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Abstract

This paper describes some recent research� on
architectures for situated �embedded� systems
that need to deliberate and reason in real time�
One of the most di�cult problems in the de�
sign of such architectures is how to manage the
reasoning performed by such a system while still
meeting the real�time constraints of the problem
domain� We present an architecture� based on
the Procedural Reasoning System �PRS�� that
provides mechanisms for the management and
control of deliberation and reasoning in real�time
domains� In particular� we show how delibera�
tion and reasoning strategies can be represented
in the form of metalevel plans� and describe an
interpreter that selects and executes these in a
way that retains bounded reaction time� In addi�
tion� this approach allows us to represent di�er�
ent types of situated systems by varying the met�
alevel deliberation strategies� Finally� we pro�
vide some statistical measures of performance
for one such type of situated system applied to
a complex real�time application�

� Introduction

The design of reasoning and planning systems that are
situated �embedded� in real�time� dynamic environments
has recently been the focus of expanded research e�orts
in arti�cial intelligence� A critical issue is to identify the
architectural features that would enable such systems to
exhibit rational behavior in these domains� In this pa�
per� we describe a uniform architecture that we believe
addresses many of the di�cult problems in this area�
Computer systems� like human beings� have resource

limitations� they have only partial knowledge of their en�
vironment and bounded computational �or reasoning� ca�
pabilities� When the systems are situated in dynamic en�
vironments� these limitations become important� because
the environment may change in signi�cant ways while a
system attempts to gather more information or to reason
about what actions to pursue� given the information it
already has� If the system �or agent� does not act in a
timely manner� it may not be able to recover from a de�
teriorating situation or may miss positive opportunities�

�This paper has appeared in the Proceedings of the ����
DARPAWorkshop on Innovative Approaches to Planning� San
Diego� CA
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tract No� NAS��������

One way to cope with stringent time constraints is to
determine ahead of time how the system should act in
every possible situation 	Kaelbling� 
��
� Rosenschein and
Kaelbling� 
����� However� in domains requiring complex
responses to di�erent patterns of events� it is unlikely that
such precompilation of plans of action will be practically
possible� In such cases� the system must be able to reason
about what courses of action to pursue as it observes the
changing environment and performs its various tasks�
In particular� at any given time� the system will have to

decide what tasks are important enough to initiate or con�
tinue� choose among the various means for accomplishing
each task� and determine how to order the chosen tasks
for execution� In some cases� these decisions may be rel�
atively simple and straightforward� But in other cases
they may involve consideration of the likelihood of suc�
cess of the task� the utility of performing the task� the re�
sources required� the task�s expected execution time� the
availability and reliability of information upon which the
performance of the task depends� the task�s dependence
on other tasks that are also to be performed� etc�
Moreover� these deliberative tasks themselves are sub�

ject to the same constraints on time and information as
any other task the system is performing� Thus� the agent
will need to decide when and how to seek more informa�
tion� when and how to deliberate� and when to simply
go ahead and act on the basis of whatever reasoning and
deliberation it has already performed using whatever in�
formation it has at the time� And these deliberations� in
turn� need to be reasoned and deliberated about�
An important question� then� is to determine how one

can design a situated system that provides for the ex�
ecution and management of such deliberative processes�
yet meets the real�time demands and information con�
straints of its environment� In this paper� we describe how
one such architecture� the Procedural Reasoning System
�PRS�� provides the mechanisms for handling this prob�
lem�

