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Abstract

This paper describes research� concerned
with automating the monitoring and control
of spacecraft systems� In particular� the pa�
per examines the application of SRI�s Proce�
dural Reasoning System �PRS� to the han�
dling of malfunctions in the Reaction Con�
trol System �RCS� of NASA�s space shut�
tle� Unlike traditional monitoring and con�
trol systems� PRS is able to reason about
and perform complex tasks in a very �ex�
ible and robust manner� somewhat in the
manner of a human assistant� Using vari�
ous RCS malfunctions as examples �includ�
ing sensor faults� leaking components� multi�
ple alarms� and regulator and jet failures�� it
is shown how PRS manages to combine both
goal�directed reasoning and the ability to re�
act rapidly to unanticipated changes in its en�
vironment� In conclusion� some important is�
sues in the design of PRS are reviewed and
future enhancements are indicated�

� Introduction

As space missions increase in complexity and frequency�
the automation of mission operations grows more and
more critical� Such operations include subsystem mon�
itoring� preventive maintenance� malfunction handling�
fault isolation and diagnosis� communications manage�
ment� maintenance of life support systems� power man�
agement� monitoring of experiments� satellite servicing�
payload deployment� orbital�vehicle operations� orbital
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construction and assembly� and control of extraterres�
trial rovers� Automation of these tasks can be expected
to improve mission productivity and safety� increase ver�
satility� lessen dependence on ground systems� and re�
duce demands for crew involvement in system control�

It is very important that any system designed to per�
form these tasks be as �exible� robust� and interactive
as possible� At the minimum� it should be capable of
responding to and diagnosing abnormalities in a variety
of con�gurations and operational modes� It should be
able to integrate information from various parts of the
space vehicle systems and recognize potential problems
prior to alarm limits being exceeded�

The system should suggest and execute strategies for
containing damage and for making the system secure�
without losing critical diagnostic information� It should
be able to utilize standard malfunction handling proce�
dures and take account of all the relevant factors that�
in crisis situations� are easily overlooked� False alarms
and invalid parameter readings should be detected� and
alternative means for deducing parameter values should
be utilized where possible�

In parallel with e�orts to contain damage and tem�
porarily recon�gure vehicle subsystems� the system
should be able to begin diagnosis of the problem and in�
crementally adjust recon�guration strategies as diagnos�
tic information is obtained� The system should also be
capable of communicating with other systems to seek in�
formation� advise of critical conditions� and avoid harm�
ful interactions� Throughout this process� the system
should be continually reevaluating the state of the space
vehicle and should be capable of changing focus to attend
to more serious problems should they occur�

Finally� the system should be able to explain the rea�
sons for any proposed course of action in terms that are
familiar to astronauts and mission controllers� It should
be able to graphically display the system schematics� the
procedures it is intending to execute� and the critical pa�
rameter values upon which its judgment is based�

Achieving this kind of behavior is well beyond the ca�
pabilities of conventional real�time systems� It requires�
in contrast� mechanisms that can reason in a 	rational

way about the state of the space vehicle and the actions
that need be taken in any given situation� Moreover�
the system should be both goal directed and reactive�
That is� while seeking to attain speci�c goals� the sys�



tem should also be able to react appropriately to new
situations in real time� In particular� it should be able
to completely alter focus and goal priorities as circum�
stances change� In addition� the system should be able
to re�ect on its own reasoning processes� It should be
able to choose when to change goals� when to plan and
when to act� and how to use e�ectively its deductive
capabilities�

A number of system architectures for handling
some of these aspects of real�time behavior have been
recently proposed e�g�� �Firby� ���� Kaelbling� ����
Hayes�Roth� ����� Some of these approaches are evalu�
ated elsewhere �George� and Ingrand� ���
George� and Lansky� ���� La�ey et al�� �����

The system to be discussed in the paper is
called a Procedural Reasoning System �PRS�� It
has been developed over a number of years at
SRI International and has been reported� in part�
in previous publications �George� and Ingrand� ���
George� and Ingrand� ���� George�� ����
George� and Lansky� ���a�
George� and Lansky� ���b�
George� and Lansky� �����

