Emmanuel Gu

Rachid Alami
email: rachidg@laas.fr

An accessibility graph learning approach for task planning in large domains

In the stream of research that aims to speed up practical planners, we propose a new approach to task planning based on Probabilistic Roadmap Methods (PRM). Our contribution is twofold. The rst issue concerns an extension of GraphPlan 1] specially designed to deal with \local planning" in large domains. Having a reasonably e cient \local planner", we s h o w h o w w e can build a \global task planner" based on PRM and we discuss its advantages and limitations. The second contribution involves some preliminary results that allow to exploit to domain symmetries and to reduce in drastic manner the size of the \topological" graph. The approach is illustrated by a set of implemented examples that exhibit signi cant g a i n s .

Introduction

Even though task planners have made very substantial progress over the last years, they are still limited in their use. This is the case with large domains where numerous facts and a huge number of possible actions instantiations are not relevant -a posteriori -for solving a given problem.

There are also domains, like in robotics, where the environment has a given topology learning such a structure will certainly help in building an e cient p l a nner in a given domain. However, the structure of the environment (at least the \useful" one) heavily depends not only on the environment but also on the actions that can be performed. Our aim is to develop a generic planner that will exhibit and learn the \structure" of a given domain. This is the reason why w e propose to investigate approaches based on Probabilistic Roadmap (PRM). PRM basically \captures" the space \topology" through random state generation and connectivity tests between states using a local planner. PRM obtains good results in robot path planning because it is relatively easy to test the validity of a randomly generated con guration and because there exist good metrics and numerous very e cient local planners in the con guration space. PRM can even obtain excellent results when careful techniques are devised in order to construct a compact graph and to \direct" the search t o ward non-explored regions 12].

We propose an extension of these notions to task planning. Our contribution is twofold. The rst issue concerns an extension of GraphPlan 1] specially designed to deal with \local planning" in large domains. Having an reasonably e cient \local planner", we s h o w h o w w e can build a rst \global task planner" based on PRM and which builds a \topological" graph approximation of the task space.

We also discuss its advantages and limitations. The second contribution involves some preliminary results that allow to exploit domain symmetries and to reduce in a drastic manner the size of the \topological" graph. Both contributions are illustrated through a prototype implementation. The results are very promising.

2 Probabilistic Roadmap Method (PRM) background 2.1 Learning and Using PRM 9] have been successfully used in path planning. A PRM planner performs in two steps: i) topology learning and ii) using the learned topology to search a solution of a given problem.

PRM builds a graph, G = (V E), which \captures" the con guration space topology. The vertices V correspond to randomly generated con gurations, and the edges E to the possible connections between vertices. A local planner L is used to test such a connection. Table 1 shows a basic version of PRM algorithms. The predicate connect(v q) means that con gurations q and v are already connected by the graph. This test allows PRM to avoid cycles indeed, G is limited to a tree in order to allow a signi cantly faster solution search.

To illustrate PRM algorithm, we d e v elop a toy example in gure 1 with MA X= 5: PRM chooses randomly the con gurations c 1 and c 2 . In our example, the local planner L simply tests the existence of a collision-free straight line between two con gurations. L can not nd a path between c 1 and c 2 . A new con guration c 3 is randomly generated PRM creates a connection a between c 1 and c 3 because of L(c 1 c 3). Adding c 4 creates a new connection b with c 3 . Then, c 5 allows to connect c 1 (c) and c 2 (d). When the learning step is stopped, one can use the graph to search for a global solution to a path planning problem. The initial S and goal S 0 states are rst connected to the graph G with the local planner. A search is then performed and obtains a collision-free path (S ! c 3 ! c 1 ! c 5 ! c 2 ! S 0)1 .

A visibility based algorithm

There is clearly a need to limit the size of the graph while maintaining the best possible \coverage". To d o s o , M o ve3D 12] proposes a PRM that computes \visibility" roadmaps which consist of two classes of nodes: the guards and the connectors. When a new valid con guration is randomly found, three cases may arise: { either it is not visible from any existing guard2 i t i s t h e n a d d e d a s a n e w guard to the graph, { or it is visible by guards belonging to distinct connected components of the current graph it is then added as a new connector, and the corresponding connected components are merged, { otherwise, it is visible only by guards belonging to a same connected component in such case, it is rejected.

