
HAL Id: hal-01980036
https://laas.hal.science/hal-01980036v1

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Rigorous design of robot software: A formal
component-based approach

Tesnim Abdellatif, Saddek Bensalem, Jacques Combaz, Lavindra de Silva,
Félix Ingrand

To cite this version:
Tesnim Abdellatif, Saddek Bensalem, Jacques Combaz, Lavindra de Silva, Félix Ingrand. Rigorous
design of robot software: A formal component-based approach. Robotics and Autonomous Systems,
2012, 60 (12), pp.1563-1578. �10.1016/j.robot.2012.09.005�. �hal-01980036�

https://laas.hal.science/hal-01980036v1
https://hal.archives-ouvertes.fr

Rigorous Design of Robot Software: A Formal
Component-Based Approach I,II

Tesnim Abdellatifa, Saddek Bensalema, Jacques Combaza, Lavindra de Silvab,
Felix Ingrandb,∗

aVerimag/CNRS, Grenoble I Uni., France.
bLAAS/CNRS, Toulouse Uni., France.

1. Introduction

For the large scale deployment of robots in places such as homes, shopping
centers and hospitals, where there is close and regular interaction with humans,
robot software integrators and developers may soon need to provide guarantees
and formal proofs to certification bodies that their robots are safe, dependable,
and behave correctly. This also applies to robots such as extraterrestrial rovers,
used in expensive and distant missions, which need to avoid equipment damage
and mission failure. Such guarantees may involve proofs that a rover will not
move while it is communicating or even worse, while it is drilling, that the nav-
igation software has no fatal deadlock, or that a service robot will not extend its
arm dangerously while navigating or will not open its gripper while holding a
breakable object.

The most common method to ensure the correctness of a system is testing
(see Broy et al. (2005) for a survey). Testing techniques have been effective for
finding bugs in many industrial applications. Unfortunately, there is, in general,
no way for a finite set of test cases to cover all possible scenarios, and therefore,
bugs may remain undetected. Hence, in general, testing does not give any guaran-

IAuthors are in alphabetical order by last name.
IIPart of this work is funded by the ESA/ESTEC GOAC project and by the FNRAE MARAE

project. We thank Rongjie Yan for some useful discussions.
∗Corresponding Author.
Email addresses: tesnim.abdellatif@imag.fr (Tesnim Abdellatif),

saddek.bensalem@imag.fr (Saddek Bensalem), jacques.combaz@imag.fr (Jacques
Combaz), ldesilva@laas.fr (Lavindra de Silva), felix@laas.fr (Felix Ingrand)

Preprint submitted to Robotics and Autonomous Systems September 7, 2012

tees on the correctness of the entire system. Consequently, these approaches are
impractical with complex autonomous and embedded systems for even a small
fraction of the total operating space.

We have successfully proposed a novel software engineering methodology for
developing safe and dependable robotic systems (Bensalem et al., 2010a, 2011).
With our approach, one can provide guarantees that the robot will not perform ac-
tions that may lead to situations deemed unsafe, i.e., those that may eventuate in
undesired or catastrophic consequences. Our approach (Section 3) relies on the in-
tegration of two existing state-of-the-art methods, namely, (i) the GenoM tool of the
LAAS architecture (Fleury et al., 1997), used for specifying and implementing the
lowest level of robotic systems, and (ii) the BIP software framework for formally
modeling and verifying complex, real-time component-based systems (Basu et al.,
2006). In this paper, we extend this approach to be used on complex robotic sys-
tems for designing both the decisional and functional levels. We first present (in
Section 4) a high-level language that allows roboticists to easily express specific
constraints on the system. In light of early experimental findings, we also pro-
vide insights into more recent work focused on real-time features of a system.
Indeed, we developed a real-time version of BIP (Section 5), which takes into
account execution time and deadlines. We also used the real-time BIP engine as
a temporal-plan execution controller (Section 6). Section 7 presents results on
all of the above work. We then conclude the paper with a future work section
(Section 8), presenting a multi-CPU distributed version of BIP which allows us to
run it on modern robotic platforms, and how we plan to use GenoM3 to extend our
approach toward the ROS ecosystem, and a discussion section (Section 9) .

2. State of the Art in Building Robot Software using Formal Methods

Despite a growing concern to develop safe, robust, and verifiable robotic sys-
tems, overall, robot software development remains quite disconnected from the
use of formal methods. Moreover, the extent to which formal methods has been
used is quite different between the functional level and the decisional level of robot
software architectures.

2.1. The Decisional Level Design
Formal methods have been more widely used together with “decisional com-

ponents” of robotic systems. The main reason is perhaps because these decisional
components already use a “model” (for planning, diagnostics, etc.). In (Williams
et al., 2003), the authors propose a system relying on a model-based approach.

2

The objective is to abstract the system into a state transitions based language mod-
eling the dependability concerns. The programmers specify state evolutions with
invariants and a controller executes this maintaining these invariants. To do that,
the controller estimates the most likely current state—using observation and a
probabilistic model of physical components—and finds the most reliable sequence
of commands to reach a specified goal (i.e., with a minimum probability of fail-
ure). In (Goldman et al., 2000), the authors present the CIRCA SSP planner for
hard real-time controllers. This planner synthesizes off-line controllers from a do-
main description (preconditions, postconditions and deadlines of tasks). CIRCA
SSP can then deduce the corresponding timed automaton to control the system
on-line, with respect to these constraints. This automaton can be formally vali-
dated with model checking techniques. Similarly, (Bordini et al., 2003) discusses
an approach for model checking the AgentSpeak(L) agent programming language
aimed at reactive planning systems. The work describes a toolkit called CASP
(Checking AgentSpeak Programs) for supporting the use of model checking tech-
niques, in particular, for automatically translating AgentSpeak(L) programs into a
language understood by a model checker. In (Simmons et al., 2000), the authors
present a system which allows the translation from MPL (Model-based Processing
Language) and TDL (Task Description Language)—the executive language of the
CLARAty architecture(Nesnas et al., 2003)— to SMV, a symbolic model checker
language.

In (Kress-Gazit and Pappas, 2010), the authors discuss an approach for au-
tomatically generating correct-by-construction robot controllers from high-level
representations of tasks given in Structured English, which are translated into a
subset of Linear Temporal Logic and eventually into automata. In their work,
complex and continuous missions can be specified using the basic prepositions
‘between’, ‘near,’ ‘within,’ ‘inside,’ and ‘outside.’ An example of such a mis-
sion is “stay near A unless the alarm is sounding,” where A is a location. Like-
wise, (Wongpiromsarn et al., 2010) also deals with the synthesis of correct-by-
construction controllers based on temporal logic specifications. Here, finite state
automata based controllers are synthesized by a trajectory planner to satisfy a
given temporal specification, which is based on an abstract model of the physical
system. The authors show how the correct behavior of an autonomous vehicle can
be maintained using the robot controller automatically synthesized.

2.2. The Functional Level Design
On the functional side of robotic systems, the situation is quite different. There

are many popular software tools available (e.g., OROCOS (Bruyninckx, 2001),

3

CARMEN (Montemerlo et al., 2003), Player Stage (Vaughan and Gerkey, 2007),
Microsoft Robotics Studio (Jackson, 2007), and ROS (Quigley et al., 2009)) to
develop the functional level of robotic systems. There are even some works which
compare them, e.g., (Shakhimardanov and Prassler, 2007; Kramer and Scheutz,
2007). Yet, none of these architectural tools and frameworks proposes any exten-
sion or link with formal methods, and validation or verification tools.

Recently, we proposed the R2C (Ingrand et al., 2007), a tool used between
the functional and decisional levels of a robotic system. The main component
of R2C is the state checker. This component encodes the constraints of the sys-
tem, specified in a language named ExoGen. At run-time it continuously checks
if new requests are consistent with the current execution state and the model of
properties to enforce. Another interesting early approach to prove various formal
properties of the functional level of robotic systems is the ORCCAD system (Es-
piau et al., 1995). This development environment, based on the Esterel (Boussinot
and de Simone, 1991) language, provides extensions to specify robot “tasks” and
“procedures.” However, this approach remains constrained by the synchronous
systems paradigm.

More generally, as advocated in (Bensalem et al., 2008b), an important trend
in modern systems engineering is model-based design, which relies on the use of
explicit models to describe development activities and their products. It aims at
bridging the gap between application software and its implementation by allow-
ing predictability and guidance through analysis of global models of the system
under development. The first model-based approaches, such as those based on
ADA, synchronous languages (Halbwachs, 1992) and Matlab/Simulink, support
very specific notions of components and composition. More recently, modeling
languages, such as UML (Jacobson et al., 1999) and AADL (Feiler et al., 2006),
attempt to be more generic. They support notions of components that are inde-
pendent from a particular programming language, and put emphasis on system
architecture as a means to organize computation, communication, and implemen-
tation constraints. Software and system component-based techniques have not yet
achieved a satisfactory level of maturity. Systems built by assembling together
independently developed and delivered components often exhibit pathological be-
havior. Part of the problem is that developers of these systems do not have a pre-
cise way of expressing the behavior of components at their interfaces, where in-
consistencies may occur. Components may be developed at different times and by
different developers with, possibly, different uses in mind. Their different internal
assumptions, when exposed to concurrent execution, can give rise to unexpected
behavior, e.g., race conditions, and deadlocks.

4

All these difficulties and weaknesses are amplified in embedded robotic sys-
tems design in general. They cannot be overcome, unless we solve the hard funda-
mental problems concerning the definition of rigorous frameworks for component-
based design.

3. Our Approach

In past work we have proposed an approach (Bensalem et al., 2009, 2011)
to develop safe and dependable functional levels of complex, real-world robots,
which relied on the integration of two state-of-the-art technologies, namely: (i)
GenoM (Fleury et al., 1997)—a tool (part of the LAAS architecture toolbox) that
is used for specifying and implementing the functional level of robots; and (ii)
BIP (Basu et al., 2006)—a software framework for formally modeling complex,
real-time component-based systems, with supporting tool-sets for verifying such
systems.

