
HAL Id: hal-01979817
https://laas.hal.science/hal-01979817

Submitted on 13 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One action is enough to plan
Emmanuel Guere, Rachid Alami

To cite this version:
Emmanuel Guere, Rachid Alami. One action is enough to plan. IJCAI’01 Proceedings of the 17th
international joint conference on Artificial intelligence - Volume 1 Pages 439-444, Aug 2001, Seattle,
United States. �hal-01979817�

https://laas.hal.science/hal-01979817
https://hal.archives-ouvertes.fr

One action is enough to plan

Emmanuel Guéré and Rachid Alami
LAAS-CNRS

7, Avenue du Colonel Roche
31077 Toulouse Cedex 4 - France

e-mail : fEmmanuel.Guere, Rachid.Alamig@laas.fr

Abstract

We describe a new practical domain independent
task planner, called ShaPer, specially designed to
deal efficiently with large problems.
ShaPer performs in two steps. In the first step, exe-
cuted off-line for a given domain subclass1, ShaPer
explores and builds a compact representation of the
state space called the shape graph. The main con-
tribution of ShaPer is its ability to “resist” to com-
binatorial explosion thanks to the manipulation of
sets of similar state descriptions called shapes. The
shape graph is then used by ShaPer to answer very
efficiently to planning requests.
A first version of the planner has been imple-
mented. It has been tested on several well known
benchmark domains. The results are very promis-
ing when compared with the most efficient planners
from AIPS-2000 competition.

1 Introduction
In the stream of research that aims to speed up practical task
planners, we propose a new approach to efficiently deal with
large problems. Even though task planners have made very
substantial progress over the last years, they are still limited in
their use. Indeed, they are sometimes overwhelmed by very
simple or even trivial problems. Our motivation stems also
from the fact that there are domains which heavily influence
the “structure” of the task state space; learning such a “struc-
ture” will certainly help in building efficiently a solution for
a problem of the domain subclass�. Our aim is to develop
a domain independent planner that will exhibit and learn the
“structure” of a given domain subclass. The main difficulty
(and the key contribution) in this framework is to face the
combinatorial problem of the task space exploration.

In order to solve larger problems, all planners in the liter-
ature try to prune the state space. To do this, there are sev-
eral ways: a first solution consists in having a “good met-
rics” of the domain in order to guide the search (heuris-

1In this paper, we call a domain subclass the set of planning prob-
lems defined by a set of operators and a set of objects. For example,
the 10-blocks-world is a subclass of the blocks-world domain. The
20-blocks is another subclass of the same domain.

tics). The heuristics can be automatically computed (do-
main independent planning - e.g. [Bonet and Geffner, 1999;
Hoffmann, 2000]) or given by the user (domain dependent
planning - e.g. [Doherty and Kvarnstrom, 1999]).

A second way consists in restricting the search to a super-
set of accessible states from the initial state; such restriction
allows to reduce the search space during the backward plan-
ning process (e.g. the graph expansion of GraphPlan [Blum
and Furst, 1997]).

A third way involves the analysis of the domain “structure”
like invariant (e.g. [Gerevini and Schubert, 1998]), type de-
tection, problem decomposition or problem symmetries (e.g.
[Fox and Long, 1998; 1999]).

We would like is to develop a new, complete and domain
independent method to efficiently solve large problems. To
do so, we both restrict the search space through a set of acces-
sible states and deal with a large class of domain symmetries
(represented by states which have the same shape2).

For instance, the ferry problem overwhelms classical plan-
ners because of the very high number of possible applica-
ble actions (which may create many redundant states) even
though moving one car or another has the same result for the
goal. However, it appears clearly that the state space is highly
redundant: there is only �n � � distinguishable shapes for
n cars. Dealing with such shapes will certainly increase the
planner capabilities by reducing the search space in a drastic
manner.

ShaPer3 is a new planner which is able to detect all dif-
ferent shapes of the state space for a given domain subclass.
This method is composed of two steps: first the planner builds
a shape graph of the domain subclass. This step is per-
formed off-line and only once for a given domain subclass,
e.g. ShaPer builds the shape graph for the subclass of ferry
domain with 50 cars. Then, ShaPer is able to solve on-line
any planning problem in this class by connecting two shape
graphs. As we will see, the connection makes use of only one
action; this ensures the efficiency of the solution extraction
step.

