
HAL Id: hal-01981890
https://laas.hal.science/hal-01981890

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Procedural Reasoning versus Blackboard Architecture
for Real-Time Reasoning
Félix Ingrand, Vianney Coutance

To cite this version:
Félix Ingrand, Vianney Coutance. Procedural Reasoning versus Blackboard Architecture for Real-
Time Reasoning. Thirteenth International Conference on Artificial Intelligence, 1993, Avignon, France.
�hal-01981890�

https://laas.hal.science/hal-01981890
https://hal.archives-ouvertes.fr

Procedural Reasoning versus Blackboard Architecture

for Real�Time Reasoning �

Fran�cois F�elix Ingrand
LAAS�CNRS

�� Avenue du Colonel Roche
����� Toulouse Cedex� France

Tel� 	��
 �� �� �� ��
E
mail� felix�laas�fr

Vianney Coutance
ACS Technologies

�� Place du Village d�Entreprises�
����� Labege Cedex� France

Tel� 	��
 �� �� �� ��
E
mail� vianney�acs�dialexis�fr

Abstract

In the last years we have witnessed an increasing interest in AI systems able to perform reasoning
and actions in real�time environments� However� the issue of combining advanced reasoning under
real�time constraints remains a challenge� Nevertheless� some architectures or systems are now
emerging as potential tools to tackle this problem� Among them� one can �nd the Blackboard
Architecture� and the Procedural Reasoning System�
In this paper� we shall give an account of what a real�time reasoning system should be� Then�

we will focus on the Blackboard Architecture and the Procedural Reasoning System approaches
and study exactly what makes them particularly well suited for real�time reasoning� We shall also
compare them at the light of various real�time applications in which they have been used� At
last� we will argue that� by design� PRS seems to o�er better characteristics to allow real�time
reasoning� whereas the characteristics which make the Blackboard architecture well suited for real�
time reasoning are usually added onto the original architecture�
We conclude with a short survey of other systems and architectures used for real�time reasoning�

Keywords� Architectures and languages for AI� real�time AI� Procedural Reasoning� Blackboard Architecture�

R�esum�e

Durant ces derni�eres ann�ees� on a pu constater un int�er�et croissant pour les syst�emes d	IA capa�
bles de raisonner et d	agir dans des environements temps r�eel� Toutefois� les probl�emes r�esultant de
l	utilisation de techniques avanc�ees de raisonnement en temps r�eel subsistent� Malgr�e cela� quelques
syst�emes et architectures apparaissent qui s	int�eressent de pr�es �a ces probl�emes� Parmi eux� on
trouve l	architecture Tableau Noir et les Syst�emes de Raisonnement Proc�edural�
Cet article introduira d	abord une caract�erisation de ce que peut ou doit �etre un syst�eme de

raisonnement temps r�eel� Nous pr�esenterons alors l	architecture Tableau Noir
BB� et les Syst�emes
de Raisonnement Proc�edural
PRS�� en �etudiant de plus pr�es ce qui les rend particuli�erement aptes
au raisonnement en temps r�eel� Ensuite� nous les comparerons� au vue des applications temps r�eel
pour lesquelles ils ont �et�e utilis�es� En�n� nous argumenterons que de par sa conception� PRS semble
o�rir de meilleurs caract�eristiques pour le raisonnement en temps r�eel� alors que celles qui rendent
l	architecture Tableau Noir adapt�ee aux applications temps r�eel ont en pour la plupart �et�e rajout�ees
�a l	architecture originale�
Nous conluerons par un rapide survol des autres syst�emes et architectures utilis�es pour le raison�

nement temps r�eel�

Mots cl�es� Architectures et langages pour l	IA� IA temps r�eel� Raisonnement Proc�edural� Tableau Noir�

�This paper has been published in the Proceedings of the Thirteenth International Conference on Arti�cial Intelligence� Avignon�
�����

�

� Introduction

In the past years� we have witnessed an ever increasing interest in AI systems able to perform their tasks in
real�time
RT� environments� There are various reasons to this growing interest� but the main one is probably
the introduction of AI systems in areas requiring RT properties� Among them� one can �nd applications for
monitoring and control of industrial processes� automatic medical supervision� pilot assistance� and so on�
Another reason for the increasing interest in RT AI systems is probably the ever increasing power of available
computers which allow traditionally slow AI reasoning systems to perform at an acceptable speed� However�
as pointed out by the authors in
O	Reilly and Cromarty� ������ �Fast� is not �Real�Time�� � �and this newly
available computational power only solves a small part of the problem�
Indeed� the design of Real�Time Reasoning Systems
RTRS� g�s far beyond the issue of using fast machines�

In section �� we will de�ne what a RTRS is or� more accurately� which temporal properties a RTRS may have
to prove or guarantee� to consider its use suitable for a particular application�
Section � will present PRS� a general architecture for representing and reasoning about procedures in dy�

namic domains� We show elsewhere
Ingrand and Coutance� ����� that� by design� and under some well de�ned
assumptions� the PRS main loop satis�es one important temporal property� an upper bound on the reaction
time� In this paper� we will also present some aspects of its architecture� seldom presented� but which greatly
participate in PRS ability to handle RT constraints�
In Section �� we will present the Blackboard
BB