3.1. GenoM : The LAAS Architecture Tool
The functional level is the lowest level of most robotic systems. It includes all

the basic, built-in action and perception capabilities. These processing functions
and control loops (e.g., image processing, obstacle avoidance, and motion plan-
ning) are encapsulated into controllable, communicating modules. At LAAS, we
have developed GenoM1 (Fleury et al., 1997) to generate these modules by instan-
tiating a generic canvas (see Figure 1) whose components and algorithms have
been developed and debugged for more than 15 years.

Figure 2 is an example of a functional level belonging to our Dala rover (Ben-
salem et al., 2010a). This functional level2 consists of two navigation modes. The
first one, for mostly flat terrain, is laser based. LaserRF acquires the laser scan,
Aspect builds a 2D obstacles map, and NDD navigates by producing a speed ref-
erence used by the robot wheel controller RFLEX. The second navigation mode,
for rough terrain, is vision based. VIAM takes stereo images, Stereo correlates
them and passes them onto DTM to build a 3D map, which is used by the trajectory
planner P3D. Other modules implement opportunistic science (Hueblob), and em-
ulate communication (Antenna) and power and energy management (Battery).

1GenoM and other tools from the LAAS architecture can be freely downloaded from:
http://softs.laas.fr/openrobots/wiki/genom

2Module names in Figure 2 are given in fixed font.

5

Control &
Functional

IDS

Requests Reports

Control Task
Timer Message Box

Execution Task

Poster
IDS Lock

Control Service

Execution Service
Service
Controller

Activity

Task
Controller

Scheduler

Timer

Permanent

Control Service
Control Service

Control Service

Execution Service
Service
Controller

Activity

Execution Service
Service
Controller

Activity

Poster
Poster

Poster
Poster

Execution Task

Execution Service
Service
Controller

Activity

Task
Controller

Scheduler

Timer

Permanent

Execution Service
Service
Controller

Activity

Execution Service
Service
Controller

Activity

.....

.....

.....

.....

Timer

Figure 1: A GenoM module functional organization and its componentization prior to BIP model-
ing.

This functional level shows the versatility of the GenoM tool, in particular, how a
complex functional level could be built with it.

Each GenoM module instance provides specific services, which can be invoked
by requests sent by the higher (decisional) level according to tasks that need to be
achieved. These services are implemented through the transitions of an automa-
ton that are linked to particular elementary (C/C++) code, called codels, which
are executed during the transitions. Each GenoM module has a control task (which,
among other things, handles requests and reports) and can have multiple user de-
fined execution tasks—with different scheduling periods and priorities—in charge
of executing particular services (in most implementations, each execution task is

6

Functional level with
integrated BIP controller

Battery

SpeedP3D

PosPOM

HueblobIm.
St.Stereo

VIAM Im. Pos RFLEX
PTU

(Pan-Tilt
Unit)

DTM Env

Aspect Obs

Laser
RF Scan

NDD Speed

Antenna Heating

Flat terrain
navigation

Rough terrain
navigation

Figure 2: The functional modules of the Dala rover.

a POSIX thread). Upon completion, the services return a report to the caller.
Note that codels can be interrupted by the underlying operating system, but all the
codels of services executing in a particular execution task are executed one after
another (they are in the same thread). Each active service is given a slice of the
CPU in sequence and executes one codel (i.e., performs one transition of its au-

7

tomaton). A module may also export posters containing “shared” data for others
(modules or the decisional level) to use.

One of the main differences between GenoM and similar tools is that it not
only clearly defines for each module an “external” API to launch services and
access data through posters, but it also enforces a very clear and strict internal
organization and behavior of the module (see Figure 1).

3.2. The BIP Framework
BIP (Basu et al., 2006) is a framework for modeling heterogeneous real-time

programs. The main characteristics of BIP are the following. First, it supports a
model-based design methodology where parallel programs are obtained as the su-
perposition of three layers. The lowest layer describes Behavior, the intermediate
layer includes a set of connectors describing the Interactions between transitions
of the behavior, and the upper layer is a set of Priority rules describing scheduling
policies for interactions of the layer underneath. Such a layering offers a clear sep-
aration between behavior and structure. Second, BIP uses a parameterized com-
position operator on programs. The product of two programs is the composition
of their three corresponding layers separately. Parameters are used to define the
interactions as well as new priority rules between the parallel programs (Sifakis,
2005). The use of such a composition operator allows incremental construction,
i.e., obtaining a parallel program by successive composition of other programs.
Third, for structuring interactions, BIP provides powerful mechanisms including
strong synchronization and weak synchronization. A strong synchronization is
a rendez-vous, that is, all the interacting components are needed for synchroniz-
ing. Weak synchronizations denote broadcasts in which the presence of only one
component (called a trigger) is required.

The BIP Language
The BIP language supports a methodology for building components from: (i)

atomic components; (ii) connectors, used to specify possible interaction patterns
between ports of atomic components; and (iii) priority relations, used to select
amongst possible interactions according to conditions, whose valuations depend
on the state of the integrated atomic components. An atomic component consists
of: (i) a set of ports P = {p1 . . . pn}, where ports are used for synchronization
with other components; (ii) a set of control states/locations S = {s1 . . . sk}, which
denote locations at which the components await synchronization; (iii) a set of
variables V used to store (local) data; and (iv) a set of transitions modeling atomic

8

computation steps. A transition is a tuple of the form (s1, p, gp, fp, s2), repre-
senting a step from control state s1 to s2. Its execution modifies the local data
according to function fp : V → V . A transition is possible if the guard (boolean
condition on V) gp is true and some interaction including port p is offered.

emptystart f ull

in out

in, 0 < x, y← f (x)

out, ,

Figure 3: A simple BIP atomic component.

Figure 3 shows a simple atomic component. This component has: two ports
in, out; two variables x, y; and control locations empty, full. At control location
empty, the transition labeled in is possible if 0 < x. When an interaction through
in takes place, the variable y is eventually modified when a new value for y is
computed. From control location full, the transition labeled out can occur. The
omission of the guard and function for this transition means that the associated
guard is true and the internal computation micro-step is empty. A compound com-
ponent allows defining new components from existing sub-components (atoms or
compounds) by creating their instances, specifying the connectors between them
and the priorities.

The BIP Engine
The BIP engine is a tool to execute online a BIP model. It works based upon

the complete state information of the components. The execution follows a two-
phase protocol, marked by the execution of the engine, and the execution of the
atomic components. In the execution phase of the engine, it computes the inter-
actions possible from the current state of the atomic components, and guards of
the connectors. Then, between the enabled interactions, priority rules are applied
to eliminate the ones with low priority. During this phase, the components are
blocked, and await to be triggered by the engine. The engine selects an enabled
interaction, executes its data transfer, and triggers the execution of the atomic
components associated with this interaction. The second phase is the execution
of the local transitions of the notified atomic components. They continue their
local computation independently and eventually reach new control states. Here,

9

the atomic components notify of their enabled transitions to the engine and get
blocked once more. The two phases are repeated, unless a deadlock is reached or
the user wants to terminate the execution.

D-Finder : The Verification Tool
D-Finder is a tool to analyze offline the BIP model. It implements a compo-

sitional (Bensalem et al., 2008a) and incremental methodology (Bensalem et al.,
2010b) for the verification of component-based systems described in the BIP lan-
guage (Basu et al., 2006). D-Finder is mainly used to check safety properties,
particularly deadlock-freedom, of composite components. In other words, D-
Finder is used for analyzing the interactions between BIP components, not for
analyzing the elementary C/C++ code stored inside codels.3 D-Finder applies the
compositional verification method proposed in (Bensalem et al., 2008a, 2010b)
where the set of reachable states is approximated by the conjunction between
component invariants and interaction invariants. Component invariants are over-
approximations of the set of the reachable states of atomic components and are
generated by simple forward propagation techniques, and interaction invariants
express global synchronization constraints between atomic components.

3.3. The GenoM/BIP framework
Our integration of GenoM and BIP involved first writing the complete BIP mod-

els of all the generic components of the GenoM generic module. Then, in the same
way we used the standard GenoM to build a specific C/C++ module (i.e., for a
given set of services, codels, and posters), and we built a specific BIP module by
reassembling the BIP models of the generic components together with the associ-
ated codels. This allowed us to automatically synthesize in a bottom up approach,
a complete robot functional level model which is correct-by-construction. Hence,
we can view the resulting GenoM/BIP model obtained as a large fine grained tran-
sition system composed of all the codels of the application. On one hand, this
model can be run online on-board the real robot, thanks to the BIP engine which
controls the proper execution of the model, and on the other hand the model can
be checked offline for properties such as deadlock freedom using verification tools
such as D-Finder. Moreover, our integration allows “safety constraints”–those
that ensure the functional level will behave in a safe/desired manner–to be mod-
eled and included on top of the automatically generated model, which are then

3There are seperate tools provided in the BIP toolchain for such static analysis.

10

enforced online by the resulting controller. With the inclusion of such constraints,
one can guarantee that the functional level will not reach unsafe states, even if
bugs exist in user-supplied programs at the higher (decisional) level. Of course,
decisional components may also rely on formal methods to prevent such bugs
from occurring. Still, in many implementations, there is a gap between the high
level planning model and the functional level model.4 This gap is usually filled by
a supervisor/execution controller using “hand-written” procedures (Ingrand et al.
(1996)) or state automata (Bohren and Cousins (2010)) responsible for refining
and controlling high level parallel action execution.

Note that GenoM modules may have a life cycle and may evolve as the devel-
oper changes and improves its implementation. If the changes are only made to
codels, the BIP model remains the same and need not be generated again. Any
other changes (e.g., to request definitions, posters, and tasks) will require regen-
erating the BIP model (which takes negligible time) and checking again with D-
Finder offline.

