Emmanuel Gu
email: femmanuel.guere@laas.fr

Rachid Alami
email: rachid.alamig@laas.fr

A P ossibilistic Planner that deals with non-determinism and contingency

This paper proposes a new planning approach that authorizes an autonomous robot to reason about the inaccuracy of the world description and of its possible evolutions. We represent t h e uncertainty with the possibility theory this allows us to distinguish between two t ypes of nondeterminism: a non-determinism from insufcient modeling and a non-determinism from uncertainty. Besides, we i n troduce perception actions as well as a model of the environment dynamics through \contingent e v ents". Finally, w e p r e s e n t an implemented experimental planner, based on Graphplan search paradigm. This planner is able to produce plans that are robust with respect to contingent e v ents, and whose goal-achieving ability i s e v aluated a priori. The obtained plans can be conformant o r conditional depending on the context and the user requirements.

1 Introduction An autonomous robot system operating in an environment in which there is uncertainty a n d c hanges, needs to combine reasoning and reaction. To correctly plan in an uncertain and dynamic environment, the planner needs an accurate description of the world, of the actions which could be planned and a goal success de nition. There is also a need to model non-determinism as well as contingent e v ents.

One can classify actions into four types: deterministic actions (there is only one possible outcome), conditional actions (outcomes are context dependent), nondeterministic actions (several possible outcomes) and perception actions (one outcome out of n). In addition a perception action improves knowledge.

Another key feature is the ability of the planning algorithm to concentrate on the exploration of the most \probable" courses of action and to evaluate the robustness and the goal achieving ability o f a g i v en plan. This paper presents a planner which partially ful lls the requirements discussed above. To model the environment uncertainty w e use the possibility theory [START_REF] Dubois | [END_REF] which allows to represent complete ignorance as well as qualitative inaccuracy. A goal is described as a conjunction of possibilistic facts which can qualify the goal achievement necessity. I t i s i m p o rtant to note that with uncertain information, actions with conditional e ects can be used as a class of actions with non-deterministic outcomes. Consequently non-determinism can result from uncertainty (c o n d itional actions) as well as from insu cient modeling (nondeterministic actions). Our planner uses explicitly these two kinds of sources of non-determinism in planning as well as perception actions which allow to build conditional plans.

Our planner can anticipate and oppose contingent events by a voiding situations where they can occur or by preparing an adapted reaction. However, this feature is limited to situations which are the result of previous robot action.

In the next sections we describe our representation of the world, of the robot actions and of contingent e v ents. Then we present an algorithm inspired from Graphplan search [START_REF] Blum | [END_REF] as well as some illustrative outputs produced by our planner. Finally, w e give a n overview and a short conclusion.

An uncertain environment

It is certainly useful to distinguish between several types of uncertainties: the complete ignorance of a fact (e.g. the robot does not know where the red test tube is), the qualitative inaccuracy of a fact (e.g. the robot only knows that the red test tube is probably on T a b l e 1) and the quantitative inaccuracy of a fact (e.g. the robot knows that the probability that the red test is on T able 1 is 0.9). Some planners like C G P Smith and Weld, 1998] or Cassandra [START_REF] Pryor | [END_REF] use a set of distinct possible worlds which corresponds to our complete ignorance idea. The probabilistic approach, used especially in BURIDAN Kushmeric et al., 1995], is particularly interesting for describing the uncertainty associated to state transitions. However, probabilities do not allow to represent complete ignorance besides, there are numerous situations where it is not possible to give t o the robot planner probabilities based on statistical measures, but only qualitative information provided by the operator or deduced from previous missions. This is the reason why w e use the possibility theory.

Possibility b a c kground

The possibility theory Zadeh, 1978 Dubois and[START_REF] Dubois | [END_REF] o ers an uncertainty modeling framework where two v alues are associated to every fact A:

(A): the \possibility" for the fact A to be true, N(A): the \necessity" for the fact A to be true. The duality b e t ween necessity and possibility is expressed by the relation N(A) = 1 ; (:A). For example if we do not know if the door is open or not, we can write: (Open(Door)) = 1 a n d N(Open(Door)) = 0 (the door may be open but not necessarily). If the red test tube usually is on T a b l e 1 , we can write: (On(RedTestTube T able 1)) = 1 and N(On(RedTestTube Table 1)) = 0:9. Note that this is a qualitative measure only the order between the di erent possibility and necessity v alues is relevant.

