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Abstract

The development of reasoning systems that
can reason and plan in a continuously
changing environment is emerging as an
important area of research in Arti�cial In�
telligence� This paper describes some of the
features of a Procedural Reasoning System
�PRS� that enables it to operate e�ectively
in such environments� The basic system
design is �rst described and it is shown
how this architecture supports both goal�
directed reasoning and the ability to react
rapidly to unanticipated changes in the en�
vironment� The decision�making capabili�
ties of the system are then discussed and
it is indicated how the system integrates
these components in a manner that takes
account of the bounds on both resources
and knowledge that typify most real�time
operations� The system has been applied to
handling malfunctions on the space shut�
tle� threat assessment� and the control of
an autonomous robot�

� Introduction

While there has been an increasing amount of inter�
est in the development of reasoning systems suited to
real�time operations� very few currently exhibit the
kind of behavioral properties that we would expect
of such systems �La�ey et al�� �	

�� Much of this de�
rives from their inability to reason e�ectively about
actions and plans� On the other hand� most existing
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planning systems cannot operate under the stringent
constraints on both information availability and de�
cision time that are typical of real�time applications�
As a rule� these systems formulate an entire course
of action before commencing execution of the plan
�Wilkins� �	

�� However� in real�world domains� in�
formation about how best to achieve some given goal
�and thus how best to complete a plan� can often
only be acquired after executing some initial part of
that plan�
Real�time constraints pose yet further problems

for traditionally structured planning and reasoning
systems� First� the planning and deductive tech�
niques typically used by these systems are very time
consuming� While this may be acceptable in some
situations� it is not suited to domains where replan�
ning is frequently necessary and where system viabil�
ity depends on readiness to act� Second� traditional
planning systems usually provide no mechanisms for
responding to new situations or goals during plan
execution� let alone during plan formation� Yet the
very survival of an autonomous system may depend
on its ability to react to new situations and to mod�
ify its goals and intentions accordingly �George� and
Lansky� �	
���
A number of systems developed for the control of

robots and other real�time processes do have a high
degree of reactivity �Brooks� �	

� Kaelbling� �	
���
Such architectures could lead to more viable and ro�
bust systems than traditionally structured planning
systems� Yet most of this work has not addressed the
issues of general problem�solving and commonsense
reasoning� the work is instead almost exclusively de�
voted to problems of navigation and the execution
of low�level actions�
There has been some recent work in the design

of systems that attempt to integrate goal�directed
reasoning and reactive behavior� For example� the
RAP system �Firby� �	
�� invokes tasks on the basis
of system beliefs about the current world situation
and then expands these tasks hierarchically� It has
many features in commonwith the system described
in this paper� However� it does not appear to pro�
vide su�ciently powerful mechanisms for balancing
the decision�making requirements against the con�
straints on time and information that are typical of



complex domains�
As Bratman� Israel� and Pollack ��	

� remark�

���� Rational agents must perform both means�end
reasoning and weigh alternative courses of action� so
an adequate architecture of intelligent agents must
therefore include capabilities for both� The design
of such an architecture must also specify how these
capacities interact� But there is yet another prob�
lem� All this must be done in a way that recognizes
the fact that agents are �bounded both in resources
and knowledge��� In this paper� we describe a sys�
tem architecture that aims to achieve this balance
between acting and decision�making�

� Procedural Reasoning Systems

The problem domain we discuss in this paper is the
task of malfunction handling for the Reaction Con�
trol System �RCS� of NASA�s space shuttle� The
shuttle contains three such systems� one forward and
two aft� Each is a relatively complex propulsion
system that is used to control the attitude of the
shuttle� The astronaut handles system malfunctions
by carrying out prespeci�ed malfunction handling
procedures� These procedures can be viewed as un�
elaborated plans of action� and are designed to be
executed in a complex and changing environment�
To tackle this problem� we developed an embed�

ded reasoning system called PRS �Procedural Rea�
soning System�� Early versions of the system have
been described before �George� and Lansky� �	
�a�
George� and Lansky� �	
�b� George� and Lansky�
�	
�� and the full application is described in a re�
cent report �George� and Ingrand� �	