4. A Language for Specifying Constraints

A criticism made by our robotics colleagues is that the BIP language is, from
the perspective of robot developers, too low level to model the type of constraints
that one would usually want to specify (e.g., prevent the robot from starting be-
fore being properly initialized, and avoiding a move while drilling). Indeed, BIP
constraints are expressed over BIP component states, variables and interactions.

In this section, we introduce a high-level language which gives the designer of
the functional level the ability to specify certain constraints on how the functional
level services should be used. A constraint is specified between two services be-
longing to a single module, or between two services belonging to two different
modules. Such constraints are important to maintain the safe and desirable execu-
tion of services. When specifying the set of constraints, the designer can refer to
the well defined interface that each functional level module provides.

Constraints in our high level language are specified in plain text, which are
then automatically converted into BIP connectors. The connectors ensure that
the corresponding constraints are not violated in the BIP functional level. To
unambiguously describe the types of constraints we want to enforce on functional
levels of robotic architectures, we use a formal framework, namely, the Event

4As of today, we do not know of any planner able to produce a plan at the level of detail that
one needs to directly drive functional modules such as the ones presented above.

11

Calculus (Kowalski and Sergot (1986); Shanahan (2000)), to which perhaps the
closest related formalism is Allen’s Temporal Logic (Allen, 1983) (see Section 6).
We choose the former because it, unlike the latter, provides mechanisms to check
whether a condition holds at a given point in time, and to check whether an event
has occurred at some point in time.5

An event r(~t) of the Event Calculus, where ~t is a vector of terms, represents a
GenoM request. Hence, we use the term “event” and “request” interchangeably. An
example of an event is goto(10,20), where 10 and 20 are respectively x and y coor-
dinates. An event type is denoted by r(~x), where ~x is a vector of distinct variables,
or in this paper simply as r (or ri, for some i) when the vector is not important.
An example of an event type is goto(x,y). For convenience, we assume that event
types are unique across GenoM modules, i.e., that no event type of a GenoM module
is equivalent (up to variable renaming) to an event type of some other GenoM mod-
ule. Finally, in addition to the standard construct Happens(r1, t1, t2) of the Event
Calculus, which denotes that r1 has executed to completion between timepoints t1

and t2, in this paper we also use construct Happenss(r1, t1, t2) to denote that r1 has
successfully executed between those two timepoints.

In later definitions we use the notion of a substitution, which is is defined
in the usual way as follows. A substitution θ is a finite set of the form {x1/τ1,
. . . , xn/τn}, where x1, . . . , xn are distinct variables, and each τi is a term such that
τi , xi. We say that θ is a ground substitution if τ1, . . . , τn are ground terms. If
r(~t) is an event and θ = {x1/τ1, . . . , xn/τn} is a set of substitutions, we use r(~t)θ
in the usual way to denote the expression obtained from r(~t) by simultaneously
replacing each occurrence of xi in r(~t) with τi, for all i ∈ {1, . . . , n}.

The first constraint is read as “not r.” It guarantees that request r is never
executed. More precisely, the constraint holds if and only if there is no point in
time such that r has been executed. Note that this does not mean that the request is
never sent from some executive (e.g., PRS)—just that it is not allowed to execute.
Since GenoM modules are meant to be reusable components, such a constraint is
natural when a GenoM module is used on a new hardware platform, and a request
of the module is associated with some code that is no longer deemed appropriate,
or when the module is used with a different set of modules and one of its requests
is no longer necessary due to the existence of a request (in some other module)
with similar functionality. For example, a CPU intensive request, such as one
that performs complex calculations, may be acceptable on a robot with a powerful

5There may well be other formalisms expressive enough for defining our constraint language.

12

hardware platform, but not on a smaller robot with a basic hardware platform.
Formally, the “not r” constraint is defined using the Event Calculus as follows.

!r def
=

∀t1, t2, θ,¬Happens(rθ, t1, t2).

The second constraint is read as “not both r1 and r2.” It guarantees that a point
is never reached where both r1 and r2 have been executed, although it may be the
case that r1 has been executed alone, r2 has been executed alone, or that neither
r1 nor r2 have been executed. Intuitively, this constraint corresponds to the NAND
logical operator. Formally, we have the following definition.

(r1 ↑ r2) def
=

∀t1, t2, t3, t4, θ1, θ2,¬[Happens(r1θ1, t1, t2) ∧ Happens(r2θ2, t3, t4)].

The third constraint is read as “r1 before r2.” It guarantees that request r2 is ex-
ecuted only after the successful execution of request r1. More precisely, the con-
straint holds if and only if whenever both r1 and r2 have been executed, with r1

having been successfully executed, the end time of r1 is before the start time of r2.
This constraint is similar to the “before” constraint found in Allen interval tem-
poral logic (Allen, 1983), with the exception that the latter does not distinguish
between the success and failure of actions. The formal definition is given below.

(r1 < r2) def
=

∀θ1, t1, t2

[
Happens(r2θ1, t1, t2)⇒
∃θ2 Happenss(r1θ2, t3, t4) ∧
∀θ2, t3, t4[Happenss(r1θ2, t3, t4)⇒ t4 < t1]

]
.

The fourth constraint is read as “ f holds before r.” This constraint guaran-
tees that fluent f holds at some point in time before r starts executing. Note,
however, that f may be false immediately before the time that r starts executing.
Nonetheless, this constraint is useful when a condition must hold at some point in
history before an event—although not necessarily immediately before the event—
or when it is a feature of the domain that a condition will never become false after
it becomes true. In our experimental setup, for example, while the event to take
a picture of an interesting rock using high resolution cameras should happen only
after such a rock is observed via the panoramic camera, the event does not need
to happen immediately after the rock is observed. The formal definition for the

13

mentioned constraint is as follows.

(f < r) def
=

∀t1, t2, θ[Happens(rθ, t1, t2)⇒ HoldsAt(f , t3) ∧ t3 < t1].

It is worth noting that since there are usually multiple components executing in
parallel, and while reading a value stored in a poster (e.g., the location of the
rover) belonging to a different component the value might change, we could not
find an easy way to encode the constraint “ f holds immediately before r.”

The fifth constraint is read as “r1 does not overlap r2.” It guarantees that there
is no point in time in which both r1 and r2 are executing. More precisely, the
constraint holds if and only if whenever both r1 and r2 have been executed, r1

finishes before r2 starts, or r2 finishes before r1 starts. Such a constraint is useful
to guarantee the mutual exclusion between the executions of two requests.

(r1 ∦ r2) def
=

∀t1, t2, t3, t4, θ1, θ2[Happens(r1θ1, t1, t2) ∧ Happens(r2θ2, t3, t4)
⇒ t2 < t3 ∨ t4 < t1].

To illustrate how some of the mentioned constraints are represented as BIP con-
nectors, we show below an example of the textual representation and the BIP
connectors for the above “does not overlap” constraint. In our rover, there is a
requirement that no communication should occur with an orbiter while the rover
is moving, and vice versa, to ensure that communication is not disrupted. Then,
the textual representation of this constraint is the following.6

antenna.Communicate NOT-OVERLAPS rflex.Move
ELSE CANNOT-COMM-AND-MOVE

This translates to the BIP connectors shown below for the antenna and PTU GenoM
modules in Figure 2 (Bensalem et al., 2011). In what follows, MA = MoveAbort,
CAIS = CommunicateAbortIncompatibleServices, CT = Communicate Trigger, and MS
= MoveStatus. We only show the first two connectors; the other two are analogous.

connector AllowCommIfNotMoving(antenna.CT , rflex.MS)
define [antenna.CT , rflex.MS]

6We simplify here for clarity. Actually, there are two versions of this constraint: one yields BIP
connectors for aborting the executing request to let the new one execute, and the other yields BIP
connectors for rejecting the new request so as to not overlap with the one that is already executing.

14

on antenna.CT , rflex.MS
provided ¬rflex.MS.active
do {}

connector AbortMovingToComm(antenna.CAIS, rflex.MA)
define [antenna.CAIS′, rflex.MA]
on antenna.CAIS,rflex.MA
provided true
do {rflex.MA.rep← CANNOT-COMM-AND-MOVE}
on antenna.CAIS
provided true
do {}

In the above connectors, an interaction involving the CT port (which leads to
the starting of the Communicate service’s execution) is possible only after aborting
the Move service of the rflex module. Moreover, the aborted request will return
with the CANNOT-COMM-AND-MOVE error message.

We now continue with the fourth and final constraint, which is read as “r only
while f .” It guarantees that r continues to execute only while fluent f is true. The
constraint is formally defined as shown below.

(f v r) def
=

∀t1, t2, θ[Happens(rθ, t1, t2)⇒ ∀t ∈ {t1, . . . , t2},HoldsAt(f , t)].

Note that this is the “ideal” meaning of this constraint—it is stronger than what
we can guarantee in practice. This is because in BIP, we cannot abort request r
as soon as f becomes false. At the point at which f becomes false, r might be
in the middle of executing a non-interruptible piece of code (e.g., an exec codel),
resulting in the abort having to wait until the piece of code finishes executing.
Moreover, the BIP engine will only detect that f has changed at the next iteration
of its main loop. Consequently, some time may have elapsed since f became false.
Other than this constraint, all the other constraints mentioned can be expressed
using BIP connectors.

As an example of the last constraint described, consider the following con-
nector, which prevents poster data produced by certain modules from being used
if the data is not “fresh”; e.g., a speed reference produced by the NDD module is
not “fresh” if it has not been updated for more than ten ticks. In what follows,
the PosterAge variable keeps track of the amount of time that has elapsed since
the last time the associated Poster component was written to. Then, in our textual

15

constraint language the constraint can be specified as follows.

rflex.Move WHILE ndd.RflexPoster.read.PosterAge > 10
ELSE NDD-POSTER-NOT-FRESH

This translates to the following connector.

connector AbtMoveIfPstrNotFresh(rflex.MA, ndd.RflexPoster.read)
define [rflex.MA, ndd.RflexPoster.read]
on rflex.MA, ndd.RflexPoster.read
provided ndd.RflexPoster.read.PosterAge > 10
do {rflex.MA.rep← NDD-POSTER-NOT-FRESH}

We are currently working on proving the soundness of the constraint language
with respect to the definitions above—i.e., that the connectors resulting from the
high-level constraints between requests makes them behave in the manner defined
by the above definitions—by firstly defining a set of connector types per high-
level constraint and then showing how each of these sets makes the underlying
BIP components behave in the manner defined.