The world representation

We de ne a state as a conjunction of possibilistic facts. The Closed-World Assumption allow s , w h e n a f a c t A is false, to delete it from the state description. Consequently we extend this assumption, in our context, and we only represent in the state the facts that are known in necessity terms in other words we only insert facts which have a positive necessity. T able 1 shows an example of an initial state. Note that the possibility is missing indeed, with the duality b e t ween possibility and necessity we could replace (A) b y N(:A). So if (A) = 1 t h e n N(:A) = 0 and it will not be represented in the state description. In this example, we see that the light on top of

Modeling robot actions

We model the robot actions by possibilistic rules that change the state description. These rules are based on an extension of STRIPS Fikes and Nilsson, 1971] Preconditions, Add-lists and Delete-lists. The computation of the necessities associated to action e ects is based on the following propagation rule (g. 1):

N(B i) max(N b (B i) m i n (N(A 1) N (A 2) ::: N(A n), N(B i j A 1 ^::: ^An)))
where B i is the i th e ect, N(B i j A 1 ^:::^A n))) is the necessity o f h a ving B i given the precondition A 1 ^::: ^An , N b (B i) is the necessity of the fact B i before applying the action and N(B i) i s i t s v alue after applying the action.

World 1 World 2 A1 A2 ... An F1 F2 ... F2 ... B1 B2 ... Bm N(A1) F1 N(F1) N'(F1) N(B1) N(An) N(A2) N(F2) N'(F2) N(B2) N(Bm) Action 1 N(B 1|A1 ...A n) N (B m |A 1 .. .A n) Preconditions

Deterministic actions

A deterministic action changes a state into another in foreseeable way. F or example the TakeWithLight action may be represented by:

TakeWithLight (X : T est Tube, Y:Table) Pre: At Robot Y, On(X,Y), Clear(X),
HandEmpty Light(Y) E : (:On(X,Y),1), (Holding(X),1), (:HandEmpty,1), (:Clear(X),1)

If we apply this action in the initial state described in Table 1, we obtain Holding(RedTestTube) with necessity N 0:7. Note that because there is uncertainty, the action may be executed in situations where its preconditions are not satis ed. We assume that in a such case, it will have no e ect. However, if a more sophisticated model is necessary, one can use conditional actions.

Non-deterministic actions

Non-deterministic actions may lead to several possible outcomes. An outcome is represented by a conjunction of facts (with their necessities) and a possibility-necessity measure of occurrence of that outcome (g. 2) all possible outcomes must appear (to have N(all outcomes)=1)

To k eep consistency, the di erent w orlds w i that result from the application of a non-deterministic action must verify: 9ij (w i) = 1 8 j 6 = i N(w j) = 0 For example, when the TakeWithoutLight action is applied, we are sure to hold a test tube, but we do not know if it is Red or Green: TakeWithoutLight (X : T able) Pre: At Robot X, HandEmpty E : (w1, = 1,N=0): (Holding(RedTestTube),0.7), (:HandEmpty,0.7)... (w2, = 1,N=0): (Holding(GreenTestTube),0.7), (:HandEmpty,0.7)...

Conditional actions

For conditional actions, the e ects are context dependent (g. 3). The conditions must be exhaustive and mutually exclusive. Note that we allow action de nitions which combine di erent t ypes of e ects (deterministic, conditional,...). The Take action combines conditional and non-deterministic e ects:

Take (X:Test Tube, Y:Table) Pre: At Robot Y, On(X,Y), Clear(X), HandEmpty E : When Light(Y):

(:On(X Y),1), (Holding(X),1), (:HandEmpty,1), (:Clear(X),1) When :Light(Y) (w1, = 1,N=0): (Holding(RedTestTube),0.7), (:HandEmpty,0.7)... (w2, = 1,N=0): (Holding(GreenTestTube),0.7), (:HandEmpty,0.7)...

In classical logic an action with conditional e ects is deterministic. Indeed when we plan this action we k n o w the current state and we can decide which conditional e ects will apply. With such a model, one can always change an action which h a s n conditional e ects, each with m conjuncts, in 2 nm actions 1

Action W1 Wn W0 N (C o n d it io n n) N (C o n d it io n 1)
Figure 3: Conditional e ects action model However, in our state model the di erent facts are possibilistic, so if the fact Light(T able 1) is not completely certain :Light(T a b l e 1) is possible (if (Light(Table 1)) = 1 ^N (Light(T a b l e 1)) = 0:7 t h e n (:Light(Table 1)) = 0:3 ^N (:Light(Table 1)) = 0). We are in one of two possible worlds the Take action, because of its conditional e ects, is applicable in both worlds with di erent e ects. This is what we call nondeterminism due to uncertainty. 1 For more details about conditional e ects associated to Graphplan search s e e [START_REF] Koehler | [END_REF][START_REF] Alami | [END_REF]].