V E CardE 0 While CardE < M A X do q Random() If q 2 CSfreeThen V V f qg CardE CardE + 1 Vc f v 2 V v neighbour of q g
For each v 2 Vc(ordered with increasing distance) do If :connect(v q) L (v q) Then E E f (v q)g End For each End While Following the PRM framework, there is clearly a need for a \very e cient" method for testing states connectivity. There is no need here to have a complete planner. Completeness will be ensured by the global planner (PRM approach). The next section proposes an adaptation of GraphPlan that ful lls such a n e e d .

Adapting GraphPlan to local task planning in large domains

In this section, our aim is to develop a \local task planner" to deal with large problem. This local planner will allow to de ne the \neighbourhood" notion used in PRM. GraphPlan 1] plans with STRIPS operators and uses a constraint propagation method. It performs in two steps: rst, it builds a constraint graph expansion and then it searches for the plan with a constraint resolution extraction. One limitation comes from the number of possible action instantiations and mutex disappearing for large problems [START_REF] Bonet | Planning as heuristic search: New results[END_REF] .

For instance, RIFO 1 0] a l l o ws IPP to keep only \relevant" facts and to reduce the state size and possible action instantiations. With such state cuts, IPP is able to plan in quite large domains. Our solution is di erent: we k eep the total state description. However in order to deal with the combinatorial explosion due to action instantiation in large domains, we propose to perform a graph expansion based on partial instantiation and we limit the number oflevels. This is reasonable since we a r e i n terested in developing a fast local planner (in large domains).

To d o s o w e h a ve de ned speci c tools for forward expansion and backward search i n partial instantiated action context.

Partial action instantiation

In STRIPS formalism 4], a state is de ned by a set4 S of positive facts S = ff i g. T o apply a totally instantiated action B to the state S, its precondition set P = fp i g must be included in S (P S) [START_REF] Fox | The detection and exploration of symmetry in planning problems[END_REF] .

Our goal is to reduce the numb e r o f d e v eloped actions at each l e v el. We d ecompose each action B in n partially instantiated actions B i where n = Card(P).

De nition 1 (Partially instantiated action B i). Let B() be the STRIPS de nition of an action B and let its arguments (in rst order logic) and P() its preconditions. Let i a p artial instantiation of such that p i (i) is totally instantiated. We call B(i) (noted B i) a p artial instantiation of B.

Note that preconditions and e ects of B i are partially instantiated (except for p i). For instance, table 2 shows a pick-and-place action and a partial instantiation by its rst precondition. De nition 2 (B i Applicability). B i is applicable to state S if and only if p i (i) 2 S and 8j 6 = i 9 j (a total instantiation of i) p j (j) 2 S.

Mutex propagation

The GraphPlan mutex de nition is based on the notion of independence between two actions. Two totally instantiated actions B 1 and B 2 are independent i f B 1 B 2 , B 2 B 1 . The independence relation can be de ned by T able 3a properties.

We can extend this independence relation to partially instantiated actions. B 1 i and B 2 are independent i f B 1 i B 2 , B 2 B 1 i with relations de ned in Table 3b. Note that the independence relation of partially instantiated actions is weaker than the relation between totally instantiated actions indeed if 9i such t h a t B 1 i is mutex with B 2 then B 1 is mutex with B 2 but not the converse. Return Result Table 4. Plan extraction algorithm for partially instantiated GraphPlan. (X corresponds to a partially or totally instantiated fact, lX to the level in which w e n e e d X and l the level of appearance.) Nevertheless using partially instantiated actions allows us to generalise the mutex relation between two facts. In GraphPlan, two facts P and Q are mutex if P = :Q or if all actions that support P are mutex with all actions that support Q. A s w e already mentioned, some e ects of a partially instantiated action are partially instantiated, and so we can create mutex between two \classes" of facts.