The next section explains how to build such shape graph.
Section 3 presents an expansion algorithm that guarantee

2The shape of a state, defined more precisely in the next section,
can be viewed as a partially instantiated state pattern.

3Shape based Planner

ShaPer completeness. We then describe the solution extrac-
tion process (section 4). A first version of the planner has
been implemented and has produced very promising results.
All sections are illustrated by examples obtained by running
such an implementation. The last section presents and dis-
cusses a number of tests which are compared with some of
the best current planners (from AIPS-2000 competition).

2 The Shape Graph:G
A planning problem is usually expressed as a triple �O� I�J �
where O corresponds to the set of instantiated actions, I the
initial state and J the goal. In the STRIPS [Fikes and Nils-
son, 1971] formalism, an action o � O is described by its pre-
conditions Po (Po � S means that o is applicable to the state
S), its Addlist Ao and its Dellist Do. Applying the operator o
from state S results in the new state o�S� � �S�Do��Ao. A
state is an instantiated predicate set according to the closed-
world assumption.

The purpose of this section is to present the shape graph
construction process (only extract “relevant” states). This
state space exploration is performed off-line and once only
for each domain subclass from a valid state Sbegin.

Indeed, if we restrict ourselves to the STRIPS framework,
there is a priori no mean to check if a state is valid or not,
except by applying a valid sequence of action to a valid one
(Sbegin - user-defined).

This is the reason why the shape graph is an accessibility
graph G. Now, the main difficulty comes from the combina-
torial explosion of states and applicable actions; this is why
we build a graph that only contains “relevant” states.

2.1 Relevant states

The relevance of a state is defined according to the state de-
scription of the current graph G. A state S is relevant (i.e. it
“augments” G with new information) iff there exists no g � G
such that g is a substitution � of S: ��g� � S (i.e. the state
g can be instantiated by a variable permutation �). Consider
for instance the two blocks-world states g and S:

A
B Cstate S:

A
B Cstate g:

with g � fClear�A��On�A�B��OnTable�B�� Clear�C��
OnTable�C�g and S � fClear�A�� OnTable�B�� Clear�B��
OnTable�C�� On�A�C�g.

The state g where A is substituted toA, B to C and C to B
is equal to S (� � fA�A�C�B�B�Cg). In this case, g and S
are said to have the same shape4.

When S has the same shape as g, we can conclude that all
shapes accessible from g are also accessible from S: if P is a
sequence of action applicable to g, then ��P � is applicable to
S and ���P ���S� � ��P �g��. Developing the state S is then
not informative: S does not lead to a new shape.

4In order to prevent possible misunderstandings due to the previ-
ous figure, let us emphasize on the fact that a shape does not charac-
terize a tower, but more generally the structure of a planning problem
(i.e. there exists a substitution between S and g).

Build Graph(O,Sbegin)
To Dev� fSbeging
G � fSbeging
While To Dev �� � do
s� pop�To Dev�
For eacho � O such that Po � s do

If �g � G and �� such that o�s� � ��g� Then
If o�s� � g Then

Add the edge �s� g� to G
Else

Mark s in G with � and g
Else

Add the vertex o�s� and the edge �s� o�s�� to G
To Dev� To Dev � fo�s�g

Table 1: Build the shape graph G.

2.2 Building the shape graphG

In order to reduce the graph size, we only develop relevant
states. The algorithm, presented in table 1, is similar to a
breadth-first search algorithm. Relevant states are sequen-
tially developed by applying all possible actions o. The algo-
rithm detects links to other substitutions as well as cycles in a
given substitution (when o�s� � g); in this case, a new edge
is added.

In the case of a non-identical substitution �, we keep in s
the name of the corresponding shape in G and �. Owing to the
relation o�s� � ��g�, the accessibility from s to o�s� can be,
if necessary, quickly retrieved. Indeed, several substitutions
may produce the same result because of the commutativity of
the logical and, i.e. ��g� � ���g� does not imply � � ��.

2.3 An example

The graph construction algorithm is illustrated by figure 1
with an example from the gripper domain. The goal is to
move 3 balls from table T� to table T�. To do this, the robot
is able to pick and place a ball and to move from a table
to the other. The robot has two arms. The graph expan-
sion begins with the valid state S� (all three balls are on T�
and the robot is near T�). Four actions are applicable to S�:
Pick�X�T��, Pick�Y� T��, Pick�Z� T�� and move�T� � T��;
as shown on figure 1 Pick�X�T���S�� � S� and
move�T�� T���S�� � S�. We can note that Pick�Y� T���S��
is not added to the graph, since there exists a substitution
� � fY�X�X�Y� Z�Z� T��T�� T��T�� gl�gl� gr�grg

5 such
that ��S�� � Pick�Y� T���S��. Similarly, there exists a sub-
stitution between Pick�Z� T���S�� and S�; we note it on the
figure by a dashed line to S�. Then S� is developed in S� and
S� and so on . . .