Perception actions

Perception actions allow to improve the robot knowledge about a given set of facts. It will allow the robot to know on which branch of the course of actions it is (g. 4). This will entail a higher necessity associated to the facts that have been observed. In the current implementation, we use a simple hypothesis: the perception is assumed perfect, and the necessity associated to the outcome is 1. One possible improvement can be the use of conditional e ects (C- BURIDAN Draper et al., 1994] models that an observation can fail).

For example the perception action which determines if the robot has taken the red or the green test tube, can be represented by: WhichOne?(X:Table) Pre: At Robot X, :HandEmpty Light(X) E : (w1, = 1,N=0): (Holding(RedTestTube),1) (w2, = 1,N=0): (Holding(GreenTestTube),1)

W1 F N(F) ... W0 Action(F) W2 F N=1 not(F) N=1 Π (F) N (F) N (n o t F) Π (n o t F)

Possibilistic treatment

To compute the necessity of a fact in a given state we apply the propagation rule de ned in section 3. The use and de nition of mutex is the same as Graphplan except for \interference": two actions, A 1 and A 2 are mutually exclusive i f t h e A 1 e ects contain the fact m, A 2 preconditions contain :m and min((m) (:m)) > 1 ; N(Goal). One advantage of Graphplan is to keep o n a l e v el only one specimen of a fact. Consequently if we w ant t o k eep this advantage, we m ust use at each level the most \pessimistic" path (lowest necessity) as for proposition mutex: if the fact A has the necessity 0.9 with a rst path and 0.8 with a second one, we a s s o c i a t e 0.8 to A (see for example AtRobotTable 1 in gure 5).

The real fact necessity will be reevaluated during the Graphplan backward phase. With a Graphplan algorithm we cannot optimize the plan necessity (Graphplan only optimizes the number of levels), but the necessity that we associate to the (induced by the action models) can be used as a heuristic during backtrack.

Non-deterministic treatment

During the graph expansion, the planner applies actions with n non-deterministic e ects as n deterministic actions (but we associate a label with necessity and possibility to each branch a s s h o wn in gure 5). The solution extraction is more complex if the plan contains a nondeterministic branch then either the branch necessity i s better than the goal necessity (and the plan is valid), or the branch necessity i s l o wer. In this case, the planner must verify that the plan is also valid for the other branches.

For example on gure 6, the planner applies a nondeterministic action Take which \creates" two possible worlds w 11 and w 21 . A t this point, the robot will not be able to distinguish in which w orld it is. The next actions should be applicable both in w 11 and w 21 (e.g. Mo v e (Table 1 Table 2)) until a perception action allows to distinguish between the two \ b r a n c hes".

Perception treatment

The main di erence between non-deterministic and perception action is that the robot will know after perception on which \branch" it is. The planner can then build a conditional plan. For example, in gure 7, the planner inserts a perception action W ichOne?(T a b l e 2) t o d i stinguish if the robot is holding a red or a green test tube. Note that W i c h O n e ?(T a b l e 2) m ust be applicable in w 12 and w 22 . After the WichOne?(Table 2) action, the two plan \branches" are independent and involve di erent actions. This branches will be explored sequentially. This exploration is not necessary exhaustive. The planner will stop when it nds a plan that satis es the goal necessity.

This corresponds to two plan synthesis starting from w 13 and w 23 . Note that, the planner can re-use, in the second branch exploration, the graph expansion built during the rst one. However, it will have to extend it.

Figure 7: A plan with a perception action 4.4 A rst step towards dealing with contingent e v ents A k ey requirement for robot planning is to be able to reason about contingencies.We h a ve i n troduced in our planner a capability that allows to deal with a subclass of external events. Indeed, we distinguish between \actions" and \events" while actions are operators over which the robot has full control, events are triggered whenever there is a situation that satis es their preconditions. This model of the environment dynamics is based on extension of the NODEP representation of contingent events Perret and Alami, 1995]. Similarly to action types, we h a ve de ned events with possibilistic, nondeterministic or conditional e ects.

