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Abstract

The development of systems capable of handling and diagnosing malfunctions in real time has long been of
considerable practical importance� This paper describes the architecture of such a system� called the Procedural
Reasoning System �PRS�� PRS is based on the notion of a rational agent that can reason and plan under possibly
stringent constraints on both time and information� This approach provides the system with the ability to reason
in complex ways about dynamic processes� while still maintaining the reactivity required to ensure appropriate
responsiveness and control� By considering two large�scale applications in aerospace and telecommunications� it is
shown how PRS meets many of the critical requirements for real�time malfunction�handling and diagnostic systems�
Finally� PRS is compared with a number of other real�time reasoning and knowledge�based architectures that have
been used in similar applications�

� Introduction

In the process control industries� computer systems for diagnosing and handling plant and process malfunctions are
becoming increasingly important� Often� the manner in which these tasks are best carried out does not fall within the
domain of conventional control techniques� Instead� they require the application of certain rules or procedures that are
speci�c to particular situations or circumstances� These rules and procedures may contain knowledge about both the
diagnosis of the malfunction and possible corrective actions and can be arbitrarily complex�

Systems that reason about and perform these kinds of tasks are called situated reasoning systems� A situated
reasoning system must be capable of receiving information from a variety of sources �or sensors� in an asynchronous
fashion and� from this information and previously acquired knowledge� must assess whether the process under its
control is behaving normally� If an abnormality occurs� the system should isolate the fault and determine� if possible�
the cause of the problem� It must take appropriate corrective actions to either rectify or contain the problem and must
continue to monitor the process to ascertain the e�ects of its actions�

One of the most di�cult�and least considered�problems facing the designers of such systems is how to manage
the execution of these rules and procedures under the stringent real�time constraints typical of many process control
applications� Where the rules and procedures are relatively simple and independent of one another� execution can be
e�ected in some straightforward manner� such as �rst�come��rst�served or in parallel� However� when these rules and
procedures can take an arbitrarily long time to execute� and possibly involve other rules or procedures� it is essential
to be able to reason about the management of these tasks� This may require reasoning about which tasks need to be
performed to realize other tasks �so�called means�ends reasoning�� the criticality or urgency of tasks �task utilities��
the potential interactions among tasks� the order in which tasks should be performed� and which tasks need to be
suspended or resumed given the current state of the system� Most importantly� all this must be done while continuing
to attend to the process under control and reacting appropriately to changed circumstances�

One approach to this problem is to base the architecture of the system on the notion of a rational agent� Such
systems perform execution�time reasoning and planning using explicit representations of the cognitive attitudes usually
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associated with human rationality
 i�e�� attitudes such as belief� desire� and intention� The question for the system
designer is to determine the role these attitudes play in governing the rational �e�ective� behavior for a system required
to act in a dynamic world and subject to constraints on both time and information� In particular� the reasoning and
planning performed by the system must all be carried out in a continuously changing world� requiring that the system
appropriately balance the time taken thinking against the time needed for acting�

In Section � we discuss the major requirements for a situated reasoning system to be used e�ectively in process
control applications� In Section �� we provide an overview of the Procedural Reasoning System �PRS�� a generic
reasoning system based on the rational�agent architecture described above� Although this reasoning system has been
applied to a number of di�erent applications� we choose herein two that are of most relevance to the process industries�
The �rst of these applications involves malfunction handling for the Reaction Control System �RCS� of NASAs Space
Shuttle� described in Section �� The second� described in Section �� concerns diagnosis and control of failures and
overloads in a telecommunications network� In Section �� we compare our work with other architectures for situated
reasoning systems� We conclude in Section � by revisiting the general requirements of process control applications and
showing how they are met by PRS in the two applications�

It is important to note that the focus of this paper is primarily on the representation and management of malfunction�
handling procedures and tasks� In particular� we are not concerned with the derivation of these procedures �possibly
from reasoning about the causal properties of the domain�� nor in distinguishing diagnostic actions from corrective
actions� However these procedures are produced �either by engineers� system designers� or automated mechanisms�� at
the end of the day one is still left with the problem of organizing their execution� It is this problem that we address
here�

� Requirements for the Design of Situated Reasoning Systems

In this section� we describe some of the characteristics that are essential in the design of situated reasoning systems for
diagnosis and malfunction handling in process control applications� These characteristics are extensions of those given
by La�ey et� al� in their evaluation of real�time expert systems �	���

� Asynchronous event handling� Given a continuous mode of operation� as in process control� it is unreasonable
to assume that events occur at designated times� or that data will be sent to the system at regular intervals of
time�

� Guaranteed reaction and response times� Because the diagnostic systems for process control are embedded
in a continuously changing environment� there are stringent real�time constraints to be met� Important events
must be noticed in a timely manner and appropriate actions have to be taken before it is too late� As a
consequence� the reasoning system has to provide a guaranteed reaction time �the time taken to react to a
situation� and must ensure that the response time �the time taken to respond adequately to a situation� is short
enough to allow the response to be properly e�ected�

� Procedural representation of knowledge� In most process control applications� the knowledge required to
isolate faults and provide corrective actions is usually represented as procedures or plans� Most maintenance
and operation manuals are �lled with procedures encoding the di�erent steps to follow in various situations� It
is therefore preferable to represent this knowledge as situation�speci�c procedures rather than as a collection of
rules� This makes the creation and modi�cation of the domain knowledge of the system easier� as well as allowing
the system to reason and plan in a timely manner�

� Handling of multiple problems� In process control� the occurrence of multiple problems� related or unrelated�
is quite common� It is thus necessary that the system be able to handle multiple problems concurrently� possibly
by suspending or reorganizing the execution of other ongoing diagnostic or corrective tasks�

� Reactive and goal�directed behavior� A situated reasoning system needs to perform its actions with a well�
de�ned goal or purpose� such as isolating a fault or taking a corrective action� At the same time� it also has to
be capable of responding to exceptional circumstances �such as alarms� in a timely manner�

� Focus of attention� In order to complete speci�c tasks under the real�time demands of most process control
applications� it is necessary that the system be able to focus its attention on these tasks and not be unduly
distracted by other events�

� Re�ective reasoning capabilities� Although focus of attention is important� it is equally important that
the system be able to change its focus in response to changes in its environment� This cannot be achieved if
the system is not capable of re�ecting on its own status� such as the importance of the activity it is currently
performing� The system must be able to manipulate the procedures it is currently executing by changing their
priority� and suspending and reinvoking them as necessary� In other words� a situated reasoning system needs
procedures for controlling the execution of other procedures�
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� Continuous embedded operation� Unlike diagnostic systems that are used in static domains� systems for
process control need to operate continuously�

� Handling of incomplete or inaccurate data� As a situated reasoning system will be connected to a variety
of di�erent sensors� it is highly likely that the data received from di�erent sources may be inconsistent� inaccurate
or incomplete� The system must therefore have some mechanisms for being able to handle such data�

There are many other capabilities that are desirable in process control applications� including�

� Handling of transients� Process control systems are required to continuously measure and monitor di�erent
control parameters with di�erent response characteristics� Under such situations� transients are common and
have to be accommodated�

� Modeling delayed feedback� The actions carried out by a situated reasoning system may not take e�ect
immediately
 i�e�� the feedback from the external environment to the system is often delayed� The system needs
to be able to model this delayed feedback by recognizing that its actions will take time to be e�ected in the real
world and at the same time recognizing the need to take alternative remedial actions if its original actions have
not had their desired e�ect�

� Operator control� While a situated reasoning system must be capable of autonomous operation� it must also
be capable of being overridden by a human operator� Moreover� to enable the operator and the reasoning system
to cooperate� the system needs to provide the operator with intelligible trace and explanation facilities and should
be capable of accepting useful advice from the operator�

These features are not �requirements� in the sense that they are not essential for all process control applications�
Nevertheless� any general�purpose tool suited to process control and malfunction handling should support them�

In the next section we describe the Procedural Reasoning System �PRS�� which has been designed to satisfy most
of the requirements mentioned above�

� Description of PRS

The Procedural Reasoning System �PRS� ��� �� is a generic architecture for representing and reasoning about actions
and procedures in a dynamic domain� It has been implemented and applied to various tasks with real�time demands�
including malfunction monitoring for di�erent subsystems of NASAs space shuttle ���� the diagnosis� monitoring and
control of telecommunications networks �	�� �	�� the control of a mobile robot ���� system control for a surveillance
aircraft �	��� and air�tra�c management �	���

The architecture of a PRS module or agent consists of �	� a database containing the systems current beliefs about
the world
 ��� a set of current goals
 ��� a library of plans �or procedures�� called Knowledge Areas �KAs�� which
describe particular sequences of actions and tests that may be performed to achieve given goals or to react to certain
situations
 and ��� an intention structure� consisting of a �partially� ordered set of all plans chosen for execution at
run�time� An interpreter �inference mechanism� manipulates these components� selecting an appropriate plan �KA�
based on system beliefs and goals� placing those selected KAs on the intention structure� and �nally executing them�

PRS interacts with its environment both through its database� which acquires new beliefs in response to changes in
the environment� and through the actions that it performs as it carries out its intentions� Di�erent instances of PRS�
running asynchronously� can be used in an application that requires the cooperation of more than one subsystem�

The contents of the PRS database may be viewed as representing the current beliefs of the system� Some of these
beliefs are provided initially by the system user� Typically� these will include facts about static properties of the
application domain� such as the structure of some subsystem or the physical laws that must be obeyed by certain
mechanical components� Other beliefs are derived by PRS itself as it executes its KAs� These will typically be current
observations about the world or conclusions derived by the system from these observations� and these may change
over time� For example� at some times PRS may believe that the pressure of an oxidizer tank is within acceptable
operating limits� at other times not� Updates to the database therefore necessitate the use of consistency maintenance
techniques�

In PRS� the goals are descriptions of desired tasks or behaviors� In the logic used by PRS� the goal to achieve a
certain condition C is written as �� C�
 to test for the condition is written as �� C�
 to wait until the condition is true
is written as �� C�
 to maintain C is written as �� C�
 to assert the condition C is written as �� C�
 and to retract
the condition C is written as ��� C�� For example� the goal to close valve v� could be represented as �� �position

v� cl��� and to test for it being closed as �� �position v� cl���
Knowledge about how to accomplish given goals or react to certain situations is represented in PRS by declarative

procedure speci�cations called Knowledge Areas �KAs�� Each KA consists of a body� which describes the steps of
the procedure� and an invocation condition� which speci�es under what situations the KA is useful� Together� the
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Figure 	� Portion of a KA for Leak Isolation

invocation condition and body of a KA express a declarative fact about the results and utility of performing certain
sequences of actions under certain conditions ����

The body of a KA is represented as a graphic network and can be viewed as a plan or plan schema� Each arc of
the network is labeled with a goal to be achieved by the system� The invocation condition has two components� a
triggering part and a context part� Both must be satis�ed for the KA to be invoked� The triggering part is a logical
expression describing the events that must occur for the KA to be executed� Usually� these consist of some change in
system goals �in which case� the KA is invoked in a goal�directed fashion� or system beliefs �resulting in data�directed
or reactive invocation�� and may involve both� The context part is a logical expression specifying those conditions that
must be true of the current state for the KA to be executed�

A typical example of part of a KA is given in Figure 	� It describes a procedure to isolate a leak in the Reaction
Control System of the space shuttle� The invocation part describes under what conditions this KA is useful� In
this case� the KA is considered useful whenever the system acquires the goal to isolate a leak in the RCS ��p�sys��
provided the various type and structural facts given in the context part are true� �In determining the truth value of
the invocation part� some of the variables appearing in the invocation part will be bound to speci�c identi�ers� Indeed�
in this case� all the variables will be so bound��

The KA body describes what to do if the KA is chosen for execution� Execution begins at the start node in the
network� and proceeds by following arcs through the network� Execution completes if execution reaches a �nish node
�a node with no exiting arcs�� If more than one arc emanates from a given node� any one of the arcs emanating from
that node may be traversed� To traverse an arc� the system must either �	� determine from the database that the
goal has already been achieved or ��� �nd a KA �procedure� that achieves the goal labeling that arc� For example� to
traverse the arc emanating from the start node requires either that the system be already secured or that some KA
for securing the RCS be found and successfully executed� Similarly� to transit the next arc requires that some KA
be found for determining the pressure change ��delta�p�� in the manifold �manf�� If the system fails to traverse an
arc emanating from some node� other arcs emanating from that node may be tried� If� however� the system fails to
achieve any of the goals on arcs emanating from the node� the KA as a whole will fail� For example� since only one
arc emanates from the start node in Figure 	� if all attempts to secure the RCS fail� this procedure for isolating a leak
in the system will also fail� The full KA for this procedure consists of over �� nodes and is the largest in the RCS
application�

Important properties of the KA are represented in the slots on the left side of the KA structure� For example� the
goal achiever slot is set to T �true�� representing the fact that� upon successfully completing this KA� the goal that
triggered execution will have been achieved�

Some KAs have no bodies� These are the primitive KAs of the system and have associated with them some primitive
action that is directly performable by the system� Clearly� execution of any KA must eventually reduce to the execution
of sequences of primitive KAs �unless� of course� each of the subgoals of the KA has already been achieved��
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Figure �� Procedural Reasoning System main loop

The set of KAs in a PRS application system not only consists of procedural knowledge about a speci�c domain�
but also includes metalevel KAs � that is� information about the manipulation of the beliefs� goals� and intentions of
PRS itself� For example� typical metalevel KAs encode various methods for choosing among multiple applicable KAs�
determining how to achieve a conjunction or disjunction of goals� and computing the amount of additional reasoning
that can be undertaken� given the real�time constraints of the problem domain� In achieving this� these metalevel
KAs make use of information about KAs that is contained in the system database or in the property slots of the KA
structures�

The PRS interpreter �Figure �� runs the entire system� From a conceptual standpoint� it operates in a relatively
simple way� At any particular time� certain goals are established and certain events occur that alter the beliefs held
in the system database �	�� These changes in the systems goals and beliefs trigger �invoke� various KAs ���� One or
more of these applicable KAs will then be chosen and placed on the intention structure ���� Finally� PRS selects a task
�intention� from the root of the intention structure ��� and executes one step of that task ���� This will result either
in the performance of a primitive action ���� the establishment of a new subgoal� or the conclusion of some new belief
����

At this point the interpreter cycle begins again� the newly established goals and beliefs �if any� trigger new KAs�
one or more of these are selected and placed on the intention structure� and again an intention is selected from that
structure and partially executed�

It is important to note that that each intention on the intention structure �appearing as a task box within the
Intention Structure shown in Figure 	� represents an entire stack of invoked KAs �procedures�� In particular� as
each KA is executed� it establishes certain subgoals� These subgoals� in turn� invoke other KAs� and so on� All the
KAs so invoked form a run�time procedure stack� much like the run�time stack of called subroutines in conventional
programming languages� Where the system has only one task to perform� there is only one such stack� and conseqently
one task box� But where the system needs to perform multiple tasks� it spawns multiple run time stacks� executing�
suspending� and resuming these in much the same manner as processes are handled in an operating system�

PRS has several features that make it particularly powerful as a situated reasoning system� including� �	� The
semantics of its plan �procedure� representation� which is important for veri�cation and maintenance
 ��� Its ability
to construct and act upon partial �rather than complete� plans
 ��� Its ability to pursue goal�directed tasks while at
the same time being responsive to changing patterns of events in bounded time
 ��� Its facilities for managing multiple
tasks in real�time
 ��� Its default mechanisms for handling stringent real�time demands of its environment
 and ���
Its metalevel �or re�ective� reasoning capabilities� Some of these features have been discussed in earlier reports and
papers ��� �� �� �� 	�� 	�� 	���

We now consider two large�scale applications of PRS� one concerned with malfunction handling on the space shuttle
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and the other with management of a telecommunications network� Although these applications are not usually viewed
as �process control�� they exhibit most of the characteristics described above�

� The RCS Application

In this section we describe a PRS�based system that was developed for handling malfunctions in the Reaction Control
System �RCS� of NASAs space shuttle� This application typi�es some of the problems involved in developing diagnostic
systems for process control applications� The RCS structure is depicted in the schematic of Figure � �left part��

The RCS provides propulsive forces from a collection of jet thrusters to control the attitude of the space shuttle�
There are three RCS modules� two aft and one forward� Each module contains a collection of primary and vernier jets�
a fuel tank� an oxidizer tank� and two helium tanks� along with associated feedlines� manifolds� and other supporting
equipment� Propellant �ow� both fuel and oxidizer� is normally maintained by pressurizing the propellant tanks with
helium�

The helium supply is fed to its associated propellant tank through two redundant lines� designated A and B� The
pressure in the helium tanks is normally about ���� psi
 this is reduced to about ��� psi by regulators that are situated
between each helium tank and its corresponding propellant tank� A number of pressure and temperature transducers
are attached at various parts of the system to allow monitoring�

Each RCS module receives all commands �both manual and automatic� via the space shuttle �ight computer
software� This software resides on �ve general purpose computers �GPCs�� Up to four of these computers contain
redundant sets of the Primary Avionics Software System �PASS� and the �fth contains the software for the Backup
Flight System �BFS�� All of the GPCs can provide information to the crew by means of CRT displays�

The various valves in an RCS module are controlled from a panel of switches and talkbacks �Figure �� right part��
Each switch moves associated valves in both the fuel subsystem and the oxidizer subsystem�� Switches can be set to
OPEN� CLOSE� or GPC� the last providing the GPCs with control over the valve position�

�Because the two propellant subsystems are identical� only one system is represented in the left part of the �gure�
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The talkbacks provide feedback on the position of their associated valves� A talkback reading may not correspond
to the position of the actual valves if a valve has jammed or if the control or feedback circuitry is faulty� Under some
conditions� such as when the corresponding valves in both the fuel and oxidizer subsystems do not move in unison� the
talkback displays a �barberpole� warning�

As with most dynamic systems� transients are common� For example� in the process of changing switch position�
there will be a short time �about � seconds� when the positions of the talkback and the switch will di�er from one
another� This is because it takes this amount of time for the actual valve to change its position� Furthermore� during
this transition� the talkback will also pass through the barberpole position� Thus� a mismatched talkback and switch
position or a barberpole reading does not always indicate a system fault�

��� System Con�guration

Two instances of PRS were set up to handle the RCS application� One� called INTERFACE� handles most of the low level
transducer readings� e�ector control and feedback� and checks for faulty transducers and e�ectors� The other� called
RCS�CONTROLLER �� contains most of the high�level malfunction procedures� much as they appear in the malfunction
handling manuals for the shuttle� To test the system� a simulator for the actual RCS was constructed�

The complete system con�guration is shown in Figure �� Each of these parts is described in the following sections�
During operation� the simulator sends transducer readings and feedback from various e�ectors �primarily valves�

to INTERFACE and communicates alarm messages as they appear on the shuttle system displays to RCS�CONTROLLER�
The simulator� in turn� responds appropriately to changes in valve switch positions as requested by INTERFACE� The
simulator can be set to model a variety of fault conditions� including misreading transducers� stuck valves� system
leaks� and regulator failures�

The top�level PRS instantiation� RCS�CONTROLLER� contains most of the malfunction handling procedures as they
appear in the operational manuals for the space shuttle� The RCS�CONTROLLER takes an abstract view of the domain�
it deals in pressures and valve positions� and does not know about transducers� switches� or talkbacks�

The PRS instantiation INTERFACE handles all information concerning transducer readings� valve switches� and valve
talkbacks� It handles requests from RCS�CONTROLLER for information on the pressures in various parts of the system
and for rates of change of these values� Determination of this information can require examination of a variety of
transducers� as readings depend on the status of individual transducers� their location relative to the region whose
pressure is to be measured� and the connectivity of the system via open valves�

In the application described herein� over 	�� object�level KAs were used together with about �� metalevel KAs�
Most of the KAs speci�c to RCS operations were written by space shuttle mission controllers� The database contains
over ��� facts for the forward RCS alone� approximately half of which are being continuously updated during simulation�

��� Sample Interactions

In this section� we examine di�erent scenarios illustrating the capabilities of PRS�

Handling Transients	 The following example illustrates the capacity of the system to handle transients and reason
about more than one task at a time� Consider the situation where INTERFACE gets a request from RCS�CONTROLLER to
close some valve� say frcs�ox�tk�isol����valve �forward rcs� oxidizer tank� one�two isolationvalve�� RCS�CONTROLLER
achieves this by sending INTERFACE the message �request RCS�CONTROLLER ���position frcs�ox�tk�isol����valve

�For simplicity� RCS�CONTROLLER is named RCS in the KAs and intention structures appearing in this paper�
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Figure �� KA for checking the barberpole position on a talkback

cl���� Responding to this request� INTERFACE calls a KA that� in turn� asks the astronaut to place the switch corre�
sponding to this valve in the closed position� Once the astronaut has done this� INTERFACE will wait until the talkback
shows the requested position and will then advise RCS�CONTROLLER that the valve has indeed been closed�

However� while this is taking place� INTERFACE will also notice that� just after the switch is moved to the closed
position� there is a mismatch with the talkback indicator �which will still be showing open� because of the normal delay
in valve movement�� Furthermore� a fraction of a second later� the talkback will move into the barberpole position�
another indication that things could be wrong with the valves�

Each of these events will trigger a KA and thus initiate execution of a task �intention� that seeks to con�rm that
the talkback moves to its correct position within a reasonable time �ten seconds�� At this point� the system is dealing
with three di�erent tasks� one responsible for answering the request� one checking the miscomparison between the
switch and the talkback� and one checking the barberpole reading� Each of these last two tasks immediately suspend
themselves �using the �wait�until� ��� operator� see Figure �� while awaiting for the talkback to move to the correct
position or until ten seconds has elapsed �in which case an error is reported to the astronauts� �

Notice that the KAs that respond to the request from RCS�CONTROLLER to change the valve position� that monitor
for possible switch dilemmas� and that check the barberpole reading are all established as di�erent intentions at some
stage during this process� Various metalevel KAs must therefore be called� not only to establish these intentions� but
to decide which of the active ones to work on next�

A typical state of the intention structure is shown in Figure �� It shows a number of intentions in the system
INTERFACE� ordered for execution as indicated by the arrows� The intention labeled Meta Selector is a metalevel
KA� The other intentions include two that are checking potential switch problems �Switch Dilemma �Barberpole�

and Switch Dilemma �Closed�� and one that is responding to the request to close the valve �Open or Close Valve��
The metalevel intention� in this case� is the one currently executing� Although not clear from the �gure� it has just
created and ordered the new intentions resulting from the miscomparison and barberpole problems�

In this example� we have shown how PRS handles multiple tasks� All these tasks are started upon reception of
asynchronous events� the changes of the talkback reading� Moreover� two of these tasks deal with transients that are
potentially dangerous�

Handling Inaccurate Data	 In this scenario� we show how two PRS agents cooperate and control the execution of
their intentions so as to handle faulty transducers and the resulting false warning alarms�

We will assume that one of the transducer on the oxidizer tank �frcs�ox�tk�out�p�xdcr� fails and remains
jammed at a reading of 	�� psi� This causes a number of things to happen� First� it causes a low�pressure alarm to
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(SOAK (# #))

Advise Pressure
(REQUEST RCS (? #))

Meta Selector (intend-all-safety-before)
(SOAK (# #))

Faulty Xdcr (Miscompare)
(VALUE FRCS-OX-TK-OUT-P-XDCR 170.)

Advise Pressure
(REQUEST RCS (? #))

Faulty Xdcr (Miscompare)
(VALUE FRCS-OX-TK-OUT-P-XDCR 170.)

Advise Pressure
(REQUEST RCS (? #))

Faulty Xdcr (Miscompare)
(VALUE FRCS-OX-TK-OUT-P-XDCR 170.)