The graph G finally contains nine vertices which model all
possible shapes accessible from the valid state S�.

5Note that in this example, even through the substitution only
permutes balls X , Y andZ , the substitution � must contain gl (grip-
per left), gr (gripper right) and the two tables T� and T� because
they are variables too. See for instance the state S� which has the
same shape as the state S� when the robot takes a ball.

X Y Z

T2

T1 Y Z

T2

T1

X Y Z

T2

T1

X

Z

T2

T1

Y Z

T2

T1

X Y

X

S2 S4 S2 S8 S9

Z

T2

T1

X Y

Z

T2

T1

X

Y

S1 S2 S4 S6 S8

S3 S5

T2

T1

T2

T1

S5 S8

S7 S9
ZY Y Z

X X

S8

Figure 1: Build the shape graph G.

2.4 G and the state space
This method makes it possible to drastically reduce the size of
the state space when the domain contains many (functionally
similar) “objects” (variables with possible substitutions). In-
deed, in the blocks-world and in the gripper domain, the state
space grows exponentially comparing to the shape graph size
as shown table 2.

As mentioned previously, ShaPer needs a valid state,
Sbegin, to build the graph G. Although G contains all shapes
accessible from Sbegin, in the case of a disjoint state space,
ShaPer is unable to construct graphs from the other connected
components of state space (their states are not accessible).
Therefore, the user must give one state per connexity; other-
wise, the shape of Sinit (the initial state of a planning prob-
lem) might not be present inG, which will constraint the plan-
ner to generate a complementary shape graph from Sinit dur-
ing the on-line process.

2.5 A first step through solution extraction
To perform efficient on-line solution extraction, ShaPer takes
advantage of the shape graph G built off-line. Three steps are
necessary to find a plan: first, generate the graph Ginit (resp.

problem state space size G size
blocks-world
3 blocks 13 3
4 blocks 73 5
5 blocks 501 7
6 blocks 4051 11
7 blocks 41413 15

gripper
3 balls 88 9
4 balls 256 12
5 balls 704 15
6 balls 1856 18

Table 2: Growth of the state space comparing to the G size.

initG

SSinit goal

Ggoal

Take(B,g ,T)r 1

A B

T2

T1

C A B

T2

T1

C

B

T2

T1

A B

T2

T1

C A

C

B

T2

T1

C A

B

T2

T1

C

A

S1 S2 S4 S6 S8

S3 S5

T2

T1

T2

T1

S7 S9

BA A B

C C

B C

T2

T1

A B C

T2

T1

A

C

T2

T1

B C

T2

T1

A Y

A

C

T2

T1

A B

C

T2

T1

A

B

S1 S2 S4 S6 S8

S3 S5

T2

T1

T2

T1

S7 S9

CB B C

A A

C A B

T2

T1

A B C

T2

T1

Figure 2: Extract a solution by connecting Ginit and Ggoal.

Ggoal) associated to the initial state Sinit (resp. Sgoal). Then
ShaPer searches for oneaction o � O that connects Ginit with
Ggoal via si and sg (si � Ginit,sg � Ggoal and sg � o�si�).
Finally it is enough to find a path from Sinit to si in Ginit and
from sg to Sgoal in Ggoal .

To better understand this intuitive algorithm, let us explain
it through the 3-balls-gripper example. There are three balls,
two tables and two grippers; initially balls A and B are on
table T� and the ball C is in the left gripper near table T�.
This state has the same shape as S� of the figure 1 where
fC�X�A�Y�B�Zg. The goal is to obtain the three balls on
T�. To do so, we instantiate the shape graph G with the ini-
tial state substitution (resp. goal) and obtain the graph Ginit

(resp. Ggoal). Then the algorithm looks for one action which
connects a state of Ginit to a state of Ggoal, as illustrated by
figure 2 with the action Take�B� gr � T��.

