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Abstract� In the stream of research that aims to speed up practical plan�
ners� we propose a new approach to task planning based on Probabilistic
Roadmap Methods �PRM	� Our contribution is twofold� The 
rst issue
concerns an extension of GraphPlan��� specially designed to deal with lo�
cal planning� in large domains� Having a reasonably e�cient local plan�
ner�� we show how we can build a global task planner� based on PRM
and we discuss its advantages and limitations� The second contribution
involves some preliminary results that allow to exploit to domain symme�
tries and to reduce in drastic manner the size of the topological� graph�
The approach is illustrated by a set of implemented examples that exhibit
signi
cant gains�

� Introduction

Even though task planners have made very substantial progress over the last years�
they are still limited in their use� This is the case with large domains where nu�
merous facts and a huge number of possible actions instantiations are not relevant
� a posteriori � for solving a given problem�

There are also domains� like in robotics� where the environment has a given
topology� learning such a structure will certainly help in building an e�cient plan�
ner in a given domain� However� the structure of the environment �at least the
�useful� one	 heavily depends not only on the environment but also on the actions
that can be performed� Our aim is to develop a generic planner that will exhibit
and learn the �structure� of a given domain� This is the reason why we propose
to investigate approaches based on Probabilistic Roadmap �PRM	� PRM basically
�captures� the space �topology� through random state generation and connec�
tivity tests between states using a local planner� PRM obtains good results in
robot path planning because it is relatively easy to test the validity of a randomly
generated con
guration and because there exist good metrics and numerous very
e�cient local planners in the con
guration space� PRM can even obtain excellent
results when careful techniques are devised in order to construct a compact graph
and to �direct� the search toward non�explored regions����

We propose an extension of these notions to task planning� Our contribution is
twofold� The 
rst issue concerns an extension of GraphPlan��� specially designed
to deal with �local planning� in large domains� Having an reasonably e�cient
�local planner�� we show how we can build a 
rst �global task planner� based on
PRM and which builds a �topological� graph approximation of the task space�



�

We also discuss its advantages and limitations� The second contribution involves
some preliminary results that allow to exploit domain symmetries and to reduce
in a drastic manner the size of the �topological� graph� Both contributions are
illustrated through a prototype implementation� The results are very promising�

� Probabilistic Roadmap Method �PRM� background

��� Learning and Using

PRM ��� have been successfully used in path planning� A PRM planner performs
in two steps� i	 topology learning and ii	 using the learned topology to search a
solution of a given problem�

PRM builds a graph� G � �V�E	� which �captures� the con
guration space
topology� The vertices V correspond to randomly generated con
gurations� and
the edges E to the possible connections between vertices� A local planner L is used
to test such a connection� Table � shows a basic version of PRM algorithms� The
predicate connect�v� q	 means that con
gurations q and v are already connected
by the graph� This test allows PRM to avoid cycles� indeed� G is limited to a tree
in order to allow a signi
cantly faster solution search�

To illustrate PRM algorithm�we develop a toy example in 
gure � withMAX �
�� PRM chooses randomly the con
gurations c� and c�� In our example� the local
planner L simply tests the existence of a collision�free straight line between two
con
gurations� L can not 
nd a path between c� and c�� A new con
guration c�
is randomly generated� PRM creates a connection a between c� and c� because of
L�c�� c�	� Adding c� creates a new connection b with c�� Then� c� allows to connect
c� �c	 and c� �d	� When the learning step is stopped� one can use the graph to
search for a global solution to a path planning problem� The initial S and goal S�

states are 
rst connected to the graph G with the local planner� A search is then
performed and obtains a collision�free path �S � c� � c� � c� � c� � S�	��

��� A visibility based algorithm

There is clearly a need to limit the size of the graph while maintaining the best
possible �coverage�� To do so� Move�D��� proposes a PRM that computes �visibil�
ity� roadmaps which consist of two classes of nodes� the guards and the connectors�
When a new valid con
guration is randomly found� three cases may arise�

� either it is not visible from any existing guard�� it is then added as a new
guard to the graph�

� or it is visible by guards belonging to distinct connected components of the
current graph� it is then added as a new connector� and the corresponding
connected components are merged�

� otherwise� it is visible only by guards belonging to a same connected compo�
nent� in such case� it is rejected�

� We can note that PRM sacri
ces optimisation to e�ciency� However� once a path is
found� various smoothing and optimisation techniques can be used to improve the
solution path

� A guard ��� corresponds to a node that is able to access all neighbours by L�
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V � � � E � �

CardE � �
While CardE � MAX do

q � Random�	
If q � CSfree Then

V � V � fqg
CardE � CardE � �
Vc � fv � V� v neighbour of q g
For each v � Vc�ordered with increasing distance	 do

If �connect�v� q	 � L�v� q	 Then
E � E � f�v� q	g

End For each
End While

Table �� PRM basic algorithm
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Fig� �� A PRM sequence example

With such algorithm� c� and c� of 
gure � would not have been added because
of their visibility from c��

Following the PRM framework� there is clearly a need for a �very e�cient�
method for testing states connectivity� There is no need here to have a complete
planner� Completeness will be ensured by the global planner �PRM approach	�
The next section proposes an adaptation of GraphPlan that ful
lls such a need�

� Adapting GraphPlan to local task planning in large
domains

In this section� our aim is to develop a �local task planner� to deal with large
problem� This local planner will allow to de
ne the �neighbourhood� notion used
in PRM� GraphPlan��� plans with STRIPS operators and uses a constraint prop�
agation method� It performs in two steps� 
rst� it builds a constraint graph ex�
pansion� and then it searches for the plan with a constraint resolution extraction�
One limitation comes from the number of possible action instantiations and mutex
disappearing for large problems��

� For this section� we assume that the reader is familiar with GraphPlan algorithms�
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For instance� RIFO ���� allows IPP to keep only �relevant� facts and to reduce
the state size and possible action instantiations� With such state cuts� IPP is able
to plan in quite large domains� Our solution is di�erent� we keep the total state
description� However in order to deal with the combinatorial explosion due to
action instantiation in large domains� we propose to perform a graph expansion
based on partial instantiation and we limit the number of levels� This is reasonable
since we are interested in developing a fast local planner �in large domains	�

To do so we have de
ned speci
c tools for forward expansion and backward
search in partial instantiated action context�

��� Partial action instantiation

In STRIPS formalism ���� a state is de
ned by a set� S of positive facts S � ffig� To
apply a totally instantiated action B to the state S� its precondition set P � fpig
must be included in S �P � S	��

Our goal is to reduce the number of developed actions at each level� We de�
compose each action B in n partially instantiated actions Bi where n � Card�P 	�

De�nition � �Partially instantiated action Bi�� Let B��	 be the STRIPS
de�nition of an action B and let � its arguments �in �rst order logic� and P ��	
its preconditions� Let �i a partial instantiation of � such that pi��i	 is totally
instantiated� We call B��i	 �noted Bi� a partial instantiation of B�

Note that preconditions and e�ects of Bi are partially instantiated �except for
pi	� For instance� table  shows a pick�and�place action and a partial instantiation
by its 
rst precondition�

pick�and�place� x� y� z	 pick�and�place� block�� block�� z	
Precond�� On�x�y	� Clear�x	 Precond�� On�block��block�	� Clear�block�	

Clear�z	 Clear�z	
E��� On�x�z	� Clear�y	 E��� On�block��z	� Clear�block�	

� On�x�y	� � Clear�z	 �On�block��block�	� � Clear�z	

Table �� �a	 An example of STRIPS action in block�world domain� �b	 A partially
instantiated action �by the 
rst precondition On�x�y	 	�

De�nition � �Bi Applicability�� Bi is applicable to state S if and only if
pi��i	 � S and �j �� i� ��j �a total instantiation of �i� pj��j	 � S�

��� Mutex propagation

The GraphPlan mutex de
nition is based on the notion of independence between
two actions� Two totally instantiated actions B� and B� are independent if B� �
B� � B� �B�� The independence relation can be de
ned by Table �a properties�
We can extend this independence relation to partially instantiated actions� B�

i and
B�
� are independent if B�

i �B
�
� � B�

� �B
�
i with relations de
ned in Table �b� Note

that the independence relation of partially instantiated actions is weaker than the
relation between totally instantiated actions� indeed if �i� � such that B�

i is mutex
with B�

� then B� is mutex with B� but not the converse�

� To simplify the notation� we consider states as set of facts instead of conjunctions�
� In addition� we have the following properties� i	 D � P and ii	 D � A � � with D

�resp� A	 the set of facts that become false �resp� true	 after applying action B�
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P � � S P � � S �j� p�j��j	 � S �k� p�k��k	 � S

P � �D� � � P � �D� � � �j�k� p�j ��j	 	� D�
k��k	 �k�j� p�k��k	 	� D�

j ��j	
A� �D� � � A� �D� � � �j�k�A�

j��j	 	� D�
k��k	 �k�j� A�

k��k	 	� D�
j ��j	

Table �� �a	 Independence between B� and B� in S� �b	 Independence between B�
i and

B�
� ��j �resp� �k	 is a total instantiation of �i �resp� �� 		

Find Plan�G�P�Einit�
If G � � Then

Return OK
Unstack �X� lX 	 from G
If lX � � Then

If �� an instantiation of X� � � Einit Then
Return Find Plan�G�P�Einit	

Else Return Fail
Else

Given � the set of partially instantiated action that
supports X and with l� 
 lX
Result � Fail
While Result � Fail do

Choose fBi � �gsuch that X is totally instantiated and
Bi compatible with Bj� �i 	� j	 and with P �non�mutex	
Add composition of Bi preconditions to G
Add fBig to P
Result � Find Plan�G�P�Einit	

Return Result

Table �� Plan extraction algorithm for partially instantiated GraphPlan� �X corresponds
to a partially or totally instantiated fact� lX to the level in which we need X and l� the
level of � appearance�	

Nevertheless using partially instantiated actions allows us to generalise the
mutex relation between two facts� In GraphPlan� two facts P and Q are mutex if
P � �Q or if all actions that support P are mutex with all actions that support
Q� As we already mentioned� some e�ects of a partially instantiated action are
partially instantiated� and so we can create mutex between two �classes� of facts�

For instance� consider the pick�and�place action and a no�op action on fact
Clear�block�	� The pick�and�place action instantiated by the third precondition
�Clear�block�		 deletes Clear�block�	 and adds On�x� block�	� whereas no�op main�
tains Clear�block�	� These two actions are mutex� and so we can conclude that
�x � fblock�� � � � � blockmg� On�x� block�	 is mutex with Clear�block�	�

��� Solution extraction

Our planner uses the partial action instanciation to expand the mutex graph start�
ing from the initial state� As in GraphPlan� we try to extract a solution as soon as
we reach a level that includes the goal� During backward� the planner must 
nd
total instantiations for the selected actions� Such a problem has strong similarities
with the extensions of GraphPlan to conformant planning �see CGP���� and ���	�
Indeed� we have adapted the algorithm presented in ��� to deal with partially in�
stantiated actions� Table � provides a high level description of the plan extraction
procedure�
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Block�world domain

IPP�v��� Our planner �PIGP	
Problem Level CPU Time Memory Level CPU Time Memory

� blocks � ��� s ��� Mb � ��� s ��� Mb
� blocks � ��� s ��� Mb � ��� s ��� Mb
� blocks �� ��� s ��� Mb �� ��� s ��� Mb
�� blocks � ��� s ��� Mb � ��� s ��� Mb
�� blocks � ����� s �� Mb � ��� s ��� Mb
�� blocks � ����� s ���� Mb � ��� s ��� Mb
��� blocks � � � � ���� s �� Mb

Table �� Results from IPP�v��� and our local task planner� The problems �������	 are
de
ned by� at initial state� all blocks are on table� the goal is to obtain several three block
towers�

Results Table � compares IPP�v��� with our GraphPlan adaptation on block�
world domain�We note that IPP is signi
cantly faster than our algorithm on small
domains� On the other hand our planner can elaborate plans in larger domains
when the number of levels necessary to reach the goal is small� Indeed� while the
partial instantiation reduces drastically the combinatorial explosion of the graph
expansion phase� it is expensive for plan extraction�

This is acceptable in our case since we are interested in developing a fast local
planner in large domains�

� Task planning with PRM

In this section� we describe our adaptation of PRM to task planning� It makes
use of the local planner de
ned in the previous section to compute a �topological
graph� of the task space� This is done by randomly generating states and trying
to connect them to the graph using the local planner�

The process is stopped when we consider that we have a su�cient coverage of
the task space� The result is a domain �skeleton�� that will be used as a roadmap�

��� Adaptating PRM to task planning

Locality and accessibility Evaluating the distance between two states d�S� S�	
is NP�Hard� All what we need is an estimation � of d with ��S� S�	 	 d�S� S�	��

In our case� to approximate �� we use the mutex propagation phase of Graph�
Plan� Indeed the number of developed levels to possibly obtain a state S� from
S represents the minimal number of independent action set� and so the minimal
number of action�

De�nition � �Accessibility�� State S� is accessible from S �noted A�S�� S	�� if
and only if there exists an action sequence � such that S� � � �S	� The direct
accessibility corresponds to the existence of a local plan L�S�� S	�

� ��� proposes in HSP to evaluate � with the minimal number of actions to obtain S�

from S without delete�liste� In ���� he estimates cost from the initial state and uses it
to de
ne an heuristic from any state�
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We note that the accessibility relation is re�exive �i�e� A�S� S		� transitive �i�e�
A�S� S��	 
 A�S��� S�	 � A�S� S�		 but not necessarily symetric �i�e� A�S� S�	 ��
A�S�� S		�

A �rst algorithm	 basic PRM Table � describes the incremental construction
of the roadmap� The local planner L is implemented with a partially instantiated
GraphPlan �see previous section	 and the distance corresponds to the minimal
number of graph levels �here we set the neighboorhood to � levels	�

For instance� given G� and G� two disjoint components of the graph G and a
state S� If S is accessible from G� �i�e� �g � G��A�S� g		 and S is not accessible
from G� �i�e� ��g � G��A�S� g		 then we assume that state S does not provide
any new information about the task space topology��

Following ���� we de
ne the notion of Accuracy� it corresponds to the current
number of uninteresting states �since the last interest state	� The number � �
��Accuracy corresponds to an estimation of the probabilistic coverage of the task
space�

State validity Our algorithm is based on a random generation of states� While
it is quite easy to verify the validity of a given con
guration in the path plan�
ning domain �no overlapping with obstacles	� this is not the case� in general�
for task planning� For instance� in the blockword domain� we can not authorize
On�block�� block�	
On�block�� block�	� Our planner is not able to check state va�
lidity� We assume� that we are able to randomly generate all valid states�

First results with basic PRM Figure a shows a graph obtained in ��block�
world with a ��� coverage� The program took ��� s to build a graph composed
of ���� nodes ���� Mb	� In this 
gure� each state is represented by a dot� Two
connected dots mean that there exists a local plan between the corresponding
states� The position of a given in the diagram depends on the size of highest stack
of the state �radius of the circles from � to �	 and the number of the 
rst block of
the stack �angle of the supporting segment	� We note that the 
gure is strongly
symmetric� especially because of the � possible 
rst blocks� Indeed� in block�world
domain� for a tower of n blocks� there are n� possible con
gurations�

Figure b presents a graph built for the ��mail problem with a ��� coverage�
a robot must move letters from a table to another in a complex environment� In
this example� the environment contains ��� cells which are connected with ������
facts �e�g� connect�c���� c���		� Tables are represented by grey cells and walls by
black cells� Our algorithm used �� Mb and took ����� s to build a graph composed
of ��� nodes� Note that the position of the nodes depends only on robot position
and not on the position of the letters �letters can be left on tables or on the robot	�
This is the reason why there are a number of neighbour nodes on the 
gure which
are not connected�

From these two �non trivial	 examples� we can make two observations� First� our
algorithm successfully �captured� a topological structure of the task space derived