� An Architecture for Situated
Deliberation

The architecture of a PRS module or agent consists of
�
� a database containing the system�s current beliefs
about the world� ��� a set of current goals� ��� a library
of plans� called Knowledge Areas �KAs�� which describe
particular sequences of actions and tests that may be per�
formed to achieve given goals or to react to certain situa�
tions� and ��� an intention structure� consisting of a 	par�
tially� ordered set of all those plans chosen for execution�
An interpreter or inference mechanism manipulates these



components� selecting an appropriate plan �KA� based on
system beliefs and goals� placing those selected KAs on
the intention structure� and �nally executing them�
PRS interacts with its environment both through its

database� which acquires new beliefs in response to
changes in the environment� and through the actions that
it performs as it carries out its intentions� Di�erent in�
stances of PRS� running asynchronously� can be used in
an application that requires the cooperation of more than
one subsystem�
The PRS interpreter runs the entire system� From a

conceptual standpoint� it operates in a relatively simple
way� At any particular time� certain goals are established
and certain events occur that alter the beliefs held in the
system database� These changes in the system�s goals
and beliefs trigger �invoke� various KAs� One or more
of these applicable KAs will then be chosen and placed
on the intention structure� Finally� PRS selects a task
�intention� from the root of the intention structure and
executes one step of that task� This will result in either
the performance of a primitive action� the establishment
of a new subgoal� or the conclusion of some new belief�
At this point the interpreter cycle begins again� the

newly established goals and beliefs trigger new KAs� one
or more of these are selected and placed on the intention
structure� and again an intention is selected from that
structure and partially executed�
PRS has several features that make it particularly pow�

erful as a situated reasoning system� including� �
� the
semantics of its plan �procedure� representation� ��� its
ability to construct and act upon partial �rather than
complete� plans� ��� its ability to pursue goal�directed
tasks while at the same time being responsive to chang�
ing patterns of events in bounded time� ��� its facilities for
managingmultiple tasks in real�time� ��� its default mech�
anisms for handling stringent real�time demands of its en�
vironment� and ��� its metalevel �or re�ective� reasoning
capabilities� Some of these features have been discussed
in earlier reports and papers 	George� and Ingrand� 
����
George� and Ingrand� 
���a� George� and Ingrand�

���b� George� and Lansky� 
���� Rao and George��

����� In this paper� we consider in more detail the way
the system architecture supports deliberative reasoning
and provide some statistics on the system�s real�time per�
formance capabilities�

� Making Decisions in Real Time

At each interpreter cycle� the changing beliefs and goals
of PRS trigger certain KAs �plans� which� upon execu�
tion� either perform certain primitive actions or modify
the internal state �the beliefs� goals� and intentions� of
the system� At this level of abstraction� PRS acts like a
situated automaton 	Rosenschein and Kaelbling� 
�����
However� one of the most critical aspects of the PRS

architecture is the way in which its beliefs� goals� and
intentions evolve and change over time� It is here that
a number of strong commitments in the design of PRS
have been made and these� we believe� are crucial to its
successful performance as a situated� real�time system�
Given that the system needs to be able to deliberate in

various ways and at various times� one of the most di��
cult problems to overcome is how to reduce the amount of
potential deliberation that need be undertaken� In par�
ticular� how can we avoid deliberation on every action
�internal or external� taken by the system� and� recur�

sively� how can one avoid or reduce deliberation on those
deliberation processes themselves�
Most existing situated reasoning systems use one or a

combination of the following approaches�


� The system does not allow any form of deliberation�
the considerations important to such deliberation are
compiled into the triggering parts of the plans or
knowledge sources themselves 	Firby� 
����

�� The deliberation is performed at one level only and
is done at every cycle irrespective of the constraints
on time and information existing at that moment in
time 	Hayes�Roth� 
����

�� The deliberation occurs at one level only and is per�
formed by a separate module of the system� uncon�
strained by the real�time demands of the application
and thus not bounded in reaction or response time
	Dodhiawala et al�� 
���� Fehling and Wilber� 
����
Hayes�Roth� 
�����

PRS takes a quite di�erent approach� We consider that
the �rst task of the system should be to keep the number
of options open to deliberation under control� To achieve
this� the PRS interpreter uses certain default decision�
making mechanisms that are stringently bounded in ex�
ecution time� For example� once a certain means has
been chosen for achieving a particular goal� and as long
as the system has not already failed to achieve the goal
using those means� that means will not be reconsidered
� despite possible changes in the environment that may
indicate the existence of better options� These option�
reducing decision mechanisms execute in bounded time
and� in most real�world situations� substantially reduce
the set of options available for deliberation� Some of the
more important of these mechanisms are discussed else�
where 	George� and Ingrand� 
�����
Of course� even after this �ltering of options� some op�

tions remain open to consideration� Furthermore� the �l�
tering may have removed some options that should really
have been considered more carefully� Thus� it is necessary
to provide the system with a capability for performing a
possibly unbounded amount of deliberation and for re�
considering some of the options that have possibly been
discarded by the default decision mechanisms�
In PRS� both of these tasks are achieved by the use of

so�called metalevel KAs� Metalevel KAs use exactly the
same knowledge representation as application�level KAs�
they di�er only in that they operate on the system�s in�
ternal state �i�e�� its beliefs� goals� and intentions�� rather
than the external world�
The metalevel KAs are brought to bear on any partic�

ular problem by means of their invocation criteria� These
criteria may depend both on conditions obtaining in the
external world and� more typically� on conditions relating
to the internal state of the system� Such conditions might
include� for example� the applicability of multiple KAs in
the current situation� the failure to achieve a certain goal�
or the awakening of some previously suspended intention�
The body of a metalevel KA can be used to repre�

sent any kind of decision�making procedure and can be

�It is important to note that these include beliefs goals�
and intentions toward various properties of the system state�
such as the number of applicable KAs at the current time
point� the success or otherwise of a particular KA instance�
the ordering of the intention structure� or the status of some
speci�c intention�



of arbitrary complexity� However� because it is executed
in the same manner as any other KA� it will be inter�
rupted whenever any external events modify the system�s
beliefs or goals� The system can thus continue to react
in bounded time� irrespective of the complexity of the de�
cision procedure� This is unlike other existing situated
reasoning systems� whose bound on reaction time is de�
termined by the complexity of the decision�making pro�
cedures incorporated in the system�
Moreover� further metalevel KAs can be invoked to

make decisions about the decision�making procedures
themselves� Again� the representation of these higher
levels of metalevel procedures is as for any other proce�
dure� and the system�s reaction time remains bounded�
Of course� one has to be careful in the design of such
metalevel procedures if one wants the system to respond
to events � rather than just notice them� in some given
time frame�
It is also important to note that the decision�making

behavior of PRS is strongly in�uenced by the choice of
the invocation conditions of metalevel KAs� For exam�
ple� if these conditions are such that the decision�making
metalevel KAs are frequently invoked� PRS will act in a
cautious manner� spending more time making decisions
than otherwise 	Bratman et al�� 
����� If� on the other
hand� these metalevel KAs are rarely invoked� PRS will
act in a bold manner� rapidly choosing its actions in re�
sponse to the changing world in which it is embedded�
Thus� by varying the metalevel KAs� we can study dif�
ferent types of situated systems and determine which are
best suited for which problem domains�
The question remains as to how to invoke the metalevel

KAs and how to ensure their execution as appropriate�
We look at this problem in the next section�

� Invoking MetaLevel Procedures

Our aim in designing PRS was to hardwire as little as
possible into the interpreter� i�e�� to make it as simple as
possible� This provides us with the potential to investi�
gate many di�erent types of agents simply by varying the
default decision procedures and the metalevel KAs�
The main loop of the system interpreter determines

which KAs are applicable and chooses which to place on
the intention structure� It can be viewed as the topmost
metalevel KA� it is the �nal arbiter of which KAs reach
the intention structure and thus which can be executed�
The major problem is how to allow KAs to be deliber�

ated upon by other 	metalevel� KAs and how to place the
chosen ones on the intention structure� The basis of our
approach is to allow the main interpreter loop to place at
most one KA on the intention structure and to require
that it be placed at the root of that structure�
At �rst sight� this seems unduly restrictive�one often

wants to attend to more than one task� and one often
wants to order these tasks for later execution rather than
have them executed immediately �which placing KAs at
the root of the intention structure entails�� The way
around this problem lies in the metalevel KAs� these are
the means by which one can place multiple intentions on
the intention structure and order them as one pleases�
The next problem is how to actually invoke metalevel