P 1 S P 2 S 8j p 1 j (j) 2 S 8k p 2 k (k) 2 S P 1 \ D 2 = P 2 \ D 1 = 8j9k p 1 j (j) 6 = D 2 k (k) 8k9j p 2 k (k) 6 = D 1 j (j) A 1 \ D 2 = A 2 \ D 1 = 8j9k A 1 j (j) 6 = D 2 k (k) 8k9j A 2 k (k) 6 = D 1 j (j)
For instance, consider the pick-and-place action and a no-op action on fact Clear(block 3). The pick-and-place action instantiated by the third precondition (Clear(block 3)) deletes Clear(block 3) and adds On(x block 3), whereas no-op maintains Clear(block 3). These two actions are mutex, and so we can conclude that 8x 2 f block 1 : : : b l o c k m g, On(x block 3) i s m utex with Clear(block 3).

Solution extraction

Our planner uses the partial action instanciation to expand the mutex graph starting from the initial state. As in GraphPlan, we try to extract a solution as soon as we reach a l e v el that includes the goal. During backward, the planner must nd total instantiations for the selected actions. Such a problem has strong similarities with the extensions of GraphPlan to conformant planning (see CGP 13] and 6]). Indeed, we h a ve adapted the algorithm presented in 6] to deal with partially instantiated actions. Results Table 5 compares IPP-v4.0 with our GraphPlan adaptation on blockworld domain. We note that IPP is signi cantly faster than our algorithm on small domains. On the other hand our planner can elaborate plans in larger domains when the number of levels necessary to reach the goal is small. Indeed, while the partial instantiation reduces drastically the combinatorial explosion of the graph expansion phase, it is expensive for plan extraction. This is acceptable in our case since we a r e i n terested in developing a fast local planner in large domains. 4 Task planning with PRM In this section, we describe our adaptation of PRM to task planning. It makes use of the local planner de ned in the previous section to compute a \topological graph" of the task space. This is done by randomly generating states and trying to connect them to the graph using the local planner.

The process is stopped when we consider that we h a ve a su cient c o verage of the task space. The result is a domain \skeleton", that will be used as a roadmap.

Adaptating PRM to task planning Locality and accessibility Evaluating the distance between two states d(S S 0)

is NP-Hard. All what we need is an estimation of d with (S S 0) d(S S 0) [START_REF] Gu | A possibilistic planner that deals with non-determinism and contingency[END_REF] .

In our case, to approximate , w e u s e t h e m utex propagation phase of Graph-Plan. Indeed the numb e r o f d e v eloped levels to possibly obtain a state S 0 from S represents the minimal number of independent action set, and so the minimal numb e r o f a c t i o n .

De nition 3 (Accessibility). State S 0 is accessible from S (noted A(S 0 S)), if and only if there exists an action sequence ; such that S 0 = ;(S). T h e d i r ect accessibility corresponds to the existence o f a l o cal plan L(S 0 S). [START_REF] Gu | A possibilistic planner that deals with non-determinism and contingency[END_REF] 2] proposes in HSP to evaluate with the minimal number of actions to obtain S 0 from S without delete-liste. In 3], he estimates cost from the initial state and uses it to de ne an heuristic from any state.

We note that the accessibility relation is re exive (i.e. A(S S)), transitive (i . e . A(S S 00) Â (S 00 S 0) ! A (S S 0)) but not necessarily symetric (i.e. A(S S 0) 6 A(S 0 S)).

A rst algorithm: basic PRM Table 6 describes the incremental construction of the roadmap. The local planner L is implemented with a partially instantiated GraphPlan (see previous section) and the distance corresponds to the minimal number of graph levels (here we set the neighboorhood to 3 levels).

For instance, given G 1 and G 2 two disjoint c o m p o n e n ts of the graph G and a state S. I f S is accessible from G 1 (i.e. 9g 2 G 1 A(S g)) and S is not accessible from G 2 (i.e. :9g 2 G 2 A(S g)) then we assume that state S does not provide any new information about the task space topology [START_REF] Kambhampati | A v alidation-structure-based theory of plan modi cation and reuse[END_REF] .

Following 12], we de ne the notion of Accuracy it corresponds to the current number of uninteresting states (since the last interest state). The number 1 ;

1=Accuracy corresponds to an estimation of the probabilistic coverage of the task space.