� Procedural Reasoning System

PRS is designed to be used as an embedded� real�time
reasoning system� As shown in Figure �� PRS consists of
��� a database containing current beliefs or facts about
the world� ��� a set of current goals to be realized� ���
a set of plans� called knowledge areas �KAs�� describ�
ing how certain sequences of actions and tests may be
performed to achieve given goals or to react to partic�
ular situations� and ��� an intention structure contain�
ing all KAs that have been chosen for execution� An
interpreter �or inference mechanism� manipulates these
components� selecting appropriate plans based on the
system�s beliefs and goals� placing those selected on the
intention structure� and executing them�

The system interacts with its environment� including
other systems� through its database �which acquires new
beliefs in response to changes in the environment� and
through the actions that it performs as it carries out its
intentions�

Goals and Beliefs

The beliefs of PRS provide information on the state of
the space vehicle systems and are represented in a �rst�
order logic� For example� the fact that a particular valve�
v� say� is closed could be represented by the statement
�position v� cl��

The goals of PRS are descriptions of desired tasks or
behaviors� In the logic used by PRS� the goal to achieve
a certain condition C is written �� C�� to test for the
condition is written �� C�� to wait until the condition
is true is written � � C�� and to conclude that the con�
dition is true is written �� C�� For example� the goal
to close valve v� could be represented as �� �position
v� cl�� and to test for it being closed as �� �position
v� cl���
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Figure �� Structure of the Procedural Reasoning System

Knowledge Areas

Knowledge about how to accomplish given goals or react
to certain situations is represented in PRS by declar�
ative procedure speci�cations called Knowledge Areas
�KAs� �see� for example� Figure ���� Each KA consists
of a body� which describes the steps of the procedure�
and an invocation condition� which speci�es under what
situations the KA is useful and applicable� Together�
the invocation condition and body of a KA express a
declarative fact about the results and utility of perform�
ing certain sequences of actions under certain conditions
�George� and Lansky� ���a��

The body of a KA can be viewed as a plan or plan
schema� It is represented as a graph with one distin�
guished start node and possibly multiple end nodes� The
arcs in the graph are labeled with the subgoals to be
achieved in carrying out the plan� Successful execution
of a KA consists of achieving each of the subgoals la�
beling a path from the start node to an end node� This
formalismprovides a natural and e�cient representation
of plans involving any of the usual control constructs� in�
cluding conditional selection� iteration� and recursion�

The invocation condition contains a triggering part
describing the events that must occur for the KA to be
executed� Usually� these events consist of the acquisition
of some new goals �in which case� the KA is invoked in a
goal�directed fashion� or some change in system beliefs
�resulting in data�directed or reactive invocation� and
may involve both�



The set of KAs in a PRS application system not only
consists of procedural knowledge about a speci�c do�
main� but also includes metalevel KAs� that is� infor�
mation about the manipulation of the beliefs� goals� and
intentions of PRS itself� For example� typical metalevel
KAs encode various methods for choosing among mul�
tiple applicable KAs� modifying and manipulating in�
tentions� and computing the amount of reasoning that
can be undertaken� given the real�time constraints of the
problem domain�

The Intention Structure

The intention structure contains all those tasks that the
system has chosen for execution� either immediately or
at some later time� These adopted tasks are called in�
tentions� A single intention consists of some initial KA
together with all the sub�KAs that are being used in at�
tempting to successfully execute that KA� It is directly
analogous to a process in a conventional programming
system�

At any given moment� the intention structure may
contain a number of such intentions� some of which may
be suspended or deferred� some of which may be waiting
for certain conditions to hold prior to activation� and
some of which may be metalevel intentions for deciding
among various alternative courses of action�

For example� in handling a malfunction in a propul�
sion system� PRS might have� at some instant� three
tasks �intentions� in the intention structure� one sus�
pended while waiting for� say� the fuel�tank pressure to
decrease below some designated threshold� another sus�
pended after having just posted some goal that is to be
accomplished �such as interconnecting one shuttle sub�
system with another�� and the third� a metalevel proce�
dure� being executed to decide which way to accomplish
that goal�

Execution

Unless some new belief or goal activates some new KA�
PRS will try to ful�ll any intentions it has previously
decided upon� This results in focussed� goal�directed
reasoning in which KAs are expanded in a manner anal�
ogous to the execution of subroutines in procedural pro�
gramming systems� But if some important new fact or
goal does become known� PRS will reassess its current
intentions and perhaps choose to work on something else�
Thus� not all options that are considered by PRS arise
as a result of means�end reasoning� Changes in the en�
vironment may lead to changes in the system goals or
beliefs� which in turn may result in the consideration of
new plans that are not means to any already intended
end� PRS is therefore able to change its focus completely
and pursue new goals when the situation warrants it� In
many space operations� this may happen quite frequently
as emergencies of various degrees of severity occur in the
process of handling other� less critical tasks�

Multiple Systems

In some applications� it is necessary to monitor and pro�
cess many sources of information at the same time� Be�
cause of this� PRS was designed to allow several instan�
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Figure �� System Schematic for the RCS

tiations of the basic system to run in parallel� Each PRS
instantiation has its own data base� goals� and KAs� and
operates asynchronously relative to other PRS instanti�
ations� communicating with them by sending messages�

The system described above has been implemented
on Symbolics ���� Series LISP� Sun Series �� and Mac
Ivory machines� A more complete description of PRS
can be found elsewhere �George� and Ingrand� ���
George� and Ingrand� �����

� The RCS Application

The system chosen for experimentation with PRS is the
Reaction Control System �RCS� of the space shuttle�
The system structure is depicted in the schematic of
Figure � �left part�� One of the aims of our research
is to automate the malfunction procedures for this sub�
system� A sample malfunction procedure is presented in
Figure ��

The RCS provides propulsive forces from a collection
of jet thrusters to control the attitude of the space shut�
tle� There are three RCS modules� two aft and one for�
ward� Each module contains a collection of primary and
vernier jets� a fuel tank� an oxidizer tank� and two he�
lium tanks� along with associated feedlines� manifolds�
and other supporting equipment� Propellant �ow� both
fuel and oxidizer� is normally maintained by pressurizing
the propellant tanks with helium�

The helium supply is fed to its associated propellant
tank through two redundant lines� designated A and B�
The pressure in the helium tanks is normally about ����
psi� this is reduced to about ��� psi by regulators that are
situated between each helium tank and its corresponding
propellant tank� A number of pressure and temperature
transducers are attached at various parts of the system



to allow monitoring�
Each RCS module receives all commands �both man�

ual and automatic� via the space shuttle �ight computer
software� This software resides on �ve general purpose
computers �GPCs�� Up to four of these computers con�
tain redundant sets of the Primary Avionics Software
System �PASS� and the �fth contains the software for
the Backup Flight System �BFS�� All of the GPCs can
provide information to the crew by means of CRT dis�
plays�

The various valves in an RCS module are controlled
from a panel of switches and talkbacks �Figure �� right
part�� Each switch moves associated valves in both the
fuel subsystem and the oxidizer subsystem�� Switches
can be set to OPEN� CLOSE� or GPC� the last provid�
ing the GPCs with control of the valve position� The
talkback provides feedback on the associated valve po�
sition� The talkback reading normally corresponds with
the associated switch position� except when the switch
is in GPC� in this case� the talkback shows whichever
position the GPC puts the valve in� The talkbacks may
not correspond if a valve has jammed or if the control or
feedback circuit is faulty� If the valves in both the fuel
and oxidizer subsystems do not move in unison� because
of some fault� the talkback displays a barberpole�

As with most dynamic systems� transient faults are
common� For example� in the process of changing switch
position� there will be a short time �about � seconds�
when the positions of the talkback and the switch will
di�er from one another� This is because it takes this
amount of time for the actual valve to change its posi�
tion� Furthermore� during this transition� the talkback
will also pass through the barberpole position� Thus� a
mismatched talkback and switch position or a barber�
pole reading does not always indicate a system fault�

� System Con�guration

Two instances of PRS were set up to handle the RCS
application� One� called INTERFACE� handles most of the
low level transducer readings� e�ector control and feed�
back� and checks for faulty transducers and e�ectors�
The other� called somewhat misleadingly RCS� contains
most of the high�level malfunction procedures� much as
they appear in the malfunction handling manuals for the
shuttle� To test the system� a simulator for the actual
RCS was constructed�

The complete system con�guration is shown in Fig�
ure �� Each of these parts is described in the following
sections�

��� The Simulator

During operation� the simulator sends transducer read�
ings and feedback from various e�ectors �primarily
valves� to INTERFACE and communicates alarmmessages
as they appear on the shuttle system displays to RCS� The
simulator� in turn� responds appropriately to changes in
valve switch positions as requested by INTERFACE� The

�Because the two propellant subsystems are identical� only
one system is represented in the left part of the �gure�

simulator can be set to model a variety of fault condi�
tions� including misread transducers� stuck valves� sys�
tem leaks� and regulator failures�

A future implementation of the system will be con�
nected to the more sophisticated shuttle simulator used
at Johnson Space Center�

��� The RCS

The top�level PRS instantiation� RCS� contains most of
the malfunction handling procedures as they appear in
the operational manuals for the space shuttle� RCS takes
an abstract view of the domain� it deals in pressures and
valve positions� and does not know about transducers�
switches� or talkbacks� For example� whenever RCS needs
to know the pressure in a particular part of the system�
it requests this information from INTERFACE� which is
expected to deduce the pressure from its knowledge of
transducer readings and transducer status� Similarly�
RCS will simply request that INTERFACE moves a valve
to a certain position� and is not concerned how this is
achieved� In this way� RCS can represent the malfunction
handling procedures in a clean and easily understandable
way� without encumbering the procedures with various
cross�checks and other details�

��	 The INTERFACE

The PRS instantiation INTERFACE handles all informa�
tion concerning transducer readings� valve switches� and
valve talkbacks� It handles requests from RCS for infor�
mation on the pressures in various parts of the system
and for rates of change of these values� Determination
of this information can require examination of a variety
of transducers� as readings depend on the status of indi�
vidual transducers� their location relative to the region
whose pressure is to be measured� and the connectivity
of the system via open valves�

INTERFACE also handles requests from RCS to change
the position of the valves in the RCS� This involves ask�
ing the astronaut to change switch positions� and waiting
for con�rmation from the talkback�

While doing these tasks� INTERFACE is continually
checking for failures in any of the transducers or valve as�
semblies� When it notices such failures� it will notify the
astronaut or mission controller and appropriately mod�
ify its procedures for determining pressures or closing
valves� It will also consider the consequences of any fail�
ures� such as are prescribed in various �ight rules for the
shuttle�

	 Sample Interactions

In this section� we examine di�erent scenarios illustrat�
ing the capabilities of PRS�


�� Changing Valve Position

The following example illustrates the capacity of
the system to reason about more than one task at
a time� Consider the situation where INTERFACE
gets a request from RCS to close some valve� say
frcs�ox�tk�isol����valve �Forward RCS� OXidizer
TanK� one�two ISOLation VALVE�� RCS achieves this



by sending INTERFACE the message �request RCS
���position frcs�ox�tk�isol����valve cl���� Re�
sponding to this request� INTERFACE calls a KA that� in
turn� asks the astronaut to place the switch correspond�
ing to this valve in the closed position �see Figure ���
Once the astronaut has done this� INTERFACE will wait
until the talkback shows the requested position and will
then advise RCS that the valve has indeed been closed
�Figure ���

However� while this is taking place� INTERFACE will
also notice that� just after the switch is moved to the
closed position� there is a mismatch with the talkback
indicator �which will still be showing open� because of
the normal delay in the valve starting to move�� Fur�
thermore� a fraction of a second later� the talkback will
move into the barberpole position� another indication
that things could be wrong with the valve�

Each of these events will trigger a KA and thus initi�
ate execution of a task �intention� that seeks to con�rm
that the talkback moves to its correct position within
a reasonable time� Figure � shows the KA which moni�
tors the barberpole position� At this point� the system
is dealing with three di�erent tasks� one responsible for
answering the request� one checking the miscomparison
between the switch and the talkback� and one checking
for the barberpole position� Each of these last two tasks
immediately suspend themselves �using the 	wait�until