Obviously, an elaborated reasoning on external events imposes temporal reasoning capabilities which are not included in our planner. However, we h a ve c hosen to exploit the number of plan steps as an estimation of durations.

We distinguish two t ypes of events: \immediate events" i.e events which apply immediately after the situation which v eri es their preconditions (one level in Graphplan search), events with delay: an event with a delay o f n time units will occur if its triggering situation lasts during n levels. For example, our goal is to cool the red test tube. At the end of the plan, the red test tube must be at T able 3 in the cold-room. But if the door stays open, will the cold-room continue to cool? After a moment the test tube which is in the cold-room will be damaged. This is modeled by an undesirable fact called Fail, Such a n e v ent can be modeled by: HighTemperature Pre: Opened(Door) E : After(10,(Fail, =1,N=0.7))

After(10,(Fail, =1,N=0.7)) means that after 10 time units the e ect Fail (with necessity N=0.7) will occur.

A \reasonable" robot should avoid such situations. A plan must be \safe". While applying the plan to the initial state of the world, given its foreseeable evolution modeled by external events, no situation shall arise where the \Fail" fact appears.

We h a ve extended our planning algorithm in order to ful ll such a requirement. During the graph expansion

Robot1

Green Red Table 1 D o o r Table 3 Table 2 Cold room Room Figure 8: frame's example phase, the planner res all events whose preconditions are satis ed. And, at each backtrack the planner tests if in this partial state an event has possibly caused a failure. If so, the state is declared unsafe and the plan is rejected. This method ensures a safe plan synthesis even if an event appears after achieving the goal.

Results

In this section, we present our planner capabilities through a realistic example and sample problems. The current v ersion is implemented in C++, and it uses an algorithm based in Graphplan.

As shown in gure 8, a robot stands beside Table 1 in a room which c o n tains two tables (Table 1 andT able 2). On each table a lamp is xed: the rst lamp often lights whereas the second one usually lights. At the initial state, a red test tube and a green one are on T a b l e 1 . The goal is to cool the red test tube. A closed door separates the room from a cold-room in which there is a third table (Table 3). In order to cool a test tube, the robot must put it on Table 3 . The robot may m o ve f r o m a location to another, take a test tube, see what it holds, open and close the door and put a test tube on a table. Table 1 shows the initial state.

First, we require a plan which a c hieves the goal with N 0:7: ((On(RedTestTube T able 3)) = 1 ^N (On(RedTestTube Table 3)) 0:7). The planner nds a solution with 6 actions in 95 msec: An advantage of our planner is its capability of nding a better (but more complex) plan upon request for example if its requested to nd a plan that satis es the same goal with higher necessity (N 0:9), the planner produces: In this case, the planner has been obliged to use nondeterministic action as well as perception action to know which test tube it holds. Note that, the light o f T able 1 does not allow the robot to see the tube that it holds, and thus the robot must go to Table 2 so as to distinguish its color. In addition, we observe that the rst three actions de ne a conformant plan Smith and Weld, 1998].

In the third example, we add two external events: if the cold-room door stays open too long (10 levels), the contents of the cold-room will be damaged if the robot stays too long in the cold-room with the door closed it will be damaged. The planner nds a safe conditional plan (in 11780 msec) that satis es (N(On(RedTestT ube Table 3) : damage) 0:9 Note that the door is only closed at the end of the plan: close the door is not a re ex, it has been planned and inserted in the right place.

To upgrade our goal description, we will introduce, in further work, the notion of exible goals as in POS-PLAN Da Costa Pereira et al., 1 9 9 7] with qualitative utility [START_REF] Dubois | [END_REF]. Indeed the robot security can be more important than mission achieving, that we w i l l m o d e l b y N(On(RedT estTube T able 3) 0:9 ^N (cold) = 1 .

In table 2, we present set of a classical problems solved by our planner. Note that the CPU time is not completely signi cant, because the current v ersion was implemented only to validate our representation. \Bomb

Conclusion

In this paper, we h a ve represented the uncertainty with the possibility theory this allowed us to distinguish between two t ypes of non-determinism: a non-determinism from insu cient modeling and a non-determinism from uncertainty. Besides, we h a ve i n troduced perception actions as well as a model of the dynamics through \contingent e v ents". Finally, w e h a ve presented implemented experimental planner which is able to produce plans that are robust with respect to contingent e v ents, and whose goal-achieving ability i s e v aluated a priori. The obtained plans can be conformant or conditional depending on the context and the user requirements.