State validity Our algorithm is based on a random generation of states. While it is quite easy to verify the validity o f a g i v en con guration in the path planning domain (no overlapping with obstacles), this is not the case, in general, for task planning. For instance, in the blockword domain, we can not authorize On(block 1 b l o c k 2) ^On(block 2 b l o c k 1). Our planner is not able to check state validity. W e assume, that we are able to randomly generate all valid states.

First results with basic PRM Figure 2a shows a graph obtained in 7-blockworld with a 95% coverage. The program took 727.2 s to build a graph composed of 1867 nodes (3.1 Mb). In this gure, each state is represented by a dot. Two connected dots mean that there exists a local plan between the corresponding states. The position of a given in the diagram depends on the size of highest stack of the state (radius of the circles from 1 to 7) and the number of the rst block o f the stack (angle of the supporting segment). We note that the gure is strongly symmetric, especially because of the 7 possible rst blocks. Indeed, in block-world domain, for a tower of n blocks, there are n! possible con gurations. Figure 2b presents a graph built for the 3-mail problem with a 95% coverage: a robot must move letters from a table to another in a complex environment. In this example, the environment c o n tains 400 cells which are connected with 160000 facts (e.g. connect(c 1 1 c 1 2)). Tables are represented by grey cells and walls by black cells. Our algorithm used 18 Mb and took 386.4 s to build a graph composed of 131 nodes. Note that the position of the nodes depends only on robot position and not on the position of the letters (letters can be left on tables or on the robot). This is the reason why there are a numb e r o f n e i g h bour nodes on the gure which are not connected.

From these two (non trivial) examples, we can make t wo o b s e r v ations. First, our algorithm successfully \captured" a topological structure of the task space derived G f g

A PRM that deals with permutations

Due to all possible permutations between di erent states, the previous method to build a task topological graph is not able to capture the domain topology with a polynomial number of states (see for instance the symmetry that appears in gure 2a). To solve this problem, we propose an extension that deals explicitly with permutations.

For example, when there is a permutation between two states S 1 (On(block 1 block 2)^OnTable(block 2)) and S 2 (On(block 2 b l o c k 1)^OnT able(block 1)), we w i l l try to learn the task space topology for only one permutation. In this case, the environment \ s k eleton" is On(X Y) ^OnTable(Y) and there are two possible substitutions (S 1 S 2) fX=block 1 Y= b l o c k 2 g and (S 2 S 1) fX=block 2 Y=block 1 g. We de ne A + the accessibility relation A augmented by substitution which is transitive: Given S 1 , S 2 and S 0

1 three states such t h a t A(S 1 S 2), A(S 2 S 1)

and (S 1 S 0 1). In that case, there is a plan ; to connect S 2 to S 1 . Given ; 0 , t h e plan ; modi ed by the substitution (S 1 S 0 1), and S 0 2 the result of the substitution Consider for instance the 3-block-world domain. Given S 1 = f On(block 1 b l o c k 2), On(block 2 b l o c k 3), On table(block 3) g, S 0 1 = f On(block 3 b l o c k 1), On(block 1 b l o c k 2), On table(block 2) g and S 2 = f On(block 2 block 3), On table(block 3), On table(block 1) g. W e n o t e t h a t :L(S 1 S 0 1), L(S 1 S 2) a n d L(S 2 S 1). In addition, we can reach S 0 2 from S 2 in two steps, so we can conclude that A + (S 0 1 S 1 (S 1 S 0 1)) [START_REF] Kavraki | Randomized query processing in robot path planning[END_REF] A + (S 0 1 S This property a l l o ws an extension of the basic PRM algorithm that takes into account substitution. The new algorithm is similar to the algorithm presented in table 6 but, instead of using A to test the accessibility of a new random state S 1 , w e test if it corresponds to a permutation between two components G 1 and G 2 of the graph G (S 2 2 G 2 such t h a t (S 1 S 2)). If it is the case, we s t o r e S 1 , S 2 and (S 1 S 2) and use such p e r m utation to try to connect G 1 and G 2 in the [START_REF] Kavraki | Randomized query processing in robot path planning[END_REF] We note that A(S 0 1 S 1) is false because our local planner L is limited to three steps. The following example illustrates the overall process9 (see gure 3). At s t e p 1 , there are two components in our graph (S 0 ; S 2 and S 1 ; S 3). Solid line represent accessibility. A t s t e p 2 , w e randomly generate S 4 . S 4 is accessible from S 0 because of L. In addition, we note that there is a substitution (S 4 S 1). Dashed curve denote a substitution. So the question is: can we connect components S 4 ;S 0 ;S 2 and S 1 ; S 3 ? A t this step, it is impossible because of: :A(S 1 S 4), :A(S 3 S 4) and not connected at step 1, then we deduce :A + (S 1 S 4). Now w e store (S 4 S 1) t o check if further states can connect the two c o m p o n e n ts via A + (this is the case with S 5 and S 5 0). At s t e p 3 , w e randomly generate S 5 . S 5 is accessible from S 5 0 (S 5 0 is created with (S 4 S 1). In this case (see step 4)), S 4 is accessible from S 1 (indeed we h a ve S 1 ; S 0 0 ; S 2 0 ; S 5 0 ; S 5 ; S 2 ; S 0 ; S 4). Dashed line means that states are already connected in the other substitution. Now, we can reduce the graph and create only one component without substitution. At step 5, we u s e (S 4 S 1) to create S 3 0 from S 3 . A t step 6, we delete S 1 (resp. S 3) which i s n o w accessible from S 4 (resp. S 3 0) via S 5 .