��
PRS consists of ��� a database containing current

beliefs or facts about the world� ��� a set of current
goals to be realized� ��� a set of plans �called Knowl�
edge Areas� describing how certain sequences of ac�
tions and tests may be performed to achieve given
goals or to react to particular situations� and ���
an intention structure containing those plans that
have been chosen for �eventual� execution �Figure
��� An interpreter �or inference mechanism� manip�
ulates these components� selecting appropriate plans
based on the system�s beliefs and goals� placing those
selected on the intention structure� and executing
them�
The system interacts with its environment� includ�

ing other systems� through its database �which ac�
quires new beliefs in response to changes in the en�
vironment� and through the actions that it performs
as it carries out its intentions�

��� The System Database

The contents of the PRS database may be viewed as
representing the current beliefs of the system� Typi�
cally� these will include facts about static properties
of the application domain� such as the structure of
some subsystems or the physical laws that must be
obeyed by certain mechanical components� Other
beliefs are acquired by PRS itself as it executes its
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Figure �� System Structure

KAs� These will typically be current observations
about the world or conclusions derived by the sys�
tem from these observations� and these may change
over time� The knowledge contained in the database
is represented in �rst�order predicate calculus�
State descriptions that describe internal system

states are called metalevel expressions� These typ�
ically describe the beliefs� goals� and intentions of
the system� as well as other important processing
information�

��� Goals

Goals are expressed as conditions over some interval
of time �i�e�� over some sequence of world states� and
are described by applying various temporal opera�
tors to state descriptions� This allows us to represent
a wide variety of goals� including goals of achieve�
ment� goals of maintenance� and goals to test for
given conditions� A given action �or sequence of ac�
tions� is said to succeed in achieving a given goal if
its execution results in a behavior that satis�es the
goal description�
As with state descriptions� goal descriptions are

not restricted to specifying desired behaviors of the
external environment but can also characterize the
internal behavior of the system� Such descriptions
are called metalevel goal speci�cations�

��� Knowledge Areas

Knowledge about how to accomplish given goals or
react to certain situations is represented in PRS by
declarative procedure speci�cations called Knowl�
edge Areas �KAs�� Each KA consists of a body� which
describes the steps of the procedure� and an invoca�
tion condition� which speci�es under what situations
the KA is useful �applicable�� Together� the invoca�
tion condition and body of a KA express a declara�
tive fact about the results and utility of performing
certain sequences of actions under certain conditions
�George� and Lansky� �	
�a��
The body of a KA can be viewed as a plan or



plan schema� It is represented as a graph with one
distinguished start node and possibly multiple end
nodes� The arcs in the graph are labeled with the
subgoals to be achieved in carrying out the plan�
Successful execution of a KA consists of achieving
each of the subgoals labeling a path from the start
node to an end node� This formalism allows richer
control constructs �including conditional selection�
iteration� and recursion� than most plan representa�
tions�
The invocation condition contains a triggering

part describing the events that must occur for the
KA to be executed� Usually� these consist of the ac�
quisition of some new goal �in which case� the KA is
invoked in a goal�directed fashion� or some change in
system beliefs �resulting in data�directed or reactive
invocation�� and may involve both�
Some KAs have no bodies� These are so�called

primitive KAs and have associated with them some
primitive action that is directly performable by the
system�
The set of KAs in a PRS application system not

only consists of procedural knowledge about a spe�
ci�c domain� but also includesmetalevelKAs � that
is� information about the manipulationof the beliefs�
desires� and intentions of PRS itself� For example�
typical metalevel KAs encode various methods for
choosing among multiple applicable KAs� modify�
ing and manipulating intentions� and computing the
amount of reasoning that can be undertaken� given
the real�time constraints of the problem domain�

��� The Intention Structure

The intention structure contains all those tasks that
the system has chosen for execution� either imme�
diately or at some later time� These adopted tasks
are called intentions� A single intention consists of
some initial KA together with all the �sub�� KAs that
are being used in attempting to successfully execute
that KA� It is directly analogous to a process in a
conventional programming system�
At any given moment� the intention structure may

contain a number of such intentions� some of which
may be suspended or deferred� some of which may
be waiting for certain conditions to hold prior to ac�
tivation� and some of which may be metalevel inten�
tions for deciding among various alternative courses
of action�
For example� in handling a malfunction in the

RCS� the system might have� at some instant� three
tasks �intentions� in the intention structure� one sus�
pended while waiting for� say� the fuel�tank pressure
to decrease below some designated threshold� an�
other suspended after having just posted some goal
that is to be accomplished �such as interconnect�
ing one shuttle subsystem with another�� and the
third� a metalevel procedure� being executed to de�
cide which way to accomplish that goal�
The set of intentions comprising the intention

structure form a partial ordering with possibly mul�

tiple least elements �called the roots of the struc�
ture�� An intention earlier in the ordering must
be either realized or dropped �and thus disappear
from the intention structure� before intentions ap�
pearing later in the ordering can be executed� This
precedence relationship between intentions enables
the system to establish priorities and other relation�
ships between intentions�

��� The System Interpreter

The PRS interpreter runs the entire system� From
a conceptual standpoint� it operates in a relatively
simple way� At any particular time� certain goals are
active in the system and certain beliefs are held in
the system database� Given these extant goals and
beliefs� a subset of KAs in the system will be appli�
cable �i�e�� will be invoked�� One or more of these
applicable KAs will then be chosen for execution and
thus will be placed on the intention structure�
In determining KA applicability� the interpreter

will not automatically perform any deduction� Both
beliefs and goals are matched directly with invoca�
tion conditions by using uni�cation only� This al�
lows appropriate KAs to be selected very quickly
and guarantees a certain degree of reactivity� If we
allowed arbitrary deductions to be made� we could
no longer furnish such a guarantee� However� PRS
is always able to perform any deductions it chooses
by invoking appropriate metalevel KAs� These met�
alevel KAs are themselves interruptible� so that the
reactivity of the system is retained�
Once selected� the chosen KAs are inserted into

the intention structure� If a selected KA arose due
to the acquisition of a new intrinsic goal� or a new
belief� it will be inserted into the intention structure
as a new intention� For example� this will be the
case for a KA that is invoked by the activation of
some caution�warning alarm during shuttle opera�
tions� Otherwise� the KA instance must have arisen
as a result of some operational goal of some existing
intention� and will be pushed onto the stack of KAs
comprising that intention�
Finally� an intention at one of the roots of the

intention structure is selected for further execution�
The next step of that intention will comprise either
a primitive action or one or more unelaborated sub�
goals� If the former� the action is directly initiated�
if the latter� these subgoals are posted as new oper�
ational goals of the system�
Execution of primitive actions can e�ect not only

the external world but also the internal state of the
system� For example� a primitive action may oper�
ate directly on the beliefs� goals� or intentions of the
system� Alternatively� the action may indirectly af�
fect the system�s state as a result of the knowledge
gained by its interaction with the external world�

�An intrinsic goal is one that is not a means to an
already intended end� whereas an operational goal is a
subgoal of some already existing intention�



At this point the interpreter cycle begins again�
the newly established goals and beliefs trigger new
KAs� one or more of these are selected and placed
on the intention structure� and �nally an intention is
selected from that structure and partially executed�
Unless some new belief or goal activates some new