3 G and completeness
The method, for solution extraction (proposed in the previous
section) is generally very efficient, however in specific case,
it is not always possible to connect the two graphs with a
single action. To obtain a solution, the planner may need to
connect several substitutions of the graph G; but looking for
such transitions may be as costly as planning “from scratch”.

Fortunately, we can compute off-line a meta-graph H
which contains all necessary substitutions of G to solve any
instance of the problem (from the learned domain) in only
one action (between Hinit and Ggoal).

3.1 H: a meta-graph ofG
In order to ensure the completeness for our method, we pro-
pose an expansion algorithm of the graph G to H. The main
idea is the following: if all substitutions accessible from
Sbegin are accessible from H too, then there exists an action
o � O which connects Hinit to Ggoal.

To perform such expansion, we begin with H � G. H
must contain all graph G that allow to connect graph G � such
that G� is not directly connected to H. For each o�h� (with
h � H and o�h� �� H), generate the graph Go�h�. For each
o��g� (with g � Go�h� and o��g� �� Go�h�), check if Go��g�

is directly accessible from H; if it is not the case, then add
Go�h� to H. This algorithm stops when H becomes invariant.
In other words, H corresponds to the “transitive closure” of
G in terms of substitutions.

X

X X

X

X X X

X

X

X

Y Y
Y

Y

Y

Y

Y

Y

Y
Y

Z Z Z

Z

Z
Z

Z

Z

Z

Z

T T T

T

T

TT

T
T

T

S2S1 S3

S4

S3
S2

S4

S4

S2

S4

G
1

1

2

3

2

1

Figure 3: The graph G for 4-blocks-
world domain restricted to 3 stacks.

X
Y
Z
T

S1
X

Y
Z
T

S2
X
YZ

T
S3

X Y
Z
T

S4

Z

T
Y
X

S2’

X
YT

Z
S3’

Z
T
Y
X

S1’
G

X
Y

Z T

G’

X
Y
T
Z

S1’’
X

Y
T
Z

S2’’
X
YT

Z
S3’’

X Y
T
Z

G’’

connection
No

S4

1
’

1

S4

Figure 4: Expanding the graph G to
ensure completeness

X
YZ

T
S3

X Y
Z
T

S4

X

Y
Z
T

S2

{Z/X , T/Y , Y/Z , X/T}{X/X , Y/Y , Z/Z , T/T}

with G G with

S3 S4
1H

X
Y
Z
T

S1

G

Figure 5: H models the state space ac-
cessible with oneaction from G

3.2 An expansion example
To better understand this expansion, we illustrate it on the
4-blocks-world domain restricted to three stacks. Figure 3
presents the shape graph G and its substitutions (e.g. S �� is
a substitution of the state S�). Intuitively, to reverse blocks
Z and T in this domain, it is necessary to use two substitu-
tions of S�; so find a solution with only one action may be
impossible only by using G.

To expand G presented in figure 3, ShaPer must examine
states S�

� , S�
� , S�

� , S�
� , S�

� and S�
� (states which leave G). De-

veloping G �, the shape graph from S�
� , allows to generate G��

via S�
�
�

(see figure 4). Note that there does not exist any ac-
tion to connect a state of G to a state of G��; this means that
G� allows to access to new substitutions. Consequently, it is
added to H. The graph presented in figure 5 corresponds to
the invariant of H after having examined all the other states.

Naturally, all the graphs included in H differ only by a
substitution. Therefore, H can be expressed by only using
substitutions and G, e.g. in figure 5, H is described by two
substitutions on G.

4 Solution extraction
G and H being computed off-line, ShaPer performs on-line
plan extraction for any possible problem from the learned do-
main by searching for oneaction.

Extract Solution(O,G,H,Sinit ,Sgoal)
Find � and g � G such that Sinit � ��g�
Hinit � ��H� /* InstantiateH with � */
Ggoal � ��G� with Sgoal � ��g��
cost� �
While not examine all states of H do

For eachsubstitutions � of H do
For eachtriple �s� g��� �� of ��G� do
/* �o � O�o�s� � ��g��� � a substitution */
/* and �s� g��� � G� */

If C�Sinit � s� � � � C�o�s�� Sgoal� � cost

Then If o�s� � ��g��� Then
return the plan: Plan(Sinit � s), o,

Plan(o�s�� Sgoal)
cost� cost� �

return: No solution

Table 3: Algorithm for solution extraction

4.1 An efficient algorithm

Table 3 presents the three-steps algorithm used to extract a
plan from an initial state Sinit to Sgoal . As the graph G is
computed off-line, it is also possible to compute the best path
for any couple of vertices in G. Let P lan�g�� g�� be the op-
timal plan from g� to g� in G and C�g�� g�� the number of
actions of this plan. Considering the cost C, it is possible
to find the best solution using only two shape graphs and one
action. Indeed, the algorithm examines iteratively all possible
connections, ordered by an increasing cost (the cost is defined
by C�Sinit� s� � ��C�o�s�� Sgoal�). Such procedure makes
it possible to obtain non-optimal, because of the graph learn-
ing, but good solutions. This is illustrated by the number of
plan steps in the results presented in table 4.