Block-world results Figure 4a shows a learned graph for the 7-block-world, with a 9 9 % c o verage, domain with permutation method. Our algorithm uses 4.0 Mb during 7.9 s to nd 14 nodes Each dot is labelled by a state number described Fig. 4. Learned (99%) graph with substitution method in 7-block-world domain in gure 4b. We note that for 7 blocks our graph contains only 14 states. These states correspond, in fact, to \classes" of states indeed because of the permutation reasoning a state of this graph is not really instantiated but represents a whole class of states obtained by substitution.

Solution search

The solution extraction method is similar to the insertion of one state during the learning phase. Indeed, we m ust connect the initial state S init to S i 2 G , connect the goal S goal to S g 2 G and then nd a path10 between S i and S g when A + (S i S g) [START_REF] Nebel | Plan reuse versus plan generation: A theorical and empirical analysis[END_REF] .

Table 8 shows some results on block-world domain (with permutation). Results from 7-block-world express permutation reasoning capabilities: 7.9 s / 14 nodes with 99% vs. 727.2 s / 1827 nodes with 95%. In addition, we remark that if we remove the average time spent to connect initial and goal state to the graph from the average time to extract a solution, the spent time to nd a path is about 0.1 s.

Conclusion and future work

We h a ve proposed an extension of probabilistic Roadmap Methods (PRM) to task planning. Such an extension can not be reasonably attempted without an e cient local planner which m a y answer quickly to \connections" requests. T h i s i s w h y w e h a ve d e v eloped an extension of GraphPlan 1] specially designed to deal with \local planning" in large domains. It is essentially based on the construction of mutex between partially instantiated facts.

Fig. 1 .

 1 Fig. 1. A PRM sequence example With such algorithm, c 3 and c 4 of gure 1 would not have been added because of their visibility from c 1 .

 pick-and-place(x, y, z) pick-and-place(block1, block2, z) Precond.: On(x,y), Clear(x)Precond.: On(block1,block2), Clear(block1) Clear(z) Clear(z) E .:On(x,z), Clear(y) E .: On(block1,z), Clear(block2): On(x,y), : Clear(z) :On(block1,block2), : Clear(z) Table 2. (a) An example of STRIPS action in block-world domain. (b) A partially instantiated action (by the rst precondition On(x,y)).

Fig. 2 .

 2 Fig.2. (a) Learned (95%) graph in 7-block-world domain. (b) Learned (95%) graph in 3-Mail domain.(S 1 S 0 1)(S 2) w e h a ve S 0 1 = ; 0 (S 0 2) and we conclude that the accessibility relation A(S 0 1 S 0 2) i s v alid. So if we h a ve A(S 0 2 S 2) then we can deduce A(S 0 1 S 1) (via the

4 Fig. 3 .

 43 Fig. 3. A PRM sequence exemple

Table 1 .