KAs� The di�culty is that� while some of the invocation
conditions of metalevel KAs will be known at the begin�
ning of each selection cycle� others �such as the number
of KAs applicable at a given moment� can only be deter�

mined part way through this cycle� The way in which we
solve this problem is to allow the system to continue to
re�ect on its changing beliefs about its own internal state
within a single cycle of the interpreter� breaking out of
this self�re�ection only when the process of KA activa�
tion ceases�
Figure 
 shows a simpli�ed version of the main inter�

preter loop� Its purpose is to select a KA� place it on the
intention structure� and invoke its execution �of which we
have more to say later�� The basic idea of the algorithm
is that the system continuously re�ects on itself until no
new KAs are applicable� When this state is reached� a
KA is chosen at random from those applicable at the pre�
vious re�ection cycle� If there are no KAs to choose from
�i�e�� the set of applicable KAs is empty�� the execution
phase is invoked and the outer cycle repeated� Otherwise�
the chosen KA is placed on the intention structure� the
execution phase invoked� and the outer cycle repeated�
To enable this scheme to work� the system has to de�

termine which KAs are applicable on each self�re�ection
cycle� This information becomes a new system belief� In
particular� on each cycle� the system concludes a belief
about the set of KAs applicable on that cycle� expressed
as �soak x�� where x is the list of applicable KAs� It
is then determined whether or not the acquisition of this
new belief �i�e�� �soak x��� and possibly other events�
triggers any new 	metalevel� KAs� If it does� the sys�
tem acquires a new belief about the applicability of these
metalevel KAs� In fact� it does so simply by updating the
belief �soak x� so that the list x now contains exactly
those metalevel KAs that are now applicable� �The pre�
vious belief about applicable object�level KAs is removed
from the database and so� in a sense� is forgotten� How�
ever� if needed� it can be captured in the variable bindings
of the invoked metalevel KAs��
As PRS places no restrictions upon the invocation con�

ditions of metalevel KAs� it is quite possible that more
than one metalevel KA will be invoked at this stage� If
this happens� we shall now be left with the problem of
deciding which of these metalevel KAs to invoke� There
are a number of possible solutions to this problem� One
would be simply to select one of the metalevel KAs at ran�
dom� on the assumption that all are equally good at mak�
ing the decision about which object�level KAs should be
invoked� Another alternative would be to preassign pri�
orities to the metalevel KAs and to invoke the one with
the highest priority� However� in keeping with our aim
of providing maximum �exibility� the solution we chose
to adopt is to allow further metalevel KAs to operate
on these lower�level metaKAs in the same way that the
lower�level metaKAs operated on the object�level KAs�
The process of invoking metalevel KAs is thus contin�

ued until no further KAs are triggered� At that point�
there may still be a set of applicable KAs from which to
choose� It is then� and only then �i�e�� only after failing to
�nd any more applicable metalevel KAs� that we select
one of these KAs at random�
Thus it is seen that� when more than one KA is appli�

cable� and in the absence of any information about what
is best to do� the system interpreter defaults to select�
ing one of these KAs at random� With no metalevel KAs�
the system would thus randomly select one of the applica�
ble object�level KAs� However� one usually provides met�
alevel KAs to help make an informed choice about the
object level KAs� The applicable metalevel KAs them�
selves are subject to the same default action �i�e�� one



�loop �Loop continuously�
do �loop for soak � �set�of�applicable�ka� �Set soak to the set of applicable KAs

when �or previous�soak soak�
do �conclude�fact ��soak �soak�� �Post the soak metalevel fact

if �null soak� �No new KAs are applicable
then if �null previous�soak�

�If previous soak is empty then either no KAs were relevant
�or there is nothing to do �no new goals��
then �Continue to execute the intentions in the Intention Structure