Figure 6 shows an example of a solution extraction in 4-
blocks-world domain restricted to three stacks. First, ShaPer
instantiates the graph H with the initial state (�init �
fD�X�B�Y�A�Z�C�Tg) obtaining Hinit, and G with the
goal (�goal � fD�X�C�Y�B�Z�A�Tg) obtaining Ggoal.
Then, in order to find a connection between Hinit and Ggoal,
the algorithm examines (following an increasing cost) the
states S�

� . . .S�
� and S�

�
� . . .S�

�
� (see figure 3) and finds

S�
� � S�

�
� as first connection. Then, to build a valid

Y
Z
T

X

X Y
Z
T

D C
B
A

D

C
B
A

B
A
C

D

A C
B
D D C

B
A D

C
B
A

{A/X , C/Y , B/Z , D/T}{D/X , B/Y , A/Z , C/T}

with G G

S1 S2

S4

D
CB

A
S3

C
B
A

D

S1
X

Y
Z

S2

S4

X
YZ

T
S3

T

with

S
init

Sgoal

H init

G

Ggoal

Figure 6: A solution extraction example in 4-blocks-world
domain restricted to three stacks

plan, it is enough to find a plan in Hinit and a plan in
Ggoal. Thus, the plan extracted by ShaPer is the follow-
ing: [MoveToTable(D,B), Move(B,A,D), MoveToTable(A,C)],
Move(B,D,A), [MoveFromTable(C,B)].

4.2 Bounds for Computation Time and plan length
Having the shape graph computed off-line leads to an in-
teresting property: the solution extraction algorithm is time
bounded and the plans have a known maximal length.

Indeed, the algorithm presented in table 3 examines iter-
atively a set of triples �s� g��� �� of � �G�. The test consists
in checking equality between two states. As H is computed
off-line, we know in advance how many triples there are, e.g.
for 15 blocks there are only 7186 triples. Consequently, we
can compute an upper limit for the on-line solution extraction
computation time.

In the same way, we can compute an upper limit n for the
longest pathP inG. The length of the longest plan (maximum
number of plan steps) will then be bounded by �n� �.

The results, presented in table 4, include a max column for
number-of-steps and computation time bounds.

4.3 Completeness
This subsection present the main ideas to prove the complete-
ness of ShaPer in informal way.

For a substitution �, ��A � B� � ��A� � ��B� and
��A�B� � ��A����B�. So we can demonstrate the follow-
ing theorem: ��o�s�� � ���o�����s�� with o being an action
applicable to the state s6.

The algorithm to build G ensures that for any state s in G
and any action o such that o�s� �� G, there exists a substitution
� of a state g of G with o�s� � ��g�. Then it is possible to
demonstrate that G contains all accessible shapes. Given s �
G and e � o�s� �� G. Suppose that e allows to access to the
state s� � o��e� which has a new shape. From G definition,
�� � g � G���g� � e. The action ����o�� is applicable to
g; if ����o���g� �� G then ����g�� � ����o���g� such that
������o���g�� � o����g�� � o��e� and � 	 ���g�� � o��e� so
g� has the same shape as e.

Similarly, H satisfies the following property: for any state
h inH and g inG � (G� is connected toH by one action through
the substitution �), all accessible substitutions from G � are
also accessible from H. H is the transitive closure of G in
terms of substitutions. It is also possible to recursively prove
that ShaPer finds a plan if there exists one. Given s � H and
a planP � an 	 � � �	a� such that goal � P �s�. If a��s� �� H
then there exists ��h� � a��s� with a��s� � G� and h � H.
Given i and the state e � ai�� 	 � � � 	 a��s� and e� � ai�e�
with e � G� and e� �� G�. So e� � G�� (connected to G� by
the state g� � G� and a substitution �: ��g �� � e�). Owing to
H’s property, there exists a state h� of H and a substitution �
such that � �g�� � e�. That means ShaPer is able to find a plan
between s and e� (connect H to G�� with one action); apply
recursively this reasoning7 on an 	 � � � 	 ai, demonstrates the
completeness.