Advise Pressure
(REQUEST RCS (? #))

The Intention Graph is:

The Intention Graph is:

The Intention Graph is:

The Intention Graph is:

Figure �� Intention Structure Development

be activated� This will be noticed by the PRS instantiation RCS�CONTROLLER� which will immediately respond to the
alarm by initiating execution of the KA Pressurization Alarm �Propellant Tank�� This KA will� in turn� request
a pressure reading from INTERFACE to ensure that the alarm is valid�

While this is happening� INTERFACE by itself has noticed that the two transducers on the oxidizer tank disagree
with one another �in this case� the other transducer is reading the nominal value of ��� psi�� This invokes a KA that
attempts to determine which of the two transducers is faulty� It does this by �rst waiting a few seconds to ensure that
the mismatch is not simply a transient� and then testing to see if one of the readings is outside normal limits� If so� it
assumes this is the faulty transducer� �this is indeed the procedure used by astronauts and mission controllers��

Notice what could happen here if one is not careful� Having more than one thing to do� INTERFACE could decide
to service the request for a pressure reading for the suspect tank� If it does so� it will simply average the values
of the two transducer readings �yielding ��� psi� and advise RCS�CONTROLLER accordingly� Clearly� this is not what
we want to happen� any suspect parameter readings should be attended to before servicing requests that depend on
them� and this implemented in metalevel KAs� When INTERFACE eventually gets around to servicing the request from
RCS�CONTROLLER� it disregards the faulty transducer reading and thus advises RCS�CONTROLLER that the pressure is
��� psi� RCS�CONTROLLER then determines that the alarm was activated in error and that the pressure is within normal
operating range�

Of course� the speci�c technique used here for recognizing the faulty transducer is relatively simple�in general� one
would want to draw on other� more sophisticated techniques for determining sensor or e�ector failures� However� these
other techniques are not di�cult to encode in PRS
 the essential component is not the recognition procedure itself� but
rather the role played by the metalevel in appropriately controlling the order of task execution�

Even with all this going on� other things are happening within the INTERFACE system� For example� the fact that
the transducer is determined to be bad� together with the fact that it is the very transducer that informs the shuttle
computers of overpressurization problems� causes the invocation of another KA� This KA re�ects a �ight rule that
states that overpressurization protection is lost while the transducer is inoperative�

As before� metalevel KAs are invoked to determine which KAs to adopt as intentions and how to order them on
the intention structure� The development of the intention structure during the early stage of this process is shown in
Figure ��

This example shows how important it is for a situated reasoning system to be able to change its focus of attention�
Moreover� it demonstrates the need for sophisticated reasoning capabilities to ensure that tasks are executed in an
appropriate order�

Diagnosis and Malfunction Handling	 This last example illustrates how PRS manages both reactive and goal�
directed reasoning� We �rst examine the case in which the regulator on the feed line between the helium tank and its
associated propellant tank fails in position �open�� In this example� we will assume that the frcs�fu�he�tk�A�reg
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has failed� We will focus primarily on RCS�CONTROLLER �INTERFACE is� of course� working away during this process as
discussed above��

The �rst thing that happens when the regulator fails is that pressures throughout the fuel subsystem begin to rise�
When they exceed the upper limit of ��� psi� certain caution�warning �cw� alarms are activated� These events trigger
the execution of a KA that attempts to con�rm that the system is indeed overpressurized�

Note that this process is more complicated than it �rst appears� The high transducer readings that gave rise to the
caution�warning alarm will also trigger KAs in the PRS system INTERFACE� These KAs will proceed to verify that the
corresponding transducers are not faulty �as described in Section ��� �
 that is� that the reading of the transducers is
indeed accurate� While doing this� or after doing this� INTERFACE will get a request from RCS�CONTROLLER to advise
the latest pressure readings� If INTERFACE is in the process of checking the transducers� it will defer answering this
request until it has completed its evaluation of transducer status� But eventually it will return to answering the request
and� in the case we are considering� advise that the pressure is indeed above ��� psi�

On concluding that the system is overpressurized� another KA �Overpressurized Propellant Tank� is activated
and this� eventually� concludes that the A regulator has failed� Note that this KA establishes parallel subgoals to close
both the A valve and the B valve at the same time� as there are cases when both are open� For the A valve� this
involves a request to INTERFACE as discussed above� However� for the B valve� the system notices that the B valve is
already closed� Thus� its goal is directly achieved without the necessity to perform any action or request�

The �nal goal of this KA activates another KA that opens the valve of the alternate regulator �B�� Having opened
the valve� it is desirable to then place it under the control of the on�board computers� However� this cannot be done
until the pressure in the system drops below ��� psi� as otherwise the GPC will automatically shut the valve again�
Thus� the malfunction handling procedures specify that the astronaut should wait until this condition is achieved
before proceeding to place the valve switch in the GPC position� RCS�CONTROLLER achieves this by asking INTERFACE

to monitor the pressure and advise it when it drops below ��� psi� While waiting for an answer� the task is suspended�
and RCS�CONTROLLER gets on with whatever else it considers important�

When the pressure eventually drops below the threshold �because the astronauts are �ring the jets�� the task
�intention� is awakened� and execution continued� Thus� the valve switch is �nally placed in the GPC position and the
overpressurization problem resolved�

This example illustrates both the reactive and goal�directed behavior of PRS
 that is� the system is reactive in its
initial response to the overpressurization alarm� and goal�directed in its activities towards repressurizing the system�

� The IRTNMS Application

Most countries in the world are experiencing a widespread growth in their telecommunications networks� Although
the networks are designed to carry normal tra�c� with alternative routes for average peak�hour demands� problems
like congestion� overload� or failure in parts of the network occur frequently� These problems are due to events such as
natural disasters �e�g�� bush��res� earthquakes� �oods�� phone�in polls� a high number of callers on certain days �e�g��
Christmas Day and New Year�� or failure of switching systems and transmission links�

All these events can lead to a high level of congestion as the e�ects of excessive unsuccessful call attempts quickly
spread throughout the entire network� This results in poor service to the customer and loss of revenue� To solve these
problems� Network Tra�c Management �NTM� is being introduced in many centers around the world� NTM is the
function of monitoring the status and performance of the network in real time and� when necessary� taking action to
control the �ow of tra�c to ensure the maximum utilization of the network capacity �����

This section describes a PRS�based system for diagnosing� controlling� and monitoring a telecommunications net�
work� The system� called the Interactive Real�Time Telecommunications Network Management System �IRTNMS��
was developed for Telecom Australia�

��� System Con�guration

Three instances of PRS were set up in IRTNMS to handle the network management task� DIAGNOSIS� CONTROLS�
and MONITOR� The DIAGNOSIS module receives the route data from the network and diagnoses the di�erent problems
occurring� These problems are passed to the CONTROLS module� which then suggests the di�erent control actions that
could be taken to alleviate the problems
 the controls are then sent to the exchanges� The MONITOR module� working
in parallel with the above two modules� continuously monitors the controls that have already been taken� modifying
and deactivating them as necessary� In the current prototype� a SIMULATOR replaces the actual network� The
interactions among the various modules involved in the overall system are shown in Figure ��

The system architecture with the above three PRS modules mirrors the natural divison of network management
tasks
 namely� diagnosing problems� taking initial control actions� and monitoring them continuously� The multi�agent
architecture of PRS allows these modules to be run concurrently as three di�erent processes� This also means that the
tasks of diagnosis� control selection� and monitoring can be done asyncronously� i�e�� the DIAGNOSIS can be working on
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Figure �� IRTNMS Architecture

current data� while CONTROLS can be solving problems based on the previous data� and MONITOR can be monitoring the
controls imposed for solving previous problems�

The network simulator simulates the normal �ow of tra�c in the network as well as some of the more commonly
occurring problems� The simulator sends exception data to DIAGNOSIS in �xed cycles of three or six minutes and alarms
as and when they occur �i�e�� asynchronously�� The simulator also receives commands from CONTROLS and MONITOR to
activate� deactivate or modify controls�

DIAGNOSIS is initiated by route exceptions� exchange exceptions and route alarms received from the simulator� Its
main task is to diagnose the di�erent types of problems in the network� It also diagnoses the cause of these problems�
For example� it not only isolates a congestion problem in a particular link� but also identi�es its cause as being due
either to a single link �i�e�� a congestion problem due to a �rst�o�ered route� or to multiple links �i�e�� a general
congestion problem��

CONTROLS contains the strategies for various network problems and the controls applicable under each strategy� It
is activated by the problems it receives from DIAGNOSIS and is responsible for selecting controls or corrective measures
for the diagnosed problems� It has to perform a variety of checks on the network status and choose a number of
di�erent controls to alleviate the problems� The controls chosen fall into two broad categories� expansive controls�
which re�route tra�c via alternative routes� and protective controls� which block a certain percentage of the network
tra�c�

MONITOR is activated as soon as a control is issued to the network� and remains active until there are no longer any
controls to monitor� It is responsible for continuously checking the status of various network parameters� modifying
the controls �by increasing or decreasing the percentage of calls re�routed� and �nally removing them when they are
no longer required� It handles transients in the network by waiting for the network to stabilize before suggesting the
removal of controls�

All three modules communicate with each other by sending messages� Given the natural division of network
management tasks among the three modules� communication between modules is kept to a minimum� Also� the
amount of communication depends only on the actual number of problems in the network and the number of controls
activated�it does not depend on the size of the network�

��� Sample Interactions

In this section� we examine a sample run of the system and illustrate how the various instances of the system interact
in diagnosing� controlling and monitoring problems�

In the following sample run� the simulator sends exception data every 	�� seconds �which re�ects the current
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S //-Goal
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Figure �� Parallel Diagnosis of Problems

operating conditions of Telecoms major networks� and sends alarms asynchronously� However� the simulator could
send data in a shorter or longer cycle as required�

Diagnosing problems in the network	 In this example� the simulator� at the end of �rst 	�� seconds� sends a set
of exception data to DIAGNOSIS� The format of this data is as follows�

�route�exception ��	 RPOFL Brunswick Northcote ���

�route�exception ��	 RPOFL Brunswick Batman 
��

The �rst item in the above list states that there is a route�exception at time 	�� from the node Brunswick �BRUX� to
Northcote �NCOX� whose route percentage over�ow is 	���

DIAGNOSIS receives only route� exchange and code exceptions
 all other values it needs are received on a demand
basis from the simulator� As the system may have to wait for the simulator to send these data� all problems of a
particular type are handled in parallel� This ensures that� while one problem is waiting for the data to arrive from
the simulator� the other problems are being attended to� This point is illustrated in Figure �� where the diagnosis of
three di�erent code congestion problems are handled in parallel
 one of them is currently active �indicated by arrows�

one of them is suspended waiting for data from the simulator �indicated by S�� and the other has just been awakened
�indicated by W�� Although we have shown only three tasks executing in parallel� in reality a particular regional
network would have around �� to �� exchanges
 in this case� executing the diagnostic tasks in parallel would provide
a signi�cant increase in speed�

For the above situation� DIAGNOSIS makes use of its procedures to diagnose the following problem in the network�

��� First�offered congestion from Brunswick to Northcote due to

Batman at time ��	 �ACTIVE��

The above display states that there is a �nal choice congestion from Brunswick to Northcote at time 	�� caused by the
�rst�o�ered route Brunswick to Batman�

Having diagnosed the problems� DIAGNOSIS sends messages to CONTROLS indicating the type of the problem� its
cause� and other details� DIAGNOSIS is then free to work on the next set of data while CONTROLS can� in parallel� take
the corrective measures for the problems identi�ed so far�

This example illustrates how the system can execute multiple tasks in parallel and thereby operate more e�ciently� It
also shows how one can exploit the multi�agent architecture of PRS by partitioning modularly the network management
task�

Taking correctivemeasures	 Following the above actions� CONTROLS solves the observed problem by �rst examining
expansive controls� It makes use of di�erent procedures to re�route the tra�c on the �rst�o�ered route that is causing
the problem� If this does not solve the problem� it tries to re�route tra�c from the �nal�choice route and then all the
other �rst�o�ered routes that are over�owing onto the �nal�choice route�

If there is no opportunity to take expansive controls� CONTROLS tries protective controls� Protective controls re�route
a percentage of calls onto the Recorded Voice Announcement �RVA� or congestion tone�

In this case� the system suggests the following solution
 namely� to re�route the �rst�o�ered tra�c from Brunswick

to Batman via Footscray�

First�offered congestion Brunswick�Northcote ���	�

��� Activate BRUX�	� Reroute Batman overflow traffic via Footscray

�� calls at �	�
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The number of calls �or percentage of calls� to be re�routed �shown on the last line above� is based on the number
of calls that are over�owing and the spare capacity available on the new route�

The above example illustrates the complex nature of planning corrective measures and the goal�directed behavior
of CONTROLS � It would be extremely di�cult to express the procedures for planning corrective measures in the more
conventional rule�based form�

Delayed Feedback	 In the next 	�� second time period� the following problems are noti�ed�

��� Code focused congestion at ��� code of Footscray at ��	 �ACTIVE��

��� First�offered congestion from Brunswick to Northcote due to

Batman at time ��	 �SUSPEND�

Note that although the operator has solved the �rst�o�ered congestion from Brunswick to Northcote due to Batman

by taking appropriate controls� the problem has reappeared at time ���� This is because of delayed feedback� i�e�� there
is a time lag between activating a control and the control taking e�ect on the real network� The system recognizes this
fact and suspends the problem� If the problem does not disappear in the next cycle� the system warns the operator
that the control activated two cycles ago is not taking e�ect�

Conventional expert systems have di�culty recognising and reacting to such delayed feedback� PRS achieves this
capability by suspending intentions and then waiting for a speci�ed period of time �or for some other critical event�
before reactivating them�

Multiple controls	 So far we have only shown the system solving a single problem and producing a single control for
that particular problem� However� the system is capable of solving multiple problems and producing multiple controls
for each problem� Given that the network is continuously changing� CONTROLS has to be very careful in allocating spare
capacity to the multiple controls� We illustrate below a situation where multiple controls are required to solve a single
problem�

If the operator chooses to solve the code congestion problem �as given above�� the system suggests the following
code controls� These controls selectively block the �		 code tra�c from various originating nodes�

Code focused congestion Footscray���� ���	�

��� Activate BATX�	� Reroute ��� overflow traffic at Batman A to RVA

�
	 calls at �	�

��� Activate BRUX�	� Reroute ��� overflow traffic at Brunswick to RVA

�	� calls at �	�

��� Activate GBRX�	� Reroute ��� overflow traffic at Greensborough to RVA

�	 calls at �	�

�
� Activate NCOX�	
 Reroute ��� overflow traffic at Northcote to RVA

��	 calls at �	�

The percentages above are based on the heuristic of re�directing half the over�ow tra�c to RVA� followed by continuous
monitoring to increase or decrease this value� A deteriorating situation will cause MONITOR to re�direct half the total
calls o�ered �rather than the over�ow� to RVA�

The above example illustrates how the system reasons about the problem� traces its way back to the original nodes
causing the problem� and then places protective controls on each one of these originating nodes�

Monitoring of controls	 As the system continues running� we �nd that� at time ��� seconds� there are no more
active problems in the network� Thus CONTROLS will be idle� However� as described earlier� MONITOR will be monitoring
all the controls activated for the �nal�choice congestion and code�congestion problems�

At time ���� MONITOR determines that there is enough idle capacity on the �nal�choice route Brunswick to Northcote
to carry all over�owing calls� Hence� the expansive control activated at time 	�� can be deactivated� However� MONITOR
waits for a �xed period of time for the network to stabilize before suggesting that the control be deactivated� If the
network stabilizes within the wait period� the following message is displayed�

First�offered congestion Brunswick�Northcote ���	�

��� Deactivate BRUX�	� Reroute Brunswick overflow traffic via Footscray�

MONITOR can also suggest a reduction or increase in the percentage of calls that are to be re�routed� MONITOR and
CONTROLS are in constant communication� informing each other of the presence of controls and their activation levels�
This communication is important for the system to make best use of the available network capacity by using as many
controls as necessary and reducing or removing controls as soon as possible�

The above scenario illustrates the continuous monitoring of all the activated controls� It also shows how the system
models transients in the network by waiting until the network stabilizes�
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� Comparison with Other Architectures

PRS is based on the notion of a rational agent� or what is conventionally called a Belief�Desire�Intention �BDI�
architecture� In this section� we brie�y review some other approaches to the design of situated reasoning systems�

Architectures for situated reasoning systems can be considered to be of the following paradigms�

� Rule�Based Architectures� This paradigm is an extension of the more traditional expert�system to meet the real�
time constraints of process control applications� The domain knowledge is encoded declaratively as rules that
can be triggered �invoked� by external events�

� Blackboard Architectures� The blackboard model is very similar to a data�driven expert system� except that
multiple processes are active and share a common database �blackboard��

� Situated Automata� This paradigm closely resembles conventional real�time software� In this approach� the
responses of the system to all anticipated situations is hard�wired into the system�

� BDI Architectures� This architecture represents a system or agent in terms of its beliefs� desires �or goals�� and
intentions� Knowledge is encoded as plans or procedures� Based on its current beliefs and goals� the system
adopts one or more plans as its intentions� which it is then committed to carrying out�

Each of the above paradigms has its own advantages and disadvantages� The exact choice depends on a number of
factors� including desired reaction time� ease of modi�cation� modularity� and the nature or complexity of the domain
knowledge�

As mentioned above� PRS is based on the BDI architecture� Other BDI systems� such as RAPS ���� also invoke
tasks on the basis of system beliefs about the current world situation and expand these tasks hierarchically� However�
these systems do not include many of the real�time capabilities of PRS and have not been widely applied�

Real�time expert systems like G� and PICON �	�� are extensions of expert systems technology for real�time use�
Although both G� and PICON have many of the real�time features of PRS� the domain knowledge is encoded as rules�
While G� has some schemes for expressing procedural knowledge� the representation �a la Pascal� is less expressive
�no goal and plan representation� than that used in PRS� More importantly� however� is that G� has very weak
mechanisms for handling procedure execution� procedures cannot be interrupted or suspended�� there is no simple
means of capturing task or procedure dependencies� and there are no generic re�ective capabilities for manipulating
priorities of multiple tasks� maintaining and changing focus of attention� and conditionally suspending tasks�

A situated reasoning system can also be built using systems such as BB	 ��� and RT�	 �	�� which are based on
the blackboard paradigm� BB	 has been applied to medical monitoring and RT�	 to a pilots associate for �ghter
aircraft� These systems use a global database for storing information and repeatedly execute a cycle consisting of task
invocation� selection �or scheduling�� and execution� Tasks are invoked by changes to the blackboard or the occurrence
of speci�c interprocess communications�

These systems have many features in common with PRS� However� there are important di�erences� BB	 and
RT�	 do not have a convenient representation for procedures nor very powerful mechanisms for reasoning about task
scheduling� Moreover� in current blackboard systems� the actions carried on by the system are not interruptible� As
these procedures can be quite complex� this can pose a serious problem for providing real�time behavior� Keeping the
blackboard consistent when knowledge sources are asynchronous is a serious problem that has yet to be addressed

most blackboard architectures use an agenda of pending knowledge sources �tasks� that are run serially� The agenda
manager runs with considerable overhead� since it is invoked in each cycle� and for each task present on the agenda�

GAPPS �Goals as Parallel Program Speci�cations� �	�� and Rex �		� 	��� which are based on the situated automata
paradigm� can also be used as a situated reasoning system� GAPPS takes as input the top�level goals of the system
and a set of goal�reduction rules� It transforms these into the description of a circuit that exhibits situation�speci�c
response� Although a situated reasoning system implemented using this paradigm can be expected to have a better
measure of reactivity than the other paradigms� it is unclear whether it would have the �exibility needed for complex
process�control applications� In particular� it does not provide a language for directly expressing procedural information
and has no means for expressing information about task management and control�

In addition� there are two further important di�erences between all the above systems and PRS� First� none provide
su�ciently powerful mechanisms for balancing the decision�making requirements against the constraints on time and
information that are typical of complex domains� Second� with the exception of GAPPS� none attempt to provide a
semantics for their knowledge representation� which is critical for proper system veri�cation and maintenance�

� Conclusion

In this paper� we have attempted to indicate that architectures based on the notion of a rational agent provide one
possible solution to the problem of controlling and managing complex processes� In particular� they provide a means

�Except with the explicit use in the procedure of instructions enabling the scheduling of other procedures or rules
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for balancing long�term goal�directed reasoning with short�term situation�determined reaction to unusual or important
events�

The two examples presented in this paper exhibit all the characteristics of applications identi�ed in Section �� We
have shown that PRS addresses most of them well�

� Asynchronous event handling	 In both applications� various sensor data� alarms� and messages are sent
asynchronously to the di�erent PRS agents� The interruptible procedure execution of PRS allows for asynchronous
communication�

� Procedural representation of knowledge	 By design� the basic knowledge representation used by PRS is
procedural� In both applications� this representation has proven to be more e�ective than a rule�based represen�
tation�

� Handling of multiple problems	 The parallel execution of tasks provided by PRS o�ers an elegant way of
solving multiple problems� The PRS metalevel reasoning feature provides a �exible way of prioritizing these
problems and then solving them� A more detailed description of the metalevel reasoning capabilities of PRS can
be found in ����

� Reactive and goal�directed behavior	 We have shown that PRS can be reactive when responding to events
such as alarms and network congestion� while it can be goal directed when it is working on speci�c tasks� such
as the re�routing of network tra�c�

� Focus of attention	 By using the appropriate metalevel KAs� PRS can react to new information and change
its current task to focus on new problems�

� Re�ective reasoning capabilities	 The features mentioned above� such as changing the focus of attention and
guaranteed response time� can only be realized when one has a sophisticated metalevel reasoning mechanism�
PRS o�ers such capabilities using the same syntax as the application procedures� making it simple for the user
to encode metalevel strategies�

� Continuous embedded operation	 Both applications have been excercised with sophisticated simulators
under continuous operations� PRS is currently being reimplemented in C to provide more robust operational
capabilities�

� Handling inaccurate data	 The example of the failed sensor in the RCS application demonstrates how the
system can handle inaccurate data�

� Handling transients and delayed feedback	 Both of these problems are handled in PRS by conditionally
suspending and reinvoking tasks�

� Operator control	 The IRTNMS system is capable of operating in di�erent modes � manual� semi�automatic�
and automatic� The reactive behavior and �exible prioritization of tasks using the metalevel reasoning feature
enables PRS to hand over the ultimate control of the system to the human operator under all the operating
modes�

For situated reasoning systems� it is also important that there be a guaranteed bound on reaction time and on certain
response times� Although this is not exhibited in the above examples� we show elsewhere ��� that an appropriate set of
metalevel KAs can guarantee a bounded reaction time� A bound on response time is application speci�c and cannot be
guaranteed a priori� One needs to make an in�depth analysis of the KAs used in the system to ensure the completion
of critical KAs within desired hard time limits�

PRS does not include as standard features some of the mechanisms found in conventional monitoring and control
systems� For example� PRS does not provide as standard any mechanism that takes account of goal deadlines� The
main reason for this absence is that PRS has been built as a generic tool to be used in a wide range of applications�
and no specially coded routines have been built for particular application domains� However� such mechanisms can be
encoded by the user as metalevel KAs as required�

There still remains considerable work to be done in developing this approach further� For example� the current
system relies on the user constructing appropriate metalevel KAs for recognizing potentially harmful interactions
among procedures executing in parallel� Clearly� it would be preferable if the system could determine such interactions
automatically� In addition� we need to develop a much better understanding of deliberation processes as represented
by metalevel KAs� and under which conditions it is appropriate to invoke them� These and other related issues are the
subject of current research�
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