�activate�intention�structure�
return �Exit the re�ective loop�

else�Else� intend one of the KAs selected randomly�
�intend �select�randomly previous�soak��
�Go and execute something in the intention structure�
�activate�intention�structure�
�Set previous�soak to nil
�setq previous�soak nil�
return� �Exit the re�ective loop

else �setq previous�soak soak�� �Swap previous�soak and soak
do �get�new�facts�� �Get any new facts generated by metalevel matching

�get�new�facts�goals�messages�� �Get any new messages� goals or facts

Figure 
� KA and Intention Selection in PRS

will be randomly selected� unless there are yet other met�
alevel KAs available to make a choice among them� In
the end� at some level in the meta�hierarchy� the default
action will be taken�
Once selected� the chosen KAs must be inserted into

the intention structure� If a selected KA arose due to an
external goal or a new belief� it will be inserted into the
intention structure as a new intention at the root of the
structure� For example� this will be the case for any met�
alevel KA that is invoked to decide among some set of
applicable lower�level KAs� Otherwise� the KA instance
must have arisen as a result of some subgoal of some ex�
isting intention� and will be �grown� �i�e�� attached� as
a subKA of that intention� Finally� we are left with the
execution phase� This is relatively straightforward� First�
an intention at one of the �possibly multiple� roots of the
intention structure is selected for further execution� The
next step of that intention will comprise either a primi�
tive action or one or more unelaborated subgoals� If the
former� the action is directly initiated� if the latter� these
subgoals are posted as new goals of the system��

While we have focused above on metalevel KAs that re�
act to changes in the type or number of applicable KAs�
other beliefs about the environment or the internal sys�
tem state can trigger other kinds of metalevel KAs� For
example� beliefs about changing intentions could trigger
metalevel KAs to reorder the intention structure� or be�
liefs about failed goals could trigger a metalevel KA to
deliberate on the utility of reattempting the goal�

� Measures of Performance

De�nitions of real�time systems revolve around the notion
of response time� For example� Marsh and Greenwood
	Marsh and Greenwood� 
���� de�ne a real�time system
as one that is �predictably fast enough for use by the pro�
cess being serviced�� and O�Reilly and Cromarty 	O�Reilly
and Cromarty� 
���� require that �there is a strict time

�In fact� the execution algorithm is somewhat more compli�
cated than we indicate here� For example� it needs to handle
in di	erent ways the failure and success of attempting to ac�
complish its goals� what goals need to be reestablished� etc�

limit by which the system must have produced a response�
regardless of the algorithm employed�� This measure is
most important in real�time applications� if events are not
handled in a timely fashion� the operation can go out of
control�
Response time is the time the system takes to recog�

nize and respond to an external event� Thus� a bound
on reaction time �that is� the ability of a system to recog�
nize or notice changes in its environment� is a prerequisite
for providing a bound on response time� PRS has been
designed to operate under a well�de�ned measure of reac�
tivity� Because the interpreter continuously attempts to
match KAs with any newly acquired beliefs or goals� the
system is able to notice newly applicable KAs after every
primitive action it takes�
Some useful performance metrics for evaluating the per�

formance of real�time situated systems are provided by
Dodhiawala 	Dodhiawala et al�� 
����� Not all of these
are of relevance in the applications to which PRS has so
far been applied� but the following �ve probes provide
important measures of performance�


� sending�time�e� is the time at which an event e is
signalled

�� receiving�time�e� is the time at which e is received by
the system

�� begin�ack�time�e� is the time at which e is noticed by
the system

�� end�soak�time�cycle�e� is the time at which all the
events occurring in the same cycle as e have been
noticed and the corresponding set of applicable KAs
determined

�� event�execution�time�e� is the time at which the �rst
action following KA selection has terminated

�� event�response�time�e� is the time at which the exe�
cution of all the procedures initiated by e has termi�
nated�

Then we de�ne�

R
 � receiving�time�e� � sending�time�e��

R� � begin�ack�time�e� � receiving�time�e��



R� � end�soak�time�cycle�e� � begin�ack�time�e��

R� � event�execution�time�e� � end�soak�time�cycle�e��

R� � event�response�time�e� � sending�time�e�

Assuming a bounded number of events occurs in any
time interval� we can prove that R
� R�� R�� and R� are
bounded� R
 is the time used to communicate the event
to the system and is bounded by de�nition of the commu�
nication function �independently of PRS�� The operations
performed in R� and R� form a cycle� so R� is actually
bounded by R� � R�� So if we prove that R� and R� are
bounded� we can conclude that R� is also bounded�
R� is bounded by the maximum time required to exe�

cute the longest primitive action in PRS or the time re�
quired to post a goal� The time to post a goal is bounded
by de�nition� Therefore� the bound on R� is determined
by the choice of primitive actions and thus by the user�
As the user can choose any level of granularity he or she
desires� this bound can be made arbitrarily small� �In
the application described below� a maximum action ex�
ecution time of one second was found to be quite satis�
factory� though other applications may well require �ner
granularity��
R� is the time used by the system to parse the invo�

cation part and the context part of relevant KAs� As we
have a bounded number of events and a bounded number
of KAs� we can guarantee that R� is bounded��

To estimate the bound on R�� let p be an upper bound
on the execution times of the primitive actions that the
system is capable of performing� Also assume that n is
an upper bound on the number of events that can occur
in unit time� and that the PRS interpreter takes at most
time t to select the set of KAs applicable to each event
occurrence� The maximum reactivity delay� �R� is then
given by �R � p�y� t� where y is the maximumnumber
of events that can occur during the reaction interval� We
have y � �R�n and thus obtain �R � p��
�nt� where
we assume that t � 
�n� This means that� provided the
number of events that occur in unit time is less than 
�t�
PRS will notice every event that occurs 	that is capable
of triggering some KA� and is guaranteed to do so within
a time interval �R�
Because metalevel procedures are treated just like any

other� they too are subject to being interrupted after ev�
ery primitivemetalevel action� Thus� reactivity is guaran�
teed even when the system is choosing between alternative
courses of action or performing deliberations of arbitrary
complexity�
R� is the time one would like most to see bounded�

However� as the time taken to respond to an event can
be arbitrarily large� no such guarantee can be given in
general� Let�s consider this in a little more detail�
Having reacted to some event� it is necessary for the

system to respond to this event by performing some ap�
propriate action� As the system can be performing other
tasks at the time the critical event is observed� a choice
has to be made concerning the possible termination or
suspension of those tasks while the critical event is han�
dled� Furthermore� if there are a number of di�erent ways
in which the event can be handled� it might be necessary
to choose among those alternatives�
Such choices can be made by appropriate metalevel

KAs� However� in general� these decision procedures may

�As selection of KAs does not involve any general deduction
beyond uni�cation and evaluation of a Boolean expression� an
upper bound does indeed exist�

take an unbounded amount of time to reach a decision�
There are two possible ways to overcome this problem�
One is to require that all decision procedures complete
in a bounded time� In many domains� this provides ad�
equate decision�making capability and yields a bound on
response time� As a particular case� it is not di�cult to
construct metalevel KAs that yield the same functionali�
ties as Ladder Logic��

Alternatively� one could construct a special metalevel
KA to act as a task scheduler� This KA would have the ca�
pability to preempt all executing decision tasks �and any
other tasks for that matter� within a bounded time and to
begin execution of an event handler� It could utilize what�
ever information was available �such as any incremental
decisions made by anytime decision algorithms 	Dean and
Boddy� 
����� to select the most appropriate event han�
dler and the manner in which to suspend or terminate
other tasks� It could also take into account the di�erent
constraints on response time that may exist in di�erent
situations� The only requirement is that this KA have a
guaranteed upper bound on execution time�
In summary� PRS is guaranteed to react to critical

events in a bounded time interval� With appropriate
metalevel and application�level KAs� it is also possible
to guarantee a bound on response time�

	 Experimentation

As mentioned earlier� one of the valuable features of this
design is the ability to realize di�erent types of situated
systems by varying the default decision rules and the met�
alevel procedures� In particular� one could then examine
the behavioral properties of di�erent types of agents in
di�erent environments� We have begun this process by
creating one particular type of agent 	George� and In�
grand� 
���� and applying it to various real�time appli�
cations� In this section� we brie�y describe one such ap�
plication and provide statistics on the performance of the
system�
The application domain we choose for experimentation

is the task of malfunction handling for the Reaction Con�
trol System �RCS� of NASA�s space shuttle� This is a
relatively complex propulsion system that is used to con�
trol the attitude of the shuttle� A wide range of problems
can occur in this system� and� in a normal shuttle mis�
sion� no less than four mission controllers are continuously
monitoring and controlling its operation�
Two PRS modules �agents� were used for the applica�

tion� The resulting system was able to detect and recover
from most of the possible malfunctions of the RCS� in�
cluding sensor faults� leaking components� and regulator
and jet failures� It is currently under testing at NASA�s
Johnson Space Center�
The following performance measures have been made

on a SUN Sparcstation� with �� megabytes of central
memory� running Sun Common Lisp� development Envi�
ronment ����� Beta��� Sun� Version for SunOS ���� The
code was not optimized by the compiler� and the probing
itself a�ects system performance �the probes de�ned in
Section � are activated for every event and goal posted
by PRS��
For the series of tests given below� we ran the following

RCS scenarios� a pressure transducer failure� a regulator

�Ladder Logic is one of the most widely used program lan�
guages for real�time systems�
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Figure �� Performance Statistics in the RCS application

failure with both regulators open� and a leaking mani�
fold� This set of scenarios exercises most of the major
features of PRS and is representative of the kind of prob�
lems occurring in the RCS system� The whole test set
took approximately six minutes to run�
Figure � shows some statistics on the run� The Percent

measurement indicates how busy the PRS agents were�
During the six minutes� RCS ran for �
 seconds� and IN�
TERFACE for � minutes �� seconds� Clearly� each PRS
module has plenty of time to work on other problems� �On
this machine� with this con�guration� this application can
be run three times faster than real time without any dif�
�culty�� The Facts� Metalevel Facts� Goals and Messages
indicate the �ow of input to the two PRS modules� We
have separated metalevel facts� such as �soak ����� and
application facts� The statistics on the goals and mes�
sages refer only to the application level� Relevant�KAs
represents the number of relevant KAs �selected by the
indexing mechanism as being potentially applicable� and
Applicable�KAs represents the number of KAs that were
actually applicable� Intentions indicates the number of
intentions the PRS agent has formed� and Satis�ed Goals
in DB represents the number of goals that were directly
satis�ed in the database �and thus did not require KA
activation��
Figure � shows the values of R�� R�� and R� �see Sec�

tion ��� All the values are given in sixtieths of a second�
The average R� are usually very low �a few sixtieths of
a second�� and even the maximum values stay under one
second�� R� is also quite small and never exceeds one sec�
ond� The values of R�� which represents response time�
are very di�cult to interpret� This is because many of
the procedures executed in the RCS application are sup�
posed to �wait� for certain external events to occur� For
example� certain procedures require the system to wait
for the pressure to drop under ��� psi� or to wait for the
astronauts to �ip a switch�� Nevertheless� the experience
of and the evaluation of the system by mission controllers
show that PRS executes its procedures much faster than
either an astronaut or a mission controller could� More�
over� in this application� metalevel KAs have been written
to ensure that the most important procedures get exe�
cuted �rst� thus guaranteeing that the response time is
shortest for the most urgent procedure 	George� and In�
grand� 
���b��

�The high maximum value can be explained by the quan�
tum ���� ms� of the scheduler used under SUN lisp ���� That
means that if both PRS modules are runnable� one will have
to wait at least ��� ms before getting a chance to run�

�These waits are asynchronous and do not block system
execution�
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 Review of related works