6Indeed ��o�s�� � ���s � Do� � Ao� � ���s� � ��Do�� �
��Ao� � ���o�����s��

7If the planP uses a third shape graph G � (one-action-connected
to G�� which is also one-action-connected to H) , the previous rea-

5 Results
In this section, we compare our planner with the most ef-
ficient planners from AIPS-2000 competition. FF [Hoff-
mann, 2000] and HSP [Bonet and Geffner, 1999] use heuris-
tics based on a relaxed problem (plan without Dellist). IPP
[Koehler et al., 1997] and STAN [Fox and Long, 1999] are
derived from GraphPlan [Blum and Furst, 1997]. In addition,
they use an on-line mechanism that allows to deal with some
symmetries; that is reason why it is interesting to compare
them with ShaPer which is able to deal with a larger class of
symmetries.

In this comparison, we do not mention TalPlan [Doherty
and Kvarnstrom, 1999] because it is a domain dependent
planner; the comparison can then be only made with ShaPer
solution extraction step. In such a case, TalPlan exhibits
clearly better results than ShaPer: the made-by-hand heuris-
tics is still the best.

All running time presented in table 4 are measured on a
Sparc Ultra 5 with 128Mb. ’-’ means that the planner does
not find any solution in 3600sec. and ’*’ means that the
shape graph has already been computed for a previous prob-
lem (same domain subclass).

The ferry and the gripper domains are interesting because
they overwhelm the majority of the planners by the number
of their applicable actions. Despite their ability to treat state
symmetries, IPP and STAN can not solve large problems in
both ferry and gripper domain. Ferry and gripper domains
are easy for ShaPer because of their low number of shapes
(resp. �n � � for n cars and �n for n balls). Thanks to their
good heuristics, HSP and FF solve easily all these problems
(however, note that HSP solves gripper problems with an in-
efficient number of steps).

Blocks-world domains give surprising results for HSP and
FF. HSP solves ’-3’ and ’-2’ problems more easily than ’-1’
problems. For FF, the situated is opposite. Problems labeled
’-i’ correspond to i-stacks problems: a goal for a ’-1’ prob-
lem is to put the first block under the stack (without changing
the order of the other blocks); for ’-2’ and ’-3’ problems, the
goal is to build one “interleaved” stack composed of all the
blocks from the initial stacks (e.g. move stacks s�� s� � � � and
p�� p� � � � into s�� p�� s�� p� � � �).

With several problems in the same domain subclass, e.g.
all problems with 15 blocks, we better understand the impor-
tance of the off-line process (computed more efficiently than
some HSP or FF solution): the graph building step is per-
formed only once. The small number of shapes allows to
have a very short computation time upper limit.

In conclusion, ShaPer solves all problems in less than
1 second; in addition it builds the graph and solves all prob-
lems faster than IPP and STAN (and often HSP) and extracts
all problems faster than FF with a near-optimal number of
plan steps.

6 Conclusion
We have proposed an original approach to task planning that
allows to deal efficiently with large problems. It has been

soning allows to prove that there exists a connection with one action
betweenH and G�.

IPP-v4 STAN-v3 HSP-v2 FF-v2.2 ShaPer
off-line on-line max

problem step time step time step time step time nodes time step time step time
ferry

10 cars 39 3.00 39 7.2 39 0.08 39 0.04 21 0.02 39 0.01 41 0.01
20 cars - - - - 79 0.20 79 0.07 41 0.21 79 0.01 81 0.01
50 cars - - - - 199 5.50 199 0.20 101 4.86 199 0.07 201 0.08