As for completeness, the constraint language is not complete in the sense that
more behaviour patterns—albeit not those that we consider to be useful—can be
expressed between GenoM requests using BIP connectors than the patterns express-
ible using our high-level constraint language. For example, we could write BIP
connectors that try to make two given requests start executing at the same point
in time (in line with the starts constraint in Allen interval temporal logic) by syn-
chronizing the “trigger” ports associated with the requests—which will not neces-
sarily result in the two requests’ associated codels starting to execute concurrently
because that would depend on how they are scheduled by the operating system.
Hence, we do not capture such behaviour patterns (i.e., those that provide no guar-
antees) in our constraint language.

Of course, many BIP (possibly “low level”) connectors that are used to de-
fine interactions between components don’t yield any meaningful constraints at
the level of abstraction that interests us, i.e., behaviour patterns between GenoM
requests. For example, while one could write BIP connectors to allow a request to
start executing only when another “starts to end,” i.e., when the latter starts exe-
cuting its “end” codel (the codel used to perform any outstanding tasks before the
service is terminated), this behaviour pattern is not meaningful at the higher level
of abstraction.

16

5. The Real-Time BIP Framework

In the previous version of the GenoM/BIP approach (Bensalem et al. (2009)),
time was taken into account with logical ticks provided by the BIP engine. Al-
though we were still able to model real-time properties using timers and BIP au-
tomata with transitions executing C “sleep” actions, this was clearly not enough
when it came to providing and controlling a real-timed model of the system. This
section discusses a real-time BIP framework, including an extension to the BIP
model which supports, similarly to timed automata (Alur and Dill, 1994), the ex-
plicit representation of time and clocks, and an extension of the BIP engine.

In this section, we explain how the approach has been improved using real-
time BIP, which consists of a real-time extension of the BIP language for model-
ing real-time systems, and a real-time BIP engine used for its execution (Abdel-
latif et al., 2010). The real-time BIP engine performs the computation of schedules
meeting the timing constraints of the application, depending on the actual time
provided by the real-time clock of the platform. The engine directly implements
the semantics of the language.

5.1. Motivations: Safely handle real-time features
The autonomous rover Dala uses an initial BIP/GenoM component-based de-

sign approach (Bensalem et al., 2009) for specifying and implementing the func-
tional level of the robot. In the original BIP framework, component behaviors
were automata extended with data. There was no explicit notion of time, that is,
conditions (guards) for enabledness of interactions between components only de-
pended on the values of components’ variables. It was possible to enforce timing
constraints directly in the components by calling primitives of the platform on
transitions. However, we avoided this method because the timing behavior of the
model was untrackable. In (Bensalem et al., 2010a) they prefer using global tick
synchronizations between the components, that is, time progresses synchronously.
In this case time is made explicit in the model, which allows the use of verifica-
tion techniques. However, using such tick synchronizations is inefficient due to
the periodic execution of ticks.

In general, each module instance provides specific services, which can be in-
voked by requests sent by the decisional level according to tasks that need to be
achieved (see Section 3). A module has an execution task with different schedul-
ing periods and priorities, that is in charge of executing particular user defined
services. It triggers periodically services for launching and executing associated

17

trigInit trigCom trigStop

Antenna Module

trigger

tick

tickAge

init
init idle

trigger

Counter < 5

Counter := 0

Counter == 5

Counter ++

tick
Timer

trigger

tick

init
init idle

tick

trigger

Counter < 60
Counter ++

Counter := 0

Counter == 60

Scheduler trigger
chck

Timer

trigger

init
init idle

tick

trigger

Counter < 10
Counter ++

Counter := 0

Counter == 10

tick

init
init idle

chck

give

trigInit

end

chck

trigStop

trigComnoMsg

MessageBox

Timer

Poster

idle

contCom

contInit

trigger

init

init
init idle write

tick

PosterAge + +

write
PosterAge := 0

read contInit contCom

tick

MasterTimer

init idle
init

Control Task Execution Task

trigInit contInit trigCom contCom
trigStop trigger

Permanent taskStopCom serviceCommunicate ServiceInit Service

tick
sleep(10)

Figure 4: Antenna module implementing timing constraints using ticks.

activities and upon completion the services return a report to the caller. A control
task, which among other things, handles requests and reports, is responsible for
setting and returning variable values. A poster is a module that may export posters
containing “shared” data for others (modules or the decisional level) to use.

Time is taken into account with logical ticks provided by the BIP engine. Thus,
real-time properties are modeled using timers and BIP automata with transitions
executing C ”sleep“ actions. In general, a global timer component is responsible
for executing the C ”sleep” actions and synchronizes all the timer components of
the modules that are used to trigger the execution of periodic tasks. In the follow-
ing subsection, we give as an example, the Antenna module’s general structure.

The Antenna module is responsible for the communication with an orbiter and
it is structured as follows (see Figure 4).

A set of services. The Init service fixes the time window for the communication
between the application and the orbiter at initialization. The Communica-
tion service starts the communication with the orbiter in a bounded duration.
The StopCom service terminates the on-going communication between the
application and the orbiter.

18

Timer components. MasterTimer ensures that there are at least 10 ms between
two consecutive synchronizations of the components Timer. This is achieved
by calling sleep primitives of the platform in MasterTimer when execut-
ing action tick. Timer components trigger the functional components at the
fixed periods (i.e., ticks) given as parameters. Periodic execution of Timer
is enforced by a guard involving an integer variable Counter incremented at
each tick execution.

Functional components. They are triggered by the Timer components. Compo-
nent Age measures the freshness of the poster at a period of 5 ticks (50 ms).
Component MessageBox checks the presence of requests using a period of
10 ticks (100 ms). Component Scheduler executes activities based on a
period of 60 ticks (600 ms).

However, this translation is inefficient when the period of the execution of the
Tick connector is small compared to the actual period of activation of the com-
ponents, because the engine wakes up frequently to count time even if there are
no interactions to execute. Moreover, this approach requires for execution times
of interactions to be bounded by this period, which is a very strong assumption.
Finally, since Tick strongly synchronizes all components in all states, such models
can easily deadlock. The real-time BIP engine avoids this translation by directly
computing enabled interactions and their associated time constraints.

5.2. Overview of the real-time BIP Engine
In real-time BIP, the timing constraints of a component are expressed by using

a timed automaton. Timed automata (Alur and Dill, 1994) are automata extended
with clocks, which are variables valued either as integer or as real that increase
synchronously and are used to measure the passing of time. Clocks can be reset
and tested against lower and upper bounds on transitions. We also consider three
types of urgency for transitions: lazy (i.e., no urgency), delayable (i.e., urgent just
before they become disabled) and eager (i.e., urgent whenever they are enabled).
We made also extensions in order to model system communications with the ex-
ternal environment by using Input/Output automata. Internal actions and outputs
are triggered by the application, whereas inputs are triggered by the environment.
Timing constraints correspond to user-requirements such as deadlines, periodicity
and occurrence of inputs.

Figure 5 is an example of a real-time BIP component. It represents a cyclic
execution of a system that receives an input in from the environment, performs

19

getinit

exec

computeout
[x ≤ D]d[x ≤ D]d

in
[x ≥ D]l{x}

in
ou

t

Figure 5: A timed BIP atomic component.

an internal computation and sends an output out to the environment. A clock x is
used to measure the time elapsed since the last occurrence of in (i.e., x is reset by
in). Both compute and out must be done before x reaches the deadline D.

The Real-time BIP framework relies on a (centralized and for now single-
threaded) real-time engine that computes enabled interactions online (see Fig-
ure 6). Our implementation is based on the presence of a centralized notion of
time given by a real-time clock provided by the platform. Given a state of the
system, transitions of atomic components issued from this state associate timing
constraints to ports. Before checking enabledness of interactions, the real-time
engine expresses all timing constraints involving local clocks in the context of a
single global clock t that measures the absolute time elapsed. Timing constraints
of interactions are computed by performing the conjunction between timing con-
straints of the ports. We also associate urgencies to interactions by considering
the maximal urgency of their ports (lazy < delayable < eager). Before schedul-
ing an interaction, the engine updates the global clock t, completed by a check
for the presence of a deadline miss (i.e., violation of the urgency of a transition).
The real-time engine can be used either for simulating a model (t is updated w.r.t.
given execution times) or for its real-time execution (t is updated w.r.t. a platform
clock). It is also able to communicate with external devices such as sensors and
actuators through an Event Handler. It maps the inputs and outputs specified in
the model with the physical events. The real-time Engine computes schedules of
actions with respect to timing constraints. When a deadline or an input is missed,
it stops the execution and reports the deadlock.

20

platformreal-time
clock

Real-Time Engine

list of active ports with constraints

Real-Time
BIP Model

C: {p,q}

execute

time-safety violation
(deadline missed)?

time translation

p q

real-time schedulercompute interactions

 update
 global clock t Events

Event Handler

Sensors Actuators

Figure 6: The real-time BIP engine.

5.3. Modeling modules using real-time BIP
In this subsection, we show how we modeled the Antenna module using real-

time BIP. Figure 7 is the resulting representation of the Antenna module. For this
purpose, we introduced the following.