 1 PRM basic algorithm

	000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 000000000000000 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111 111111111111111

Table 3 .

 3 (a) Independence between B 1 and B 2 in S. (b) Independence between B 1 fBi 2 gsuch t h a t X is totally instantiated and Bi compatible with Bj (i 6 = j) and with P (non-mutex) Add composition of Bi preconditions to G Add fBig to P

	i and

Choose

Table 5 .

 5 Table 4 provides a high level description of the plan extraction procedure. Results from IPP-v4.0 and our local task planner. The problems (10-100) are de ned by: at initial state, all blocks are on table the goal is to obtain several three block towers.

	Block-world domain IPP-v4.0 Problem Level CPU Time Memory Level CPU Time Memory Our planner (PIGP) 4 b l o c ks 6 0.1 s 0.4 Mb 6 0.3 s 2.4 Mb 5 b l o c ks 8 0.2 s 0.6 Mb 8 2.4 s 2.5 Mb 6 b l o c ks 10 0.3 s 0.8 Mb 10 6.5 s 2.7 Mb 10 blocks 3 5.8 s 5.7 Mb 3 0.2 s 2.9 Mb 20 blocks 3 269.3 s 95 Mb 3 2.9 s 5.1 Mb 30 blocks ->1000 s >200 Mb 3 5.3 s 7.9 Mb 100 blocks ---3 37.8 s 15 Mb

Table 6 .

 6 Accessibility based algorithm from accessibility b y local plans. Second, in both domains there are symmetries and possible permutations which u n usefully increase the graph.

	Accuracy 0 While Accuracy < MAX do S RandomV alidState() foundG foundg EmptyState() foundnb 0 For each G 2 G (ordered with increasing distance) do If 9g 2 G A(S g) Then If foundnb = 0 Then foundG G foundg g foundnb 1 Else If foundnb = 1 Then Connect S to foundG by foundg G G ; G Connect S to G by g foundnb foundnb + 1 End For each If foundnb = 0 Then G G f S g If foundnb = 1 Then Accuracy Accuracy + 1 Else Accuracy 0 End While

Table 7 .

 7 Accessibility based on permutation

	1 1!1 0) If L(S1 S 0 1) Then return OK For each S2 such t h a t L(S1 S 2) L (S2 S 1) do S 0 2 1!1 0 (S2) If A + (S 0 2 S 2 1!1 0) Then return OK End For each return Fail

We can note that PRM sacri ces optimisation to e ciency. H o wever, once a path is found, various smoothing and optimisation techniques can be used to improve t h e solution path

A guard 8] corresponds to a node that is able to access all neighbours by L.

For this section, we assume that the reader is familiar with GraphPlan algorithms.

To simplify the notation, we consider states as set of facts instead of conjunctions.

In addition, we h a ve the following properties: i) D P and ii) D \ A = with D (resp. A) the set of facts that become false (resp. true) after applying action B.

We assume that S will again be randomly generated, in the future, to test again possible connections between connected components of G. That is the reason why, w e can say that the probabilistic completeness of the method is ensured.

In order to simplify the explanation we assume that a state accessible from only one component is added to G. F or instance in step 1, nodes 2 and 3 are added. We a l s o assume that A is symmetric.

We note that the planner is sound. Indeed the solution is extracted from the graph and the connection between the initial and nal state all connections are built by t h e GraphPlan extension (sound too) so if a path exists, it is consistent.

If we can not connect Si or Sg we can use a classical planner (e.g. IPP-v4.0).

Graph learning Solution search

Problem nbnode CPU Time Memory CPU Time (average) Another key feature is the development of techniques that allow to reduce as much as possible the size of the learned graph without \losing" the probabilistic completeness.

This research is still preliminary. H o wever, the obtained results are very promising. Our future work will concern further investigations on the following aspects: i) improvement of the local planner e ciency (for example, can we i n troduce some heuristics 3]? ii) improvement of the topological structure identi cation by adding more general symmetry analysis 5], or extending re-using methods (11], 7], .. .).