6.1 Related work WARPLAN Warren, 1976] is the rst planner which works on the non-deterministic action and conditional e ects. We can distinguish two planner types: the robot environment is uncertain and safe. For example BURI-DAN Kushmeric et al., 1 9 9 5] is a conditional probabilistic planner. The plan produced by BURIDAN is a linear action sequence which a c hieves the goal whatever the initial world. POSPLAN Da Costa Pereira et al., 1997] is possibilistic planner which searches an optimal plan with uncertainty non-determinism. UWL Etzioni et al., 1992] introduces a formalism for conditional branches and observations with runtime variables. C-BURIDAN Draper et al., 1 9 9 4] proposes perception actions with probabilistic outcomes (noisy sensors). The complete ignorance modeling is the main problem of these planners because of the probabilistic representation. CASSAN-DRA [START_REF] Pryor | [END_REF]] is a non-deterministic planner with conditional e ects which can only model the complete ignorance. SGP Weld et al., 1998] is the most recent non-deterministic planner with complete ignorance modeling. It is an extension of the conformant planner CGP Smith and Weld, 1998] with sensing actions. SGP builds quickly plans using Graphplan algorithm. We can note that SGP cannot produce new worlds during planning moreover it can plan without sensing actions if the world is unobservable. The second type of planners deals with on dynamical environments as Kabanza, 1992] works about reactive planning. The environment is uncertain and dynamic, but observable. It has de ned the safe situation notion to have secure planning.

Future work

Our planner can build safe conditional plans involving non-deterministic actions and perception actions. However, it does not have the ability to concentrate on the exploration of the most \probable" courses of action and to anticipate the (safe) situations where it will have t o r eplan if it detects an error during execution. As we mentioned it previously, w e will also integrate \ exible" goals which will allow to model the robot safety as more important than the mission. Another direction is to study more elaborate treatment o f c o n tingent e v ents based on temporal reasoning.

Figure 1 :

 1 Figure 1: Action model

Figure 2 :

 2 Figure 2: Non-deterministic action model

Figure 4 :

 4 Figure 4: A perception action example 4 An algorithm based on GraphplanGraphplan is a fast planner developed by[START_REF] Blum | [END_REF] which plans with STRIPS operators and uses a constraint propagation method. It performs in two steps: rst, it builds a constraint graph expansion and then it searches for the plan with a constraint r e s olution extraction.

Figure 5 :

 5 Figure 5: A graph expansion with non-deterministic action (to simplify delete-lists are not drawn)

Figure 6 :

 6 Figure 6: A plan with non-deterministic action

 Take(RedTestTube,Table1) M o ve(Table1, RoomDoor) Open(Door) M o ve(RoomDoor ColdRoomDoor) Move(ColdRoomDoor,Table3) Put(RedTestTube,Ta b l e 3)

): Take(Ta b l e 1) M o ve(Ta b l e 1,T able2) WhichOne?(Table2) if Robot holds RedTestTube then Move(Table2,RoomDoor) O p e n (Door) Move(RoomDoor,ColdRoomDoor) M o ve(ColdRoomDoor,Ta b l e 3) Put(RedTestTube,Table3) M o ve(Ta b l e 3,ColdRoomDoor) Move(ColdRoomDoor RoomDoor) Close(Door) if Robot holds GreenTestTube then Put(GreenTestTube,Table2) M o ve(Ta b l e 2,T able1) Take(RedTestTube,Ta b l e 1) M o ve(Ta b l e 1,RoomDoor) Open(Door) M o ve(RoomDoor ColdRoomDoor) Move(ColdRoomDoor,Ta b l e 3) Put(RedTestTube,Table3) Move(Table3,ColdRoomDoor) M o ve(ColdRoomDoor RoomDoor) Close(Door)

 Table 1 often works, whereas the light o n t o p T able 2 almost usually works.

	Fact On(RedTestTube T able1) On(GreenTestTube T able1) At(Robot T able1) Light(Table1) Light(Table2) ...	Necessity 1 1 1 0.7 0.9 ...
	Table 1: Example of an initial state description
	A goal for our planner is represented by a conjunc-tion of facts with a strictly positive necessity (t o a void disjunctions).