KA� PRS will try to ful�ll any intentions it has pre�
viously decided upon� This results in focussed� goal�
directed reasoning in which KAs are expanded in a
manner analogous to the execution of subroutines
in procedural programming systems� But if some
important new fact or goal does become known�
PRS will reassess its current intentions� and perhaps
choose to work on something else� Thus� not all op�
tions that are considered by PRS arise as a result of
means�end reasoning� Changes in the environment
may lead to changes in the system�s goals or be�
liefs� which in turn may result in the consideration
of new plans that are not means to any already in�
tended end� PRS is therefore able to change its focus
completely and pursue new goals when the situation
warrants it� In many space operations� this happens
quite frequently as emergencies of various degrees of
severity occur in the process of handling other� less
critical tasks�
We have� of course� left out a crucial component of

the system�s reasoning� how does it make the various
selections and decisions mentioned above� We now
turn to this and other important features of PRS�

� Integrating Decision�Making and
Means�Ends Reasoning

PRS is designed so that� in the absence of any de�
cision knowledge being provided to the system� it
nevertheless continues to function in an acceptable
way as an embedded reasoning system� As more and
more decision knowledge is added to the system� it
can more e�ectively choose its actions� but always
with a guaranteed upper bound on reaction time�
This is accomplished by embedding in the system

interpreter certain �xed decision�making processes
that are stringently bounded in execution time� yet
which can be overridden whenever the system can
bring more powerful decision�making knowledge to
bear� Bratman et al� ��	

� have outlined a simi�
lar design philosophy� in which they distinguish be�
tween a computationally e�cient compatibility �lter
and a possibly computationally complex �lter over�
ride mechanism� In PRS� the �xed decision�making
processes are hardwired into the basic system inter�
preter� whereas the knowledge to override or elabo�
rate these decisions is contained in appropriate met�
alevel KAs�
The way these metalevel KAs are brought to bear

on any particular problem is via their invocation cri�
teria� These criteria may depend both on conditions
obtaining in the external world and� more typically�
on conditions relating to the internal state of the
system� Such conditions might include� for exam�
ple� the applicability of multiple KAs in the current

situation� the failure to achieve a certain goal� or the
awakening of some previously suspended intention�
In some of these cases �such as the latter two

of those mentioned above�� these conditions will be
known at the beginning of each interpretation cycle�
But others �such as the number of KAs applicable
at a given moment� can only be determined part�
way through this cycle� Thus� the actual manner of
invocation of metalevel KAs is somewhat complex
�George� and Ingrand� �	

�� but eventually results
in the selection of a single KA at some level in the
metahierarchy� This KA is then executed just as
any other KA� In the process of execution� such met�
alevel KAs typically make choices about the adop�
tion of lower�level KAs �which may themselves be
metaKAs�� the posting of alternative subgoals� or
the best way to respond to goal failures� Any of
these decisions may require an arbitrary amount of
processing or deduction� yet system reactivity is al�
ways guaranteed �see Section 
����
Thus� when decisions have to be made in the ab�

sence of any information about what is best to do�
the system interpreter defaults to some �xed deci�
sion procedure� However� if there is any knowledge
that can be brought to bear on the decision �via
appropriate metalevel KAs�� this will override the
default action and determine the selection� In this
way� the addition of appropriate metalevel KAs en�
ables the system to make more informed choices at
the cost of longer decision times�
This approach to the design of PRS is important

in another way� We can now construct a relatively
simple basic interpreter� knowing that the system
is not going to always be constrained to behave in
the way dictated by this component � its decisions
can� in situations determined by the invocation con�
ditions of the metalevel KAs� be overridden� Of
course� it is important that the basic interpreter be
able to handle appropriately the most commonly oc�
curring situations so that the metalevel KAs are uti�
lized only in the more exceptional circumstances�
Before concluding this section� it is important

to note that the decision�making behavior of PRS
is strongly in�uenced by the choice of the invoca�
tion conditions of metalevel KAs� For example� if
these conditions are such that the decision�making
metaKAs are frequently invoked� PRS will spend
more time making decisions than otherwise� It will
thus tend to act in a cautious manner �Bratman et
al�� �	

�� carefully choosing what actions to per�
form next� If� on the other hand� these metalevel
KAs are rarely invoked� PRS will act in a bold man�
ner� rapidly choosing its actions in response to the
changing world in which it is embedded�

� The Nature and Role of Intentions

Intentions play a signi�cant role in PRS� In this sec�
tion we examine their use both in managing events
in the real world and in limiting the amount of de�
cision making that has to be undertaken� given the



real�time constraints of the domain�

��� Intention States

In PRS� an intention can be in one of three possi�
ble states� active� suspended� or conditionally sus�
pended� An active intention is one that is available
for execution as soon as it becomes a root of the
intention structure� A suspended intention is one
that PRS has adopted but for which no decision has
been made as to when it should be carried out� that
is� it must be explicitly activated before it can be
executed� A conditionally suspended intention �or�
simply� a conditional intention� is one that is tem�
porarily suspended until some speci�ed condition�
called the activation condition of the intention� is
satis�ed�
In PRS� intentions can be suspended �condition�

ally or otherwise� by means of certain metalevel
KAs� When a conditional intention is reactivated�
it is necessary to decide whether or not to reorder
the intention structure and what to do� if anything�
with currently executing intentions� In the absence
of any decision knowledge� it is desirable to ensure
immediate response to the condition that activated
the intention� Thus� the basic interpreter is designed
to begin execution of the reactivated intention im�
mediately� suspending all currently executing inten�
tions� However� as with all other default decisions
taken by the interpreter� metaKAs can respond to
reactivation and choose to override this decision�
Similarly� various metalevel KAs exist for reorder�

ing intentions on the intention structure� In the ab�
sence of any decision knowledge the basic interpreter
inserts new intentions at the root of the existing
intention structure� and removes them when com�
pleted �see Section ����� However� metalevel KAs
may choose to alter this ordering on the basis of
task priorities� time availability� and so on�

��� The Role of Intentions

The role of commitment to previously adopted
plans or intentions has been claimed to be a criti�
cal component of rational agency �Bratman� �	
��
Cohen and Levesque� �	
��� It is also a critical com�
ponent of the PRS architecture� allowing the system
to meet the real�time constraints of a continuously
changing world�
Unless some particular metalevel KA intervenes�

PRS will perform its means�ends reasoning and
other planning in the context of its existing inten�
tions� For example� consider that PRS has adopted
the intention of achieving a goal g by accomplish�
ing the subgoals g�� g�� and g�� in that order� In
the process of determining how to accomplish these
subgoals� the system will not reconsider other means
of achieving g� That is� it is committed to achieving
g by doing g�� g�� and g�� even if circumstances have
so changed that there is now a better way to achieve
g than the one chosen� The gain here is in reducing
decision time � in highly dynamic domains it is not

possible to continually reassess one�s plans of action�
What makes the approach workable is that the basis
upon which one chooses a particular plan of action
is more often correct than not�
It is not only in means�ends reasoning that PRS�s

commitment to its existing intentions is important�
For example� in tackling some new task� it is of�
ten desirable that the means or time chosen for ac�
complishing that task take account of one�s exist�
ing intentions towards the ful�llment of other tasks�
In the RCS application� this happens� for example�
when PRS receives a request for a pressure reading
when it is in the process of evaluating the status
of a suspected faulty transducer� In this case� PRS
will either defer or suspend attending to that re�
quest �possibly advising the requester� until it has
completed its evaluation of the transducer�

��� The Establishment and Dropping of
Goals

One does not want to be committed to one�s inten�
tions forever� Thus� it is important to understand
the way in which intentions are managed in PRS �
in particular� how the goals comprising an intention
are established and dropped�
As discussed in previous sections� intentions are

established by a change in the system�s goals or
beliefs� and their execution will generate certain
operational goals� Should the system attempt to
achieve an operational goal and fail� that goal will be
reestablished� and another attempt made to achieve
it� This will continue until the system comes to be�
lieve either that the goal is accomplished � through
its own e�orts or those of some other agent� or that
the goal cannot be readily accomplished� Once this
state is reached� the goal will be dropped�
This raises two related issues� what other at�

tempts are made to achieve the goal and how does
the system come to believe a goal cannot be readily
accomplished� We shall answer the latter question
�rst� One way for the system to believe that a goal
cannot be accomplished �or� at least� that the goal
is not worth pursuing further� is to deduce it using
appropriate metalevel KAs� However� the system
rarely has su�cient knowledge of the world to prove
that a goal cannot be achieved� this is thus unaccept�
able as the only �or even as the primary� manner of
dropping goals �cf� the work of Cohen and Levesque
��	
��� who base their axiomatization of rational be�
havior solely on this kind of mechanism��
Another good reason for dropping a goal is simply

to fail in all attempts at achieving the goal� This re�
quires no more knowledge than the system acquires
in its striving for the goal� and thus is appropriate
to be used as the default method for the basic inter�
preter� But it brings us back to the former question�
what attempts does the system make to achieve a
given goal�
In PRS� the basic system interpreter tries� exactly

once� every possible KA instance that can possi�



bly achieve the goal� It does not ask that previ�
ously achieved goals be reachieved �in some other
way�� nor does it try the same KA instance more
than once� In this sense� it is equivalent to a �fast�
backtrack� parser� There are good reasons for these
choices�
Unlike o��line planning or the parsing of sen�

tences� PRS operates in the real world rather than
an hypothetical one� Thus� the actions it takes can�
not be withdrawn and alternative approaches tried
in their stead� Once some goal has been achieved� it
has really been achieved � there is no point in in�
voking KAs solely because they represent alternative
ways to achieve an already achieved goal�
The remaining issue concerns the number of tries

we make of a single KA instance to achieve a given
goal� It is� of course� quite possible that� where the
�rst try does not succeed� the next will� even if we
carry out exactly the same actions as we did the �rst
time� However� to determine if retrying could suc�
ceed would� in most practical cases� require knowl�
edge of the state of the world that goes well be�
yond that available to the system� In the absence
of such knowledge� the system therefore tries each
applicable KA instance exactly once� �The RAP
system �Firby� �	
��� on the other hand� continues
to reinvoke already�tried task networks� clearly� this
presents the serious problem of inde�nite looping��
Once all attempts at achieving a given goal have

been exhausted� it is still possible for some met�
alevel KA to respond to this failure and invoke yet
other means to achieve the goal� For example� a
meta�KA could invoke certain deductive machinery�
or could decide to retry some KA instances that�
although having been tried once� appear �for some
reason known to the meta�KA� to be worth trying
again� In this way� the provision of additional de�
cision knowledge can always override the basic pro�
cessing method described above�

	 Planning in Real Time

��� Guaranteed Reactivity

Response time is one of the most important mea�
sures in real�time applications� if events are not han�
dled in a timely fashion� the system can go out of
control� Yet few existing real�time systems are guar�
anteed to respond within a bounded time interval
�La�ey et al�� �	

��
Response time is the time the system takes to rec�

ognize and respond to an external event� Thus� a
bound on reaction time �that is� the ability of a
system to recognize or notice changes in its envi�
ronment� is a prerequisite for providing a bound on
response time� PRS has been designed to operate
under a well�de�ned measure of reactivity� Because
the interpreter continuously attempts to match KAs
with any newly acquired beliefs or goals� the system
is able to notice newly applicable KAs after every
primitive action it takes�

Let p be an upper bound on the execution times
of the primitive actions that the system is capable
of performing� Let�s also assume that n is an upper
bound on the number of events that can occur in
unit time� and that the PRS interpreter takes at
most time t to select the set of KAs applicable to
each event occurrence�� By calculating the number
of events that can occur in a single cycle of the PRS
interpreter� it is not di�cult to show �George� and
Ingrand� �	