Clocks and timing constraints. Clock Ageclk in Age component measures the
freshness of the poster. That is, whenever we write a new piece of data,
clock Ageclk is reset to zero. A timing constraint over clock Ageclk can
prevent the reading of a poster if the data is older than or equal to a giving
value. In our case, the poster is read for Ageclk < 50ms. Clock Pclk in
Scheduler component is used to enforce a period of 600 ms to launch a
task. The corresponding timing constraint over clock Pclk is Pclk = 600.

Inputs and outputs. In the first implementation, the communication with the de-
cisional level and the Antenna module is achieved by using a dedicated
shared buffer. The decisional level directly writes requests in the buffer,
and Antenna periodically reads the buffer using component MessageBox to
check their presence. The chosen period is 100 ms. Antenna also sends
reports when executing the internal action report of MessageBox. We in-
troduce the notion of Input and Output ports to communicate with the de-
cisional level. We introduce the input port Request that replaces the active
wait used by the first implementation. The output port Report is introduced
to send reports to the environment after the treatment of a request.

21

Request

init idle

chck

give
init

trigInit

trigStop

trigCom

Report

trigInit trigCom trigStop

Age MessageBox

Control TaskPoster

Antenna Module

init idle write

read

write
init {Ageclk}

[Ageclk < 50]

Request Report

Request Report

write read

Scheduler

init

contCom

trigger

{Pclk}

init
{Pclk}

contInit

[Pclk = 600]d

triggercontInit

Execution Task

contCom

Figure 7: Antenna module implementing timing constraints using clocks.

6. Temporal Plan Execution Control

The decisional level of an autonomous system usually involves temporal plan-
ners (Ingrand et al., 2007) that basically choose variable time instants for the ex-
ecution of actions of a system, e.g., starting or terminating a task. The goal of
the planner is to find a valid plan, that is, a list of actions meeting user-defined
constraints that can be expressed using various formalisms. Planners can also
seek for efficiency by optimizing parameters such as latency, throughput, energy,
and memory. The robotic systems we deploy rely on a higher level temporal
planner and a plan execution controller using a Timeline-based planning tech-
nique. Allen’s interval algebra, also called Allen’s temporal logic (ATL) (Allen,
1983) is one of the best established formalisms for temporal reasoning since it
expresses constraints on plans. The constraints are expressed as boolean formulae
over atomic propositions. Validation and correctness of complex plans for systems
with decisional autonomy is highly desirable, if not critical in many applications.
Since ATL is the logic of planning, an automated translation from ATL to BIP
components enables to use rigorous design and implementation techniques and
tools in a domain lacking them.

In this section, we introduce the ATL to BIP translation mechanism. We ex-
plain how to build correct models for plans, that is, how Timelines are modeled
and how to manage the constraints between the different Timelines to build a cor-
rect plan. We also give an example of a DALA robot plan model and execution
using the real-time BIP framework.

22

6.1. Translation of an ATL fomula into BIP components
Allen interval temporal logic (Allen, 1983) is a widely used formalism in

the temporal planning community for expressing constraints on plans. It ex-
presses constraints as boolean formulae over atomic propositions on time inter-
vals I = [sI , tI], where sI is the start time of I and tI its terminating time (sI < tI).
Considered atomic propositions include but are not limited to:

1. I equals J, which means intervals I and J coincide (i.e., sI = sJ and tI = tJ);
2. I before J, which means I terminates before J starts (i.e., tI < sJ);
3. I overlaps J, which means J starts during I (i.e., sI < sJ < tI < tJ);
4. I meets J, which means J starts when I terminates (i.e., tI = sJ);
5. I during J, which means I is included in J (i.e., sJ < si and ti < tJ); and
6. I starts (resp. finishes) J, which means I and J start (resp. finish) at the

same time (i.e., sI = sJ, resp. tI = tJ).

Moreover, these thirteen relations (six of the above have a symmetrical one)
can be extended with numerical (duration) information if needed. It has been
shown that Allen interval logic formulae can be translated into timed automata
(Rosu and Bensalem, 2006). Their translation into real-time BIP models can lead
to an executable BIP model which can also be used jointly with the model of
the functional level to check properties that encompass both the decisional and
functional levels. The idea is to use one timed automaton (i.e., one component)
for modeling each interval. Interactions and priorities—a.k.a. the glue—in BIP
offers also an elegant language for expressing constraints between intervals used
to describe coincidence of actions.

Translating Allen intervals into BIP components
We consider an interval as an execution action, thus it has a starting time and

a finishing time. Figure 8 (b) is a representation of the action as an atomic com-
ponent. It is composed of a set of ports {begin, executing,finish,no-executing},
port begin corresponding to the beginning of the execution, port executing cor-
responding to the execution, port finish corresponding to the end of execution
and port no-executing corresponding to the time after execution of the interval.
Ports begin and finish correspond to particular time instants of executions that
are triggered only once in the BIP component. Ports executing and no-executing
correspond to time intervals that can be triggered as long as we are in the corre-
sponding time intervals. Clock x is reset at initialization. It is used to ensure the
beginning of the action within a starting interval [slb, sub] (where slb is the lower

23

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

begin finish

Interval

no−executing

(a) (b)

executing

Interval

init

exec

end

finishbegin

no− executing

[slb ≥ x ≥ sub]
d

executing

begin

executing {y}

[flb ≥ y ≥ fub]
d

finish

no− executing

Figure 8: Modeling an interval (a) as a BIP atomic component (b).

bound and sub is the upper bound), by using constraint slb < x < sub with a de-
layable urgency. Clock y is reset when the action execution begins. It is used to
measure the execution time of the action to ensure its termination within a fin-
ishing interval [tlb, tub] (where tlb is the lower bound and tub is the upper bound),
by using constraint tlb < y < tub with a delayable urgency. Each transition is la-
beled by an exported port. Exported ports are used as an interface to enable the
synchronization with other components.

Translating Allen constraints into BIP connectors
Boolean combinations of atomic propositions can be efficiently derived using

existing work that establishes the correspondence between boolean formulae and
the glue (Bliudze and Sifakis, 2008). Therefore, coincidence of actions (e.g., tI

= sJ) can be modeled as a strong synchronization between atomic components
using interactions. Each Allen constraint between two intervals can be translated
into strong synchronization between transitions of the corresponding atomic com-
ponents through their exported ports. Ordering of actions (e.g., tI < sJ) can be
modeled as a set of priorities. For each Allen constraint we have the correspond-
ing connector type in BIP as follows:

1. I equals J synchronizes port begin of I and port begin of J, and synchro-
nizes port finish of I and port finish of J;

2. I before J synchronizes port no-executing of I and port begin of J;
3. I overlaps J synchronizes port executing of I and port begin of J, and

synchronizes port no-executing of I and port finish of J ;

24

t

t

t

I

J

K

Meets

During−begin During−finish

J

executing

no−executing

begin

finish

K

executing

no−executing

begin

finish

I

executing

no−executing

begin

finish

finish begin finish

begin finish

begin

executing

no−executing

executing

executing

no−executing

no−executing

Formulae

D
ur

in
g−

be
gi

n D
uring−

finish

Meets

(b)(a)

J.finish < {J.executing;K.begin}

J.finish < {J.executing;K.finish}

Figure 9: Example of translation: formulae “I meets J and K during J” (a) into a BIP compound
component (b).

4. I meets J synchronizes port finish of I and port begin of J;
5. I during J synchronizes port begin of I and port executing of J, and syn-

chronizes port finish of I and port executing of J; and
6. I starts J synchronizes port begin of I and port begin of J.

As an example, we give the translation of the formulae “I meets J and K during
J,” over 3 three atomic propositions I, J and K, into a BIP compound component
(see Figure 9). Propositions are modeled as atomic components and constraints as
interactions over those components. The formulae I meets J is modeled by using
a strong synchronization between port finish of I and port begin of J. To ensure
that K is executed after the start of J, we use strong synchronizations between port
executing of J and ports begin and finish of K. We also give a higher priority for
the execution of K over the completion of J to enforce the execution of K before
the completion of J. Thus, priorities enforce ordering of actions (e.g., tI < sJ).

6.2. An example with a plan of the Dala rover
We have modeled and executed a plan of Dala using the open real-time BIP

framework. The Dala robot mission scenario consists of navigating from an initial
position to a target position, taking a picture of the place, and going back to the
initial position. Each step of the mission requires a strong collaboration between
the different modules of the robot. Figure 10 is a graphical representation of the
plan. It is composed of six timelines describing the variable states for each module
of the robot.

25

Posi%on 
navigate 
[30,50] 

Idle 0,0 
[0,_] 

30,50 
[0,_]  [0,0]  [0,_] 

navigate 

Heater 
Heat  Idle 
[1,10]  [0,_] 

PTU 
down up 

[0,_]  [0,_] 

down 
[0,_]   [1,4]  [1,4] 

 move  move 

 [1,4] 
 move 

[1,4] 
move 

VIAM 
Idle 
[0,_] 

Idle 
[0,_] 

Antenna 
Idle 
[0,_] 

Visibility 
Window 

out 
[240,240] 

communicate 

Orbiter  out 

Idle 
[0,_] 

[280,280] 

[30,50] 

[40,40] 

Idle 
[0,_] 

shot  shot  save save 

Contained‐by 

Before 

   le=  right 

[0,_]  [0,_]  [0,_]  [0,_] 

 [0,_]   [0,_] 

Figure 10: Example of a Dala plan.

• In the Heater Timeline, the initial action has to set the heater to a given
value with action Heat. It has a timing constraint on its termination in the
interval [1, 10]. When it finishes, the Heater is at state idle.

• In the Position Timeline, the robot is first at position (0,0). It can navigate
to any position (x,y) with action navigate in the interval [30, 50].

• In the PTU Timeline, the PTU initial position of the robot is up. It can move
down, left or right with action move in the interval [1, 4].

• In the VIAM Timeline, the camera is at state idle. It takes a photo with action
shot then saves it.

• In the Antenna Timeline, the antenna is first at state idle. It communicates
with an orbiter in order to send the picture with the action communicate in
the interval [30, 50].