Some researchers have sought to deal with resource limita�
tions in dynamic environments by considering all contin�
gencies at design time� This approach obviates the need
for explicit reasoning at execution time� all such reasoning
is e�ectively compiled into the structure of the executing
program 	Agre and Arge� 
��
� Brooks� 
���� Firby� 
����
Rosenschein and Kaelbling� 
���� Kaelbling� 
��
�� It is
very likely that these techniques are optimal in certain
applications� However� many researchers believe that� in
complex domains� the knowledge�compilation approach
will lead to brittle� in�exible systems if used without
any real�time deliberative processing 	D�Ambrosio and
Fehling� 
���� Doyle� 
���� Pollock� 
�����
Blackboard architectures have been used in cer�

tain systems that are intended to perform real�time
behavior	Dodhiawala et al�� 
���� Hayes�Roth et al��

����� They use a collection of knowledge sources �tasks�
sharing a common data structure� There are a number
of interesting features of these systems that could be im�
portant in providing fast response in real�time domains
that do not require signi�cant amounts of deliberation�
However� in current blackboard systems� the actions car�
ried out by the system are not interruptible� This poses
serious problems for maintaining realistic bounds on re�
action time whenever complex or lengthy tasks need to
be performed 	George� and Lansky� 
����� Keeping the
blackboard consistent when knowledge sources are asyn�
chronous is also a serious problem that has yet to be ad�
dressed� In addition� most blackboard architectures use
an agenda of pending tasks that are run serially� The
problem is that the agenda manager �i�e�� the component
that deliberates on what tasks to execute� how to exe�
cute them� and when to execute them� is invoked in each
cycle and for each task present on the agenda� Thus it
runs with considerable overhead� again seriously restrict�
ing the real�time capabilities of the system� Moreover� it
is di�cult to include any lengthy deliberation procedures



in blackboard architectures� and there are no mechanisms
for reasoning about the deliberation processes themselves�
Schemer�II 	Fehling and Wilber� 
���� is in some way

similar to PRS� but utilizes speci�c managers and han�
dlers �deliberation processes� to control the system� As
with the blackboard approach� these task handlers cannot
reason about themselves� Consequently� the architecture
is not as general or �exible as PRS� However� it is an in�
teresting approach and may be optimal for some real�time
domains�

� Conclusion and Future Developments

In this paper� we have attempted to show how the uni�
form knowledge representation for both application�level
knowledge and metalevel knowledge� the default deci�
sion rules� and the algorithm used for handling metalevel
procedures provide a good framework for managing de�
liberation and reasoning in real�time environments� We
have presented some results regarding the real�time per�
formance of the system when used in a real application
�RCS�� and brie�y reviewed some related works�
Although we have presented an architecture that sup�

ports real�time deliberation and reasoning� we have so
far not investigated how di�erent default decisions and
di�erent metalevel strategies a�ect system behavior� nor
have we examined su�cient real�time domains to deter�
mine which kind of situated system best suits which kind
of domain� The current RCS application used a set of de�
fault decision rules and metalevel procedures that proved
to be particularly successful in that domain� While we
believe these to be of wide applicability� that conjecture
has yet to be tested�
Of particular interest would be to incorporate as

metalevel procedures various algorithms that have re�
cently been proposed for deliberating in real�time en�
vironments� These include the work of Whitehair and
Lesser on approximate reasoning 	Lesser et al�� 
�����
Dean and Boddy�s work in anytime algorithms 	Dean and
Boddy� 
����� and the work of a number of researchers
	Agogino and Ramamurthi� 
���� Horvitz et al�� 
����
Russell and Wefald� 
���� in decision�analysis techniques�
We intend to explore some of these issues in our future

research� In particular� by varying metalevel strategies�
we aim to experiment with di�erent types of system �such
as the IRMA agent architecture 	Bratman et al�� 
����� in
di�erent kinds of environments� thus leading to a better
understanding of situated systems and agent rationality�
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