� that the maximum reactivity delay is
�R � p���� nt�� where we assume that t � ��n�
This means that� provided the number of events

that occur in unit time is less than ��t� PRS will
notice every event that occurs and is guaranteed to
do so within a time interval �R� �If the event rate
exceeds ��t� the system may not be able to keep
abreast of the changes in the environment�� In the
shuttle application� which includes over ��� KAs and
���� facts about the RCS� the values of p and t are
less than ��� seconds� giving a reactivity delay of at
most ��� second for an event rate of 
 events per
second�
Because metalevel procedures are treated just like

any other� they too are subject to being interrupted
after every primitive metalevel action they take�
Thus� reactivity is guaranteed even when the system
is choosing between alternative courses of action or
performing deductions of arbitrary complexity�
Having reacted to some event� it is necessary for

the system to respond to this event by perform�
ing some appropriate action� As the system can
be performing other tasks at the time the critical
event is observed� a choice has to be made concern�
ing the possible termination or suspension of those
tasks while the critical event is handled� Further�
more� it may be necessary to decided among di�er�
ent alternatives for handling the event� With appro�
priate metalevel KAs� it is possible to guarantee a
bound on this decision time �George� and Ingrand�
�	

�� However� the construction of such algorithms
remains one of the more interesting areas of research
in the design of real�time systems �Bratman et al��
�	

� Dean and Boddy� �	

��

��� Planning or Not�

There has always been some confusion in the liter�
ature about the notion of planning� especially with
respect to the kind of practical reasoning that PRS
performs� In the AI literature� planning is viewed
as the generation of a sequence of actions to achieve
some given goal� The classical approach to this prob�
lem is to simulate the e�ects of performing the ac�
tions so as to ensure that their execution does indeed
achieve the required goal�
However� this is not the only way to construct an

e�ective plan� For example� the choice among al�
ternative courses of action could be based on the

�As selection of KAs does not involve any general
deduction beyond uni�cation and evaluation of a boolean
expression� an upper bound does indeed exist�



expected time to complete the actions� or the like�
lihood of success of the plans as gained through ex�
perience� In any case� simply making the choice as
to which course of action to pursue� no matter how
one does it� constitutes forming a plan to achieving
ones goals�

This is exactly the way PRS operates� The
method of choosing between alternative courses of
action is embedded in the metalevel KAs of the sys�
tem and thus� in essence� the particular approach to
forming plans is not hard�wired into the system� To
the extent that the choice is made arbitrarily� one
may wish to avoid calling this process �planning��
But where it is based on any information at all� no
matter how meager� the determination of an appro�
priate course of action is indeed a form of planning�

In the RCS example� the system decides between
di�erent courses of action depending on how the KA
was invoked and what sort of priority it has� This
is clearly quite a weak form of planning� and more
complex meta�KAs � taking time availability� costs�
and bene�ts into account � could be expected to
improve system reliability� However� it is interesting
to observe just how weak the planning component
can be when we have a wealth of experience �a rich
set of object�level KAs� to assist us�


 Conclusions

The system described above was implemented on a
Symbolics ���� Series LISP machine and has been
used to detect and recover from most of the possi�
ble malfunctions of the RCS� including sensor faults�
leaking components� and regulator and jet failures�
This was accomplished by using multiple commu�
nicating instantiations of PRS and a simulator for
providing real�time input to the system� Complete
details of this large�scale application are given else�
where �George� and Ingrand� �	

��

The experiment provided a severe and positive
test of the system�s ability to operate pro�ciently
in real time� to weigh alternative courses of action�
to coordinate its activities� and to modify its inten�
tions in response to a continuously changing environ�
ment� In addition� PRS met every criterion outlined
by La�ey et al� ��	

� for evaluating real�time rea�
soning systems� high performance� guaranteed re�
sponse� temporal reasoning capabilities� support for
asynchronous inputs� interrupt handling� continuous
operation� handling of noisy �possibly inaccurate�
data� and shift of focus of attention�

The features of PRS that� we believe� contributed
most to its success at this task were ��� its partial
planning strategy� ��� its reactivity� ��� its use of pro�
cedural knowledge� and ��� its metalevel �re�ective�
capabilities� In particular� the manner in which the
system integrates its means�ends reasoning with the
use of decision knowledge is considered an important
component of rational activity�
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