-E-S tree, and thus will nally go under the replan threshold. Furthermore, the plans produced satisfy the three conditions given in section 2.

We h a ve built a rst prototype planner based on SNLP, w h i c h managed to produce the plan presented g. 6. However, it is not complete, as it is not guaranteed to nd a plan if one exists. Suppose we add an event stating that the doors close automatically after the robot got through them, and the only way to open them is with a remotecontrol. After building the rst SNLP plan, the system will come up with the event (door-closed room1), and is not going to nd a solution because it should have t a k en the remote-control before entering the room. In order to solve this type of problems, we need the ability t o b a c ktrack o ver goals, which i s n o t y et possible with our prototype.

PLAN EXECUTION

The Supervisor interacts with the environment and with the planner. The environment (w h i c h may include one or more lower control layers) is viewed as a set of processes which e x c hange signals with the supervisor. These processes correspond to the actions of the agent a s w ell as events associated with environment c hanges independent f r o m robot actions [START_REF] Alami | Designing an Intelligent Control Architecture for Autonomous Robots[END_REF].

These processes are under the control of the supervisor which has to comply with their speci c features. For example, a process representing a robot motion, cannot be cancelled instantaneously by the supervisor: indeed, such a process has an "inertia". The supervisor may request a stop at any m o m e n t during execution however, the process will go through a series of steps before actually nishing.

The simplest way to represent s u c h processes are nite state automata (FSA). More elaborate representations such as temporized processes should be investigated.

The plan itself can also be understood as a nite automaton: A-nodes and S-nodes correspond to the states of the automaton, A-node and E-nodes to transitions.

In the FSA class we u s e , a t a n y m o m ent: the set of allowed external signals correspond to all the actions that can be taken by the supervisor (either part of the plan or decided by the supervisor's own bounded-time decisional abilities) similarly, the set of possible internal signals correspond to all action terminations and results and all environment c hanges that could be perceived by the supervisor.

The activity of the supervisor consists in moni- Such bounded-time decisional abilities are well in the reach of a system like KHEOPS [START_REF] Ghallab | Task execution Monitoring by c o mpiled production rules in an advanced multi-sensor robot[END_REF].

Indeed, every single decision process which c a n b e left to the supervisor, provided it can be done in bounded time, reduces the complexity of the planning problem. For example, suppose the supervisor is able to make the robot leave the building as soon as it becomes contaminated, by following the same path backwards. We could take a d v antage of this behaviour at planning time by adding a meta-planning rule which t a k es care of all Snodes where (robot-contaminated) is true and the robot is not too far away from the entrance. That way, w e w ould leave t h e w orld model unchanged so that the planner can still plan for these situations if it decides to.

During execution, the robot system will follow o n e path in the plan automaton, thus validating states which had only a probability of occurrence before. Now with each execution step, we can propagate this validation, dividing the probability of all descendants of the selected state by its own probability, and setting all other states to null. Doing this, it is possible that some states agged with (replan) will raise above the probability threshold and thus become eligible for further planning. In order to save time and pro t from our cooperating architecture, the execution supervisor will send right a way the most probable state to the planner for further plan re nement.

FUTURE WORK

Our rst activity will be to implement backtracking strategies in the simple planner and to investigate the possibility of enriching our representation with meta-planning rules. Then we will focus on the supervisor module. Once the complete system is operational, we will test it extensively on di erent problems, trying to evaluate the robustness of produced plans and in particular the stability regarding modelling errors (action outcomes' and events' probabilities are especially di cult to estimate).

We hope to give some interesting results of these activities in the nal presentation at IAS-4.

CONCLUSION

After having justi ed our approach t o i n tegrating reasoning and reaction in the context of autonomous mobile robots, we h a ve described the planner/supervisor interaction and have derived the key properties of the plans to be produced. Then, we h a ve proposed a model for actions and events and a tentative planning algorithm for generating such plans, which w e h a ve demonstrated on an example. Finally, w e h a ve proposed a plan execution scheme, addressing the issues of planner/supervisor interaction and real-time decisionmaking.

Figure

 Figure 2 A sample action

Figure 4

 4 Figure 4 Generated SNLP operators

Figure 6

 6 Figure 6 Two steps of the planning algorithm