� � � operator� while awaiting the speci�ed condition to
become true�

For example� the task concerned with monitoring a
talkback barberpole reading will suspend itself until ei�
ther the positions of both the switch and the talkback
agree� or �� seconds elapses� When either of these condi�
tions become true� the task �intention� will awaken and
proceed with the next step� If the talkback is still in the
barberpole position� the astronaut or mission controller
will be noti�ed of the problem� Otherwise� the KA fails�
and simply disappears from the intention structure�

Notice that the KAs that respond to the request from
RCS to change the valve position� that monitor for pos�
sible switch dilemmas� and that check the barberpole
reading are all established as di�erent intentions at some
stage during this process� Various metalevel KAs must
therefore be called� not only to establish these intentions�
but to decide which of the active ones to work on next�

A typical state of the intention structure is shown
in Figure �� It shows a number of intentions in the
system INTERFACE� ordered for execution as indicated
by the arrows� The intention labeled Meta Selector
is a metalevel KA �Figure ��� The other intentions in�
clude two that are checking potential switch problems
�Switch Dilemma �Barberpole� and Switch Dilemma
�Closed�� and one that is responding to the request to
close the valve �Open or Close Valve�� The metalevel
intention� in this case� is the one currently executing� Al�
though not clear from the �gure� it has just created and
ordered the new intentions resulting from the talkback
and the barberpole problems�


�� Handling Faulty Transducers

In this scenario� we show how two PRS agents cooperate
and control the execution of their intentions so as to
handle faulty transducers and the resulting false warning
alarms�

We will assume that transducer
frcs�ox�tk�out�p�xdcr fails and remains jammed at
a reading of ��� psi� This causes a number of things
to happen� First� it causes a low�pressure alarm to be
activated� This will will be noticed by the PRS instantia�
tion RCS� which will immediately respond to the alarmby
initiating execution of the KA �Pressurization Alarm
�Propellant Tank��� This KA will� in turn� request
a pressure reading from INTERFACE to ensure that the
alarm is valid�

While this is happening� INTERFACE by itself has no�
ticed that the two transducers on the oxidizer tank dis�
agree with one another �in this case� the other trans�
ducer is reading the nominal value of ��� psi�� This
invokes a KA that attempts to determine which of the
two transducers is faulty� It does this by �rst waiting a
few seconds to ensure that the mismatch is not simply
a transient� and then testing to see if one of the read�
ings is outside normal limits� If so� it assumes this is
the faulty transducer� this is indeed the procedure used
by astronauts and mission controllers� Other KAs� ca�
pable of more sophisticated acts such as checking the
values of downstream or upstream transducers� are used
if there is no corresponding transducer with which to do
the cross�check�

Notice what could happen here if one is not careful�
Having more than one thing to do� INTERFACE could de�
cide to service the request for a pressure reading for the
suspect tank� If it does so� it will simply average the
values of the two transducer readings �yielding ��� psi�
and advise RCS accordingly� Clearly� this is not what we
want to happen� any suspect parameter readings should
be attended to before servicing requests that depend on
them�

In the examples we have considered� it has been suf�
�cient to handle such problems with a relatively simple
priority scheme� We �rst ascribe the property of being a
so�called �safety handler� to all those KAs that should
be executed at the earliest possible time� Then we de�
sign the metalevel KA that chooses between potentially
applicable KAs to order all safety handlers for execution
prior to other intentions� In the example given above�
the KA that detects the faulty transducer is a safety han�
dler� and thus is executed prior to servicing the request
from RCS� When INTERFACE eventually gets around to
servicing the request from RCS� it disregards the faulty
transducer reading and thus advises RCS that the pres�
sure is ��� psi� RCS then determines that the alarm was
activated in error and that the pressure is within normal
operating range�

Even with all this going on� other things are happen�
ing within the INTERFACE system� For example� the fact
that the transducer is determined to be bad� together
with the fact that it is the very transducer that informs
the shuttle computers of overpressurization problems�
causes the invocation of another KA� This KA re�ects a



Figure �� KA for Closing a Valve

�ight rule that states that overpressurization protection
is lost while the transducer is inoperative�

As before� metalevel KAs are invoked to determine
which KAs to adopt as intentions and how to order them
on the intention structure� The development of the in�
tention structure during this process is shown in Fig�
ure �


�	 Failed Regulator

Let�s now consider the operation of the top�level PRS in�
stantiation� RCS� The case we �rst examine occurs when
the regulator on the feed line between the helium tank
and its associated propellant tank fails� In this exam�
ple� we will assume that the frcs�fu�he�tk�A�reg has
failed� We will focus primarily on RCS �INTERFACE is�
of course� working away during this process as discussed
above��

The �rst thing that happens when the regulator fails
is that pressures throughout the fuel subsystem begin to
rise� When they exceed the upper limit of ��� psi� certain
caution�warning �cw� alarms are activated� These events
trigger the execution of a KA that attempts to con�rm
that the system is indeed overpressurized�

Note that this process is more complicated than it �rst
appears� The high transducer readings that gave rise to
the caution�warning alarm will also trigger KAs in the
PRS system INTERFACE� These KAs will proceed to ver�
ify that the corresponding transducers are not faulty �as
described in subsection ��� �� that is� that the reading of
the transducers is indeed accurate� While doing this� or
after doing this� INTERFACE will get a request from RCS

to advise the latest pressure readings� If INTERFACE is in
the process of checking the transducers� it will defer an�
swering this request until it has completed its evaluation
of transducer status� But eventually it will return to an�
swering the request and� in the case we are considering�
advise that the pressure is indeed above ��� psi�

On concluding that the system is overpressurized� an�
other KA �Overpressurized Propellant Tank� is ac�
tivated and this� eventually� concludes that the A reg�
ulator has failed �see Figure ���� Note that this KA
establishes subgoals to close both the A valve and the B
valve� as there are cases when both are open� For the A
valve� this involves a request to INTERFACE as discussed
above� However� for the B valve� the system notices that
the B valve is already closed� Thus� its goal is directly
achieved without the necessity to perform any action or
request�

The �nal goal of this KA activates another KA that
opens the valve of the alternate regulator �B�� Having
opened the valve� it is desirable to then place it under
the control of the on�board computers� However� this
cannot be done until the pressure in the system drops
below ��� psi� as otherwise the GPC will automatically
shut the valve again� Thus� the malfunction handling
procedures specify that the astronaut should wait until
this condition is achieved before proceeding to place the
valve switch in the GPC position� RCS achieves this by
asking INTERFACE to monitor the pressure and advise
it when it drops below ��� psi� While waiting for an
answer� the task is suspended� and RCS gets on with
whatever else it considers important�



Figure �� KA for Monitoring Talkback in Barberpole

When the pressure eventually drops below that
threshold� the task �intention� is awakened� and execu�
tion continued� Thus� the valve switch is �nally placed
in the GPC position and the overpressurization problem
resolved�


�� Isolating a System Leak

Let�s assume that there is a leak in the RCS� Usually�
the leak will cause a pressure drop in the system that
will trigger a caution�warning alarm� The KA that re�
sponds to this alarmwill �rst try to di�erentiate between
a failed regulator and a leak in the system� If it deter�
mines that the system has a leak� it will then establish
the goal to isolate that leak� This� in turn� triggers an�
other KA that �rst attempts to secure the system This
involves requesting that the astronauts close all valves
in the leaking system�

Again� the PRS system INTERFACE will� throughout
each process of closing a valve� check that the valve has
indeed closed and that the corresponding talkbacks are
registering closed�

As soon as the system has been secured� PRS identi�
�es the leaking section by checking for decreasing pres�
sure in each section of the RCS in turn�


 Conclusion

The experiments described above provided a severe and
positive test of the system�s ability to operate pro��
ciently in real time� to weigh alternative courses of ac�
tion� to coordinate its activities� and to modify its in�
tentions in response to a continuously changing envi�
ronment� In addition� PRS met every criterion out�
lined by La�ey et al� �La�ey�etal��� for evaluating real�
time reasoning systems� high performance� guaranteed
response� temporal reasoning capabilities� support for
asynchronous inputs� interrupt handling� continuous op�
eration� handling of noisy �possibly inaccurate� data�
and shift of focus of attention�

We believe that the following features of PRS played
an important role in achieving these results�
Procedural reasoning� The representation of pro�

cedural knowledge using KAs is a very powerful way
to describe the actions and procedures that should be
executed to accomplish speci�c goals or to respond to
certain critical events� One essential feature of the rep�
resentation is that the elements of these procedures are
described in terms of their behaviors rather than in terms
of arbitrarily named actions or subroutines� For exam�
ple� to achieve the goal 	close all a�ected manifolds�
 it
is essential to be able to reason about the intended set
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of manifolds and how the goal is then to be achieved� a
call to a specialized procedure for every variant of this
goal is simply too complex and too prone to error� Fur�
thermore� a descriptive �declarative� representation of
goals provides robustness as di�erent procedures �KAs�
can be used to accomplish the goal depending on the
mode of operation� the availability of resources� or the
time required to perform the task� Moreover� because
the purpose of each step in the procedure is so repre�
sented� other processes can independently decide how to
achieve their own goals without thwarting that plan� in�
deed� they may even decide to assist�
Reactive and goal�directed reasoning� The ca�

pability of being simultaneously data� and goal�driven
is a critical feature of PRS� PRS provides goal�driven
reasoning when explicit goals must be achieved� such
as closing a valve� or repressurizing a system� At the
same time� the reactive capabilities of PRS allow it to
respond to critical events that occur� even when PRS
is itself attending to some other task� This capability of
reacting to new events makes the system highly adaptive
to situation changes� any plan can be interrupted and
reconsidered in the light of new incoming information�
Real�time reasoning� One of the most important

measures in real�time applications is reaction time� if
events are not handled in a timely fashion� the process
can go out of control� PRS has been designed so that
such a guarantee can be furnished� Although PRS can
execute complex conditional plans� the inference mech�
anism used in PRS guarantees that any new event is
noticed in a bounded time �George� and Ingrand� ���
George� and Ingrand� ����� While the system is exe�
cuting any procedure� it monitors new incoming events
and goals� Given that the real time behavior of the met�
alevel KAs used in a PRS application can be analyzed�
the user can prove that his application can operate in
real time� any new event is taken care of in a bounded
time�
Reasoning about multiple tasks� The intention

structure used in PRS enables the system to attend to
more than one task at a time� These multiple inten�
tions are usually tightly coupled and the order in which
they are executed can be very important� Some may re�
quire immediate execution on the basis of urgency� oth�
ers may have to be scheduled later than others because

they depend on the results produced by the earlier tasks�
Potential interactions among concurrently executing in�
tentions can also be critical in deciding the most appro�
priate ordering of tasks� PRS provides the mechanisms
to examine and manipulate the intention structure di�
rectly� the user can thus specify any kind of priority or
scheduling scheme desired�

Metalevel reasoning� The provision of metalevel
KAs allows the system to control its problem solving
strategies in arbitrarily sophisticated ways� These met�
alevel KAs follow the same syntax and semantics as
application KAs� except that they deal with the con�
trol of the execution of PRS itself� Thus one can write
metalevel KAs that can reason e�ciently and e�ectively
about the problem solving process being used� For ex�
ample� one can have a KA to control in which order the
applicable KAs are going to be executed� In the example
presented in the subsection ���� the metalevel KA makes
sure that the system carries on the testing task before
the pressure update task� thus allowing the false alarm
to be correctly recognized� Similarly� one can use met�
alevel KAs to choose among di�erent ways to perform a
given task� or how best to meet the real�time constraints
of the domain given information on the expected time
required for task execution�

Distributed reasoning� PRS is designed for dis�
tributed operations� Thus� di�erent instances of PRS
can be used in any application that requires the cooper�
ation of more than one agent� The di�erent PRS agents
run asynchronously� their activity is therefore uncon�
strained a priori by that of their colleagues� A message
passing mechanism is provided to make possible com�
munication between the di�erent PRS agents as well as
with external modules such as simulators or monitors�

A number of critical research problems remain to be
solved before the system will be reliable enough for use in
actual space operations� The system is currently being
extended to cover all malfunction handling procedures
and �ight rules concerning the RCS and is to be tested
against the main shuttle simulators at Johnson Space
Center in future work�
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