� We assume that S will again be randomly generated� in the future� to test again
possible connections between connected components of G� That is the reason why� we
can say that the probabilistic completeness of the method is ensured�
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G � f�g
Accuracy� �
While Accuracy � MAX do

S � RandomV alidState�	
foundG � � � foundg � EmptyState�	
foundnb � �
For each G � G �ordered with increasing distance	 do

If �g � G�A�S� g	 Then
If foundnb � � Then

foundG � G � foundg � g

foundnb � �
Else

If foundnb � � Then
Connect S to foundG by foundg

G � G �G

Connect S to G by g
foundnb � foundnb � �

End For each
If foundnb � � Then

G � G � fS� �g
If foundnb � � Then

Accuracy� Accuracy � �
Else

Accuracy� �
End While

Table 	� Accessibility based algorithm

from accessibility by local plans� Second� in both domains there are symmetries
and possible permutations which unusefully increase the graph�

��� A PRM that deals with permutations

Due to all possible permutations between di�erent states� the previous method to
build a task topological graph is not able to capture the domain topology with
a polynomial number of states �see for instance the symmetry that appears in

gure a	� To solve this problem� we propose an extension that deals explicitly
with permutations�

For example� when there is a permutation between two states S� �On�block��
block�	
OnTable�block�		 and S� �On�block�� block�	
OnTable�block�		� we will
try to learn the task space topology for only one permutation� In this case� the
environment �skeleton� is On�X�Y 	 
 OnTable�Y 	 and there are two possible
substitutions ��S�� S�	 fX�block��Y�block�g and ��S�� S�	 fX�block��Y�block�g�

We de
ne A� the accessibility relation A augmented by substitution which
is transitive� Given S�� S� and S�

� three states such that A�S�� S�	� A�S�� S�	
and ��S�� S

�

�	� In that case� there is a plan � to connect S� to S�� Given � �� the
plan � modi
ed by the substitution ��S�� S

�

�	� and S
�

� the result of the substitution
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Fig� �� �a	 Learned ����	 graph in ��block�world domain� �b	 Learned ����	 graph in
��Mail domain�

��S�� S
�

�	�S�	 � we have S
�

� � � ��S�

�	 and we conclude that the accessibility relation
A�S�

�� S
�

�	 is valid� So if we have A�S�

�� S�	 then we can deduce A�S�

�� S�	 �via the
path S� � S� � S�

� � S�

�	�
Consider for instance the ��block�world domain�Given S� � fOn�block�� block�	�

On�block�� block�	�On table�block�	 g� S�

� � fOn�block�� block�	�On�block�� block�	�
On table�block�	 g and S� � fOn�block�� block�	�On table�block�	�On table�block�	
g� We note that �L�S�� S

�

�	� L�S�� S�	 and L�S�� S�	� In addition� we can reach S�

�

from S� in two steps� so we can conclude that A��S�

�� S�� ��S�� S
�

�		
�

A��S��� S�� ����� 	
If L�S�� S��	 Then

return OK
For each S� such that L�S�� S�	 � L�S�� S�	 do

S�� � ����� �S�	
If A��S��� S�� ����� 	 Then

return OK
End For each
return Fail

Table 
� Accessibility based on permutation

This property allows an extension of the basic PRM algorithm that takes into
account substitution� The new algorithm is similar to the algorithm presented in
table � but� instead of using A to test the accessibility of a new random state
S�� we test if it corresponds to a permutation between two components G� and
G� of the graph G �S� � G� such that ��S�� S�		� If it is the case� we store S��
S� and ��S�� S�	 and use such permutation to try to connect G� and G� in the

� We note that A�S��� S�	 is false because our local planner L is limited to three steps�



��

0

2

1

3

0’

2’

5’

0

2

4

5

4

1

3

0’

2’

5’

0

2

4

5

4

1

3

0

2

44

1

3

0

2

4

5

1

3

0

2

4

5

3’

4

STEP 1 STEP 2 STEP 3

STEP 6STEP 5STEP 4

3’

5’

4

Fig� �� A PRM sequence exemple

subsquent steps� Besides� if the connection is established� we check the graph in
order to eliminate redundancies �see step � of 
gure �	�

The following example illustrates the overall process	 �see 
gure �	� At step ��
there are two components in our graph �S
�S� and S��S�	� Solid line represent
accessibility� At step � we randomly generate S�� S� is accessible from S
 because
of L� In addition� we note that there is a substitution ��S�� S�	� Dashed curve
denote a substitution� So the question is� can we connect components S��S
�S�
and S��S�� At this step� it is impossible because of� �A�S�� S�	� �A�S�� S�	 and
not connected at step �� then we deduce �A��S�� S�	� Now we store ��S�� S�	 to
check if further states can connect the two components via A� �this is the case
with S� and S��	� At step �� we randomly generate S�� S� is accessible from S��

�S�� is created with ��S�� S�	� In this case �see step �		� S� is accessible from S�
�indeed we have S� � S
� � S�� � S�� � S� � S� � S
 � S�	� Dashed line means
that states are already connected in the other substitution� Now� we can reduce
the graph and create only one component without substitution� At step �� we use
��S�� S�	 to create S�� from S�� At step �� we delete S� �resp� S�	 which is now
accessible from S� �resp� S�� 	 via S��

Block
world results Figure �a shows a learned graph for the ��block�world� with
a ��� coverage� domain with permutation method� Our algorithm uses ��� Mb
during ��� s to 
nd �� nodes Each dot is labelled by a state number described

	 In order to simplify the explanation we assume that a state accessible from only one
component is added to G� For instance in step �� nodes � and � are added� We also
assume that A is symmetric�
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State 1

State 6

State 11 State 12 State 13 State 14

State 2 State 3 State 4 State 5

State 10State 9State 8State 7

Fig� �� Learned ����	 graph with substitution method in ��block�world domain

in 
gure �b� We note that for � blocks our graph contains only �� states� These
states correspond� in fact� to �classes� of states� indeed because of the permutation
reasoning a state of this graph is not really instantiated but represents a whole
class of states obtained by substitution�

��� Solution search

The solution extraction method is similar to the insertion of one state during
the learning phase� Indeed� we must connect the initial state Sinit to Si � G�
connect the goal Sgoal to Sg � G and then 
nd a path�
 between Si and Sg when
A��Si� Sg	���

Table � shows some results on block�world domain �with permutation	� Results
from ��block�world express permutation reasoning capabilities� ��� s � �� nodes
with ��� vs� ��� s � ��� nodes with ���� In addition� we remark that if we
remove the average time spent to connect initial and goal state to the graph from
the average time to extract a solution� the spent time to 
nd a path is about ��� s�

� Conclusion and future work

We have proposed an extension of probabilistic Roadmap Methods �PRM	 to task
planning� Such an extension can not be reasonably attempted without an e�cient
local planner which may answer quickly to �connections� requests�

This is why we have developed an extension of GraphPlan��� specially designed
to deal with �local planning� in large domains� It is essentially based on the con�
struction of mutex between partially instantiated facts�

�
 We note that the planner is sound� Indeed the solution is extracted from the graph
and the connection between the initial and 
nal state� all connections are built by the
GraphPlan extension �sound too	� so if a path exists� it is consistent�

�� If we can not connect Si or Sg we can use a classical planner �e�g� IPP�v���	�



��

Graph learning Solution search
Problem nbnode CPU Time Memory CPU Time �average	
� blocks �� ��� s ��� Mb ���� s
�� blocks �� �� s ��� Mb ���� s
�� blocks �� ����� s ��� Mb ��� s
�� blocks ��� ������ s ��� Mb ��� s

Table �� Learn and solution extraction phase on block�world domain

Another key feature is the development of techniques that allow to reduce as
much as possible the size of the learned graph without �losing� the probabilistic
completeness�

This research is still preliminary�However� the obtained results are very promis�
ing� Our future work will concern further investigations on the following aspects�
i	 improvement of the local planner e�ciency �for example� can we introduce some
heuristics ���� ii	 improvement of the topological structure identi
cation by adding
more general symmetry analysis���� or extending re�using methods ������ ���� � � � 	�
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