• In the Visibility Window timeline the action orbiter is responsible for the
communication window visibility for communicating with the orbiter.

Each timeline is modeled as a compound component composed of atomic
components representing the actions. The chronological order between these ac-
tions is expressed by constraint “Meets.” Actions are either uncontrollable ac-

26

(a) State Action (b) Uncontrollable Action

begin

{y}

finish

init

exec

end

finish

executing

no− executing

executing

no− executing

[flb ≥ y ≥ fub]
d

begin

{y}

[flb ≥ y ≥ fub]
d

finish

init

exec

end

finishbegin

executing

executing

no− executing

no− executing

[x > 0] [x > 0]

begin

Figure 11: Modelling the robot basic actions using BIP.

Uncontrollable Action Robot Command
Initialization InitialiseRobot
Heat (value) HeatRobot value

navigate (x,y) MoveRobot x y
move (x,y) MovePTU x y

shot (image) TakeS ciencePic image

Table 1: Mapping Between the uncontrollable actions and the robot commands

tions, i.e. actions that can send and receive requests from the functional level,
or state actions that describe the expected state in which the robot should be.
Figure 11 is a representation of the atomic components corresponding to either a
state action (a) or uncontrollable action (b). The atomic component representing
an uncontrollable action is an open component capable of sending requests and
receiving reports from the environment. Thus, its begin port is an input to send
the corresponding command of the action to the robot (see Table 1 representing
the mapping between actions and the robot commands). The finish port is an out-
put to receive a notification when the action has finished. With this method, we
are able to detect timing constraints violations if the actions take more time than
expected. The uncontrollable actions of the plan are heat, navigate, move, shot
and communicate.

Figure 12 represents the BIP representation for timelines Heater and Position
of the robot. We express constraints between actions of different timelines by us-
ing Allen constraints. Each compound component exports ports that are involved
in synchronizations with other components. Port “Heat.no-executing” is exported
from port “no-executing” of component “Heat” and port “navigate.begin” is ex-
ported from the interaction in which port “begin” of component “navigate” is in-
volved. The constraint “heat before navigate” is modeled by synchronizing those

27

two ports.

Heat  Idle 

Heater 

navigate 

Posi+on 

pos0  navigate  pos1  navigate  Idle 

          No‐
execu7ng 

begin 

Heat.no‐
execu7ng 

navigate.begin 

Figure 12: Example of modeling Timelines using BIP.

We note that some ports can be involved in several synchronizations (con-
straints) and thus, it is necessary to merge the interactions in which they are
involved into a single connector. The transformation of Allen Temporal Logic
into BIP models is tedious and error prone due to the merging mechanism. For
this purpose, we extend the BIP language in order to express the Allen Temporal
Logic between components by introducing keywords for Allen constraints. From
this new language, we automatically generate the corresponding connectors by a
correct model to model transformation tool.

We give the new syntax for the description of the Timeline Heater in Fig-
ure 13 and the model of the whole plan in Figure 14. Each declaration of an Allen
definition is identified by the keyword allen. Then, we define the Allen relation
between an action1 and action2 with the appropriate allen-constraint (meets,
before, overlaps, starts, ends, during, equals).

7. Experiments and Results

We have proposed a novel approach to developing functional levels of robots,
which involves the synthesis, from a GenoM model, of a correct-by-construction
BIP controller that encodes and enforces designer-supplied inter-module and intra-
module safety properties. We found that the time taken to generate a BIP model
from a given GenoM model is negligible.

28

Compound type Heater
component uncontrollable-action Heat [1,10]

component state-action idle

allen Heat meets idle
end

Figure 13: BIP syntax for the “Heater“ Timeline.

Compound type Plan
component Heater heater
component Position position
component PTU ptu
component VIAM viam
component Antenna antenna
component Visibility-Window visibility-window

allen heater.heater before position.navigate1
allen heater.heater before ptu.move1
allen heater.heater before viam.shot
allen heater.heater before antenna.communicate
allen position.navigate1 during ptu.down

allen position.navigate0-bis during ptu.down-bis

allen ptu.move1 during position.position1

allen ptu.move2 during position.position1

allen ptu.move3 during position.position1

allen viam.shot1 during ptu.left

allen viam.shot2 during ptu.right

allen antenna.communicate during position.idle

allen antenna.communicate during visibility-window.orbiter

end

Figure 14: BIP syntax for the plan.

29

We were able to run experiments7 with a complete functional and decisional
level on our rover, and to demonstrate via fault injections that the BIP engine
successfully stops the rover from reaching undesirable/unsafe situations, and that
it reports appropriately to the decisional level. An example of an undesirable
situation is where radio communication is attempted while the rover is moving.
The rover motion will likely cause the antenna to lose its pointing orientation, and
consequently the signal. When we injected a fault at the decisional (PRS) level
to send a request to the Antenna module to initiate a communication while the
robot was moving, the BIP engine successfully stopped the motion and returned
an error message indicating that the motion was stopped to allow communication
(which is presumably more important) to take place.

7.1. Deadlock-freedom Verification
We have used the D-Finder tool to formally verify our functional level to check

for properties such as deadlocks and data freshness. Using D-Finder, we were
able to check the deadlock-freedom of all thirteen (single) modules in reasonable
amounts of time,8 even those consisting of thousands of lines of BIP code. We
were also able to check that the group of four laser-based navigation modules
RFLEX, LaserRF, Aspect, and NDD are together deadlock-free.

An example of a simple deadlock detected by D-Finder and our solution to it is
shown in Figures 15(a) and 15(b). The figures show two subcomponents belong-
ing to all BIP top-level components (e.g., NDD), where the Scheduler component
controls an associated service, and the Lock component represents a semaphore to
ensure mutual exclusion when multiple services write to the same poster. In this
design, the Scheduler component should synchronize (via some appropriate port)
with the take port of the Lock component before writing to the poster, and then
with the give port after writing to the poster. Due to a design flaw, the Scheduler
component in Figure 15(a) did not do the former, which resulted in a deadlock
caused by a synchronization with give being impossible.9

7To convince the reader that we have implemented the whole approach on real robots, we
have made available a video on the web (http://db.tt/YhzodGDk—please download it to see
it in full resolution and the proper captions) showing a complete experiment with the Dala rover
running the functional level (see Figure 2) in BIP, with various fault injections leading the BIP
engine to prevent them and report them to the decisional level (OpenPRS in this case), which
takes corrective actions.

8We do not have the POM module in BIP because its functionality is not very useful for our
functional level.

9We thank Rongjie Yan for this example.

30

init

write

stop

trigger

permanent_exec

trigger

trigger

stop_execution_task

execution_task_stopped

no_manual_poster_write

start_write_manual_poster

end_write_manual_poster

end_write_manual_posterno_manual_poster_write

take

givetake

give

Lock

Scheduler

idle

stopped pfin

idle

busy

perm

(a) Deadlock

idle

init

stopped

stop

trigger

permanent_exec

trigger

trigger

stop_execution_task

execution_task_stopped

no_manual_poster_write

permanent_init
start_write_manual_poster

end_write_manual_poster

end_write_manual_posterno_manual_poster_write

permanent_init

idle busy
take

givetake

give

Scheduler

Lock

before

write

pfin

perm

(b) Solution

Figure 15: A deadlock (a) and its solution (b). In both figures the top component is a Scheduler
and the bottom one is a Lock.

One might have noticed that the bug resulting from the above deadlock is
caused by a flaw made by the designer of the BIP functional level and not by its
user. In addition to detecting such system-level bugs to facilitate convergence to-
wards a “correct” functional level, D-Finder can also help detect user-level bugs
caused by subtle logical errors in BIP connectors added manually (without us-
ing our high-level constraint language) to the functional level for the purpose of
enforcing constraints between associated GenoM requests. Although it was not
explicitly distinguished as such a user-level bug in Bensalem et al. (2011), the
authors provide a detailed example of a deadlock (and resulting bug) caused by
connectors manually added by the user to enforce the “data freshness” constraint,
which prevents poster data produced by certain modules from being used if the
data is too old. The authors attempt to fix the deadlock with a modified connector,
which then has another more subtle logical error, resulting in another deadlock.
Basically, the second deadlock was caused by attempting to abort a Move service
when it had already been aborted, resulting in the service not being in a state in
which it is ready to be aborted and blocking certain other interactions. The solu-
tion was to let the other interactions proceed even when the Move service was not

31

real(s) user(s) sys(s) CPU (%)
1st implementation (ticks) 22.6 0.2 0.1 1.32

2nd implementation (real-time Engine) 22.6 0.025 0.04 0.22

Table 2: CPU utilization for Antenna.

ready to be aborted. We refer the reader to Bensalem et al. (2011) for the detailed
explanation of this deadlock scenario.

One of the objectives of the high-level language in Section 7.3 is to prevent
such bugs resulting from error-prone user-supplied BIP connectors, by automating
the process of generating BIP connectors that have a guarantee where they will not
introduce deadlocks into an otherwise deadlock-free functional level. While we
are in the process of proving this, intuitively, our proof relies on showing that
the connectors corresponding to high-level constraints do not disallow transitions
from any of the BIP components’ states from where transitions would otherwise
have been possible.

7.2. Performance of the real-time engine
We conducted experiments to compare the runtime performance of the GenoM

functional level and the corresponding BIP functional level. Results showed that
each BIP module took approximately ten times more CPU time on average than
the corresponding GenoM module. Likewise, in terms of the usage of the CPUs
immediately before the end of the experiment, the GenoM functional level used
approximately ten times less than the BIP functional level (6.3% versus 52% CPU
usage). This additional overhead with BIP comes mainly from the decision mak-
ing by the BIP engine. In particular, the BIP engine actively computes all the
feasible interactions at every cycle, for which the time taken is proportional to the
number of interactions in the BIP components.