gripper
10 balls 29 56.9 29 202 37 0.10 29 0.03 30 0.07 29 0.01 55 0.01
20 balls - - - - 77 0.70 59 0.08 60 0.55 59 0.01 115 0.01
50 balls - - - - 197 18.80 149 0.30 150 14.04 149 0.15 295 0.27
blocks-world
9-1 blocks 16 3.71 16 18.4 16 1.32 16 0.06 30 0.15 16 0.01 19 0.02
9-2 blocks 15 3.70 18 3.6 15 0.60 15 0.06 * * 18 0.01 * *
9-3 blocks 17 2.47 19 4.7 14 0.64 26 2.21 * * 17 0.01 * *
12-1 blocks - - - - 22 26.33 22 0.13 77 1.58 22 0.01 29 0.03
12-2 blocks - - - - 21 3.63 21 0.12 * * 25 0.01 * *
12-3 blocks - - - - 20 3.54 29 21.27 * * 25 0.01 * *
15-1 blocks - - - - 28 657.6 28 0.29 176 16.73 28 0.06 39 0.13
15-2 blocks - - - - 27 22.26 27 0.27 * * 29 0.07 * *
15-3 blocks - - - - 23 13.43 - - * * 33 0.09 * *
20-1 blocks - - - - - - 38 0.85 627 173.79 38 0.51 55 0.90
20-2 blocks - - - - 37 165.6 37 0.72 * * 37 0.46 * *
20-3 blocks - - - - - - - - * * 38 0.77 * *

Table 4: Running time and quality (in number of Plan action) for some of the current best planners (see the AIPS-2000
competition); Comparing to ShaPer including its off-line process.

implemented in a domain independent task planner, called
ShaPer. It performs in two steps. The first step is performed
off-line and only once for a given domain subclass. It allows
ShaPer to “capture the structure” of the state space and to
store it in a data structure called the shape Graph. The main
contribution here is the ability of ShaPer to build a very com-
pact description when compared to the size of the complete
state space. The shape graph is then used on-line by ShaPer
to answer very efficiently to planning requests.

ShaPer exhibits several interesting properties: 1) it is com-
plete, 2) It is possible to determine, after the shape Graph
construction, the upper limit for the on-line solution extrac-
tion computation time as well as length of the longest plan, 3)
it produces “good” (near-optimal) solutions.

Our future work will be devoted to a state decomposition
method. Indeed, we would like to decompose a state into sev-
eral disjoint parts in order to minimize interferences in action
applicability. This should allow to generate sub-graphs and to
deal with sub-shapes resulting in an even more compact state
space description.

This would help to re-use shape graph created for a given
domain subclass (e.g. 10 blocks) in order to generate shapes
for “bigger” subclasses (e.g. 15 blocks) Besides, we hope to
be able to exploit the structure of the shape graph for confor-
mant and contingent planning as in [Guéré and Alami, 1999].

References

[Blum and Furst, 1997] A.L. Blum and M.L. Furst. Fast planning
through planning graph analysis. Artificial Intelligence, pages
281–300, 1997.

[Bonet and Geffner, 1999] B. Bonet and H. Geffner. Planning as
heuristic search: New results. 5th European Conference on Plan-
ning (ECP’99), 1999.

[Doherty and Kvarnstrom, 1999] P. Doherty and J. Kvarnstrom.
Talplanner: An empirical investigation of temporal logic-based
forward chaining planner. In Proc. 6th Int. Workshop on Tempo-
ral Representation and Reasoning, 1999.

[Fikes and Nilsson, 1971] R.E. Fikes and N.L. Nilsson. Strips: A
new approach to the application of theorem proving to problem
solving. Artificial Intelligence, 2:189–208, 1971.

[Fox and Long, 1998] M. Fox and D. Long. The automatic infer-
ence of state invariants in tim. AI Research (JAIR), 9:367–421,
1998.

[Fox and Long, 1999] M. Fox and D. Long. The detection and ex-
ploration of symmetry in planning problems. Proc. 16th Inter.
Joint Conf. on Artificial Intelligence (IJCAI’99), 1999.

[Gerevini and Schubert, 1998] A. Gerevini and L.K. Schubert. In-
ferring state constraints for domain-independent planning. In
Proc. 15th Nat. Conf. AI.(AAAI’98), 1998.

[Guéré and Alami, 1999] E. Guéré and R. Alami. A possibilistic
planner that deals with non-determinism and contingency. Proc.
16th Inter. Joint Conf. on Artificial Intelligence (IJCAI’99), 1999.

[Hoffmann, 2000] J Hoffmann. A heuristic for domain indepen-
dent planning and its use in an enforced hill-climbing algorithm.
In Proc. 12th Int. Symposium on Methodologies for Intelligent
Systems, 2000.

[Koehler et al., 1997] J. Koehler, B. Nebel, J. Hoffmann, and Y. Di-
mopoulos. Extending planning graphs to an adl subset. In 4th
European Conference on Planning (ECP’97), 1997.