The real-time engine presented in Section 5 can be used to avoid the compu-
tation of Tick synchronizations, and thus reduce the overhead due to the use of
BIP. Tick synchronizations are used in untimed BIP models to keep track of the
real-time in all components. Timing constraints are modeled in components as
boolean conditions involving clocks, that is, integer variables which are increased
synchronously at each occurrence of a Tick synchronization. Since the real-time
engine directly schedules the interactions at time instants meeting the timing con-
straints of the model, it completely avoids the need of Tick synchronizations.

We compared the execution of the first implementation of Antenna (i.e., us-
ing ticks), and the second implementation (i.e., using the real-time Engine). CPU

32

utilization is almost 5 times higher with ticks compared to the real-time Engine
see Table 2). We also improved the response time of the module to a request (see
Figure 16). Note that the generally higher latency of untimed BIP is because, to
attend to a newly arrived request, the system has to wait for the next Tick syn-
chronization, which in this experiment happens every 0.1 seconds. We are now
working on generalizing these results to the rest of the functional level of the Dala
rover application.

The real-time BIP engine is well-suited for executing also the decisional level
of robotic systems. In Section 6, we have seen how to model plans in an elegant
manner by translating constraints over actions into connectors and priorities. We
introduced an example with a plan of Dala that we have successfully executed on
the robot. Indeed, the real-time BIP engine becomes a temporal plan execution
controller by providing a correct schedule of actions, which communicates with
the functional level through an event handler (Abdellatif et al., 2011) that sends the
request corresponding to each uncontrollable action and waits for a reply within
the time interval corresponding to the termination of the action. The engine detects
violations of timing constraints and stops the execution or reports the fault.

Using a BIP model combining plans of the decisional level and the functional
level is interesting for increasing the performance of the implementations, since
costly communications between these two levels can be expressed as BIP interac-
tions directly handled by the engine in the same process. Indeed, we have seen
in Section 5, that we have introduced an input port Request and an output port
Report in order to communicate with the decisional level. In Section 6, we also
introduced input ports to send requests to the functional level and output ports to
receive reports. The communication between input and output ports of both levels
can be handled in the future by a single BIP engine.

7.3. The high-level constraint language
We have used the high-level constraint language presented in Section 4 to

obtain and enforce, via the BIP engine, a multitude of low level BIP connectors
corresponding to the high-level constraints. At different stages of our experiments
on Dala we have specified in total at least 11 different high-level constraints on the
functional level, some of which are mentioned in Section 4. These have mapped
onto at least 76 BIP connector types and instances on top of those that are a part
of the existing BIP model. Each high-level constraint was successfully enforced
by the BIP engine at runtime throughout our experiments with the rover.

An aspect on which we intend to improve the current approach is to allow the
user to check deadlock freedom on a particular subset of components, or more

33

 0

 0.02

 0.04

 0.06

 0.08

 0 5 10 15 20 25 30 35 40 45 50

Real−Time BIP

 0.1

”untimed” BIP

request number

la
te

nc
y

of
th

e
re

sp
on

se
to

a
re

sq
ue

st
(i

n
s)

Figure 16: Comparison between real-time BIP and untimed (standard) BIP.

precisely on a particular chain of processing. For example, we may want to fo-
cus the deadlock search on the perception/navigation loop, and show that under
normal conditions, the navigation algorithm will run properly without reaching a
deadlock.

8. Future Work

8.1. Distributed implementations of BIP models
So far, our experiments were done on the Dala platform which is a mono-CPU

robot. Currently, powerful hardware platforms needed for executing robotic ap-
plications are multi-core or many-core platforms. Hence, we needed to investigate
a way of distributing the BIP model and the BIP engine over more than one CPU.
The application code should be optimally distributed over the platform to take
advantage of its computing power. Although distributed systems are widely used
nowadays, their implementation is still time-consuming and an error-prone task.

Coordination in BIP is achieved through multi-party interactions (i.e., those
across multiple components), and scheduling by using dynamic priorities. Trans-
forming the semantics of (untimed) BIP—which is based on an atomic interac-
tion execution and is defined on a global state model—into a distributed imple-
mentation is clearly a nontrivial task. We developed a generic framework allow-
ing the transformation of high-level BIP models into distributed implementations
(Bonakdarpour et al., 2010; Jaber, 2010).

Our method involves BIP-to-BIP transformations preserving observational equiv-
alence. We transform multi-party interactions into asynchronous message passing,

34

I
N
T
E
R
A
C
T
I
O
N

R
E
S
E
R
V
A
T
I
O
N

C
O
M
P
O
N
E
N
T

B2 B3 B4 B5

IP2: interaction γ

Conflict resolution between IP1 and IP2

(i.e. conflict between β and γ)

B1

γ: B4, B5

IP1: interactions α and β
α: B1, B2, B3
β: B3, B4

Figure 17: Send/Receive BIP model obtained from BIP-to-BIP transformations.

that is, send/receive primitives. A target Send/Receive BIP model is structured in
three layers (see Figure 17): (i) the component layer corresponds to a modified
behavior of the components of the original model; (ii) the interaction protocol
consists of a set of components such that each component detects enabledness
of a subset of interactions of the original model using partial-state knowledge,
and executes them after resolving conflicts (e.g., regarding which interaction to
execute when there is more than one involving the same port) either locally or
with the help of the third layer; (iii) the reservation protocol resolves conflicts
between components of the interaction protocol layer using committee coordi-
nation algorithms such as the token-ring distributed algorithm or the distributed
Dining Philosophers algorithm. Notice that an obtained Send/Receive BIP model
depends on a user-defined partition of the interactions of its original model, asso-
ciating subsets of interactions to components of the interaction protocol layer.

We have developed a C++ code generator that performs, given a user-defined
mapping of the components of a Send/Receive BIP model, the generation of dis-
tributed implementations using communication mechanisms offered by the plat-
form. We have the following backends: Unix processes communicating through
TCP sockets, MPI, and threads using semaphores and shared memory. Efficient
monolithic code can be produced by merging components using another BIP-to-
BIP transformation (Jaber, 2010), according to the mapping of the components.

The method has been fully implemented in a toolset allowing the automatic
generation of distributed implementations from BIP models. It is parameter-
ized by the partitioning of interactions, a committee coordination algorithm, and

35

the mapping of components. The performance of the resulting implementation
strongly depends on the choice of these parameters (Jaber, 2010).

We plan to implement this work on some of our most recent robotic platforms
(e.g., PR2 (Bohren et al. (2011))).

8.2. GenoM3
The most recent version of GenoM is GenoM3 (Mallet et al., 2010). This is a

complete rewrite of GenoM that is template based.10 One still provides the .gen

specification and the associated codels, but the automatic synthesis of the module
is based on templates that get properly instantiated for a particular instance. As
a result, one can write templates for a Pocolib11 version of the module or a ROS
Comm version of the module. Similarly, client interface libraries can be gener-
ated using this powerful template mechanism. As a result we can for example
synthesize ROS GenoM3 modules which can interface with ROS nodes.

This mechanism is perfectly adapted to generating a BIP model of the module.
Instead of generating the C/C++ code of the classical module, we can generate
the BIP version which implements the same behavior. We plan to write these
templates in the near future. Note that this would open our approach to the ROS
ecosystem (providing people write the associated .gen specifications for their ROS
nodes/services/actions).

9. Discussion

Despite a growing interest in developing safe, robust, and verifiable robot soft-
ware, such development still remains quite disconnected from the use of formal
methods. While there is some work that uses formal methods for developing the
decisional level of robotic systems, there is not much work that focuses on using
them for developing the functional level.

In this work, we propose a novel approach for developing functional levels of
robotic systems. Our approach is based on a combination of the BIP component-
based design framework and the GenoM architectural tool for developing func-
tional level modules. With our approach, one can synthesize a functional level
that is correct-by-construction. Using the D-Finder verification tool, we can check

10http://homepages.laas.fr/mallet/soft/architecture/genom3
11Pocolib is the communication, data sharing, etc. library which we used at LAAS.

36

offline for properties such as deadlocks. In this way we have verified that a sig-
nificant part of our functional level is deadlock free, in particular, each individual
module in the functional level, as well as the four laser based navigation modules.

On a related note, another aspect on which we intend to improve the current
system is to allow the user to check deadlock freedom on a particular subset of
components, or more precisely on a particular chain of processing. For example,
we may want to focus the deadlock search on the perception/navigation loop, and
show that under operational conditions, the navigation algorithm will run properly
without reaching a deadlock.

We were able to run experiments with a complete functional and decisional
level on our Dala rover, and to demonstrate via fault injections that the BIP con-
troller successfully enforces the constraints supplied, thereby preventing the rover
from reaching undesirable/unsafe situations, and that it reports appropriately to
the decisional level.

From a comparison of the performance of the GenoM functional level and the
corresponding BIP one, we noticed that the BIP modules, resulting from our first
implementation, used approximately ten times more CPU time on average than
their GenoM counterparts. Motivated by such efficiency concerns, we worked on a
real-time version of BIP, which takes into account execution time deadlines and
is more efficient when evaluating the possible interactions from the model.

We are also working on a multi-CPU version of real-time BIP, which al-
lows to exploit multi-core platforms by fully distributing the BIP engine and
the model over multiple CPUs. Existing methods have been developed for dis-
tributing untimed BIP models (Bonakdarpour et al., 2010; Jaber, 2010). They in-
volve correct-by-construction transformations of multi-party interactions of BIP
into asynchronous message passing. The code generation for Send/Receive BIP
models obtained from these transformations is parameterized by a mapping of the
components on the target platform, that can be refined depending on performance
analysis. A non trivial problem when trying to extend this approach to real-time
execution is the presence of a non uniform measure of the real-time provided by
the multiple clocks of the platform.

In light of issues related to the difficulty in directly using the BIP language to
specify constraints on the functional level, we developed a user-friendly constraint
language that roboticists can use to conveniently specify constraints in textual for-
mat, which are then automatically converted into BIP connectors and eventually
enforced at runtime by the BIP based controller. Finally, we described some orig-
inal work on using BIP as a temporal-plan execution controller, which controls
the execution of a supplied temporal plan whose actions are executed through the

37

functional level.
This last piece of work is very promising as it paves the path to using a com-

mon modeling language from the functional level up to the decisional level (even
if we start from a GenoM model for the former and from an Allen logic based tem-
poral plan for the latter). This has always been a major concern for autonomous
systems developers (Bernard et al., 2000): using a consistent model across the en-
tire system, and the possibility of formally proving properties over the complete
system (not just on particular modules or components). Of course, there are still
issues and problems to be addressed to reach such an ambitious goal, but we think
that BIP has the potential to provide such a common modeling framework.

Abdellatif, T., Combaz, J., Poulhı̀es, M., 2011. Correct implementation of open
real-time systems. In: Proceedings of the 37th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA’11). pp. 57–64.

Abdellatif, T., Combaz, J., Sifakis, J., 2010. Model-based implementation of real-
time applications. In: Proceedings of the tenth ACM international conference
on Embedded software (EMSOFT’10). pp. 229–238.

Allen, J. F., November 1983. Maintaining knowledge about temporal intervals.
Communications of the ACM 26, 832–843.

Alur, R., Dill, D. L., April 1994. A theory of timed automata. Theor. Comput. Sci.
126, 183–235.
URL http://portal.acm.org/citation.cfm?id=180782.180519

Basu, A., Bozga, M., Sifakis, J., 2006. Modeling heterogeneous real-time com-
ponents in BIP. In: Proceedings of the International Conference on Software
Engineering and Formal Methods (SEFM-06). Pune, India, pp. 3–12.

Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J., 2008a. Compositional veri-
fication for component-based systems and application. In: Proceedings of the
International Symposium on Automated Technology for Verification and Anal-
ysis (ATVA-08). Seoul, pp. 64–79.

Bensalem, S., de Silva, L., Gallien, M., Ingrand, F., Yan, R., 2010a. “Rock Solid”
Software: A Verifiable and Correct-by-Construction Controller for Rover and
Spacecraft Functional Levels. In: International Symposium on Artificial Intel-
ligence, Robotics and Automation for Space. Sapporo, Japan.

38

Bensalem, S., de Silva, L., Ingrand, F., Yan, R., 2011. A verifiable and correct-
by-construction controller for robot functional levels. Journal of Software En-
gineering for Robotics 2 (1).

Bensalem, S., Gallien, M., Ingrand, F., Kahloul, I., Nguyen, T.-H., March
2009. Designing autonomous robots. IEEE Robotics and Automation Maga-
zine 16 (1), 66–77.

Bensalem, S., Ingrand, F., Sifakis, J., May 2008b. Autonomous robot software
design challenge. In: IARP/IEEE-RAS Joint Workshop on Technical Challenge
for Dependable Robots in Human Environments. Pasadena, CA.

Bensalem, S., Legay, A., Nguyen, T.-H., Sifakis, J., Yan, R., 2010b. Incremental
invariant generation for compositional design. Tech. Rep. TR-2010-6, Verimag
Research Report.
URL http://www-verimag.imag.fr/TR/TR-2010-6.pdf

Bernard, D., Gamble, E., Rouquette, N., Smith, B., Tung, Y., Muscettola, N.,
Dorias, G., Kanefsky, B., Kurien, J., Millar, W., 2000. Remote agent experiment
ds1 technology validation report. Tech. rep., NASA.

Bliudze, S., Sifakis, J., 2008. The algebra of connectors - structuring interaction
in bip. IEEE Trans. Computers 57 (10), 1315–1330.

Bohren, J., Cousins, S., dec. 2010. The smach high-level executive [ros news].
Robotics Automation Magazine, IEEE 17 (4), 18 –20.

Bohren, J., Rusu, R. B., Jones, E. G., Marder-Eppstein, E., Pantofaru, C., Wise,
M., Mösenlechner, L., Meeussen, W., Holzer, S., 2011. Towards autonomous
robotic butlers: Lessons learned with the pr2. In: ICRA. pp. 5568–5575.

Bonakdarpour, B., Bozga, M., Jaber, M., Quilbeuf, J., Sifakis, J., 2010. From
high-level component-based models to distributed implementations. In: Pro-
ceedings of the tenth ACM international conference on Embedded software
(EMSOFT’10). pp. 209–218.

Bordini, R. H., Fisher, M., Pardavila, C., Visser, W., Wooldridge, M., 2003. Model
checking multi-agent programs with casp. In: CAV. pp. 110–113.

Boussinot, F., de Simone, R., September 1991. The ESTEREL Language. Pro-
ceeding of the IEEE, 1293–1304.

39

Broy, M., Jonsson, B., Katoen, J., Leucker, M., Pretschner, A., 2005. Model-based
Testing of Reactive Systems. Lecture Notes in Computer Science 3472.

Bruyninckx, H., 2001. Open robot control software: the orocos project. In: ICRA.
Seoul, Korea.

Espiau, B., Kapellos, K., Jourdan, M., October 1995. Formal verification in
robotics: Why and how. In: The International Foundation for Robotics Re-
search, editor, The Seventh International Symposium of Robotics Research.
Cambridge Press, Munich, Germany, pp. 201 – 213.

Feiler, P. H., Lewis, B. A., Vestal, S., 2006. The SAE architecture analysis &
design language (AADL) a standard for engineering performance critical sys-
tems. In: IEEE International Symposium on Computer-Aided Control Systems
Design. pp. 1206–1211.

Fleury, S., Herrb, M., Chatila, R., 1997. GenoM: A tool for the specification and
the implementation of operating modules in a distributed robot architecture. In:
IROS-97. pp. 842–848.

Goldman, R. P., Musliner, D. J., Pelican, M. J., 2000. Using model checking
to plan hard real-time controllers. In: Proceedings of the AIPS Workshop on
Model-Theoretic Approaches to Planning.

Halbwachs, N., 1992. Synchronous Programming of Reactive Systems. Kluwer
Academic Publishers, Norwell, MA, USA.

Ingrand, F., Chatila, R., Alami, R., Robert, F., apr 1996. Prs: a high level su-
pervision and control language for autonomous mobile robots. In: Robotics
and Automation, 1996. Proceedings., 1996 IEEE International Conference on.
Vol. 1. pp. 43 –49 vol.1.

Ingrand, F., Lacroix, S., Lemai, S., Py, F., 2007. Decisional autonomy of planetary
rovers. Journal of Field Robotics 24 (7), 559–580.

Jaber, M., 2010. Centralized and distributed implementations of correct-by-
construction component-based systems by using source-to-source transforma-
tions in bip. Ph.D. thesis, Grenoble Universités.

Jackson, J., 2007. Microsoft robotics studio: A technical introduction. IEEE RAM
14 (4), 82–87.

40

Jacobson, I., Booch, G., Rumbaugh, J., 1999. The unified software development
process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Kowalski, R., Sergot, M., January 1986. A logic-based calculus of events. New
Generation Computing 4, 67–95.

Kramer, J., Scheutz, M., Jan 2007. Development environments for autonomous
mobile robots: A survey. Auton Robot.

Kress-Gazit, H., Pappas, G., May 2010. Automatic synthesis of robot controllers
for tasks with locative prepositions. In: Robotics and Automation (ICRA), 2010
IEEE International Conference on. pp. 3215 –3220.

Mallet, A., Pasteur, C., Herrb, M., Lemaignan, S., Ingrand, F., 2010. GenoM3:
Building middleware-independent robotic components. In: Robotics and Au-
tomation (ICRA), 2010 IEEE International Conference on. pp. 4627–4632.

Montemerlo, M., Roy, N., Thrun, S., 2003. Perspectives on standardization in
mobile robot programming: The carnegie mellon navigation (carmen) toolkit.
In: Proc. IEEE/RSJ Int. Conf. Intelligent Robots and Systems. Las Vegas, NV,
pp. 2436–2441.

Nesnas, I. A., Wright, A., Bajracharya, M., Simmons, R., Estlin, T., Oct 2003.
Claraty and challenges of developing interoperable robotic software. In: IROS.
Las Vegas, NV, invited paper.

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E.,
Wheeler, R., Ng, A., 2009. Ros: an open-source robot operating system. In:
International Conference on Robotics and Automation. Kobe, Japan.

Rosu, G., Bensalem, S., 2006. Allen linear (interval) temporal logic - translation
to ltl and monitor synthesis. In: Ball, T., Jones, R. B. (Eds.), CAV. Vol. 4144 of
Lecture Notes in Computer Science. Springer, pp. 263–277.

Shakhimardanov, A., Prassler, E., Sep 2007. Comparative evaluation of robotic
software integration systems: A case study. In: IROS. San Diego, CA, p. 7.

Shanahan, M., 2000. An abductive event calculus planner. Journal of Logic Pro-
gramming 44, 207–239.

41

Sifakis, J., 2005. A framework for component-based construction extended ab-
stract. In: Proceedings of the International Conference on Software Engineer-
ing and Formal Methods (SEFM-05). IEEE Computer Society, Washington,
DC, USA, pp. 293–300.

Simmons, R., Pecheur, C., Srinivasan, G., 2000. Towards automatic verification
of autonomous systems. In: IEEE/RSJ International conference on Intelligent
Robots & Systems.

Vaughan, R., Gerkey, B., 2007. Reusable robot software and the player/stage
project. Software Engineering for Experimental Robotics, 267–289.

Williams, B. C., Ingham, M. D., Chung, S., Elliott, P., Hofbaur, M., Sullivan,
G. T., winter 2003. Model-Based Programming of Fault-Aware Systems. Arti-
ficial Intelligence, 61–75.

Wongpiromsarn, T., Topcu, U., Murray, R. M., 2010. Receding horizon control for
temporal logic specifications. In: Proceedings of the 13th ACM international
conference on Hybrid systems: computation and control. HSCC ’10. ACM,
New York, NY, USA, pp. 101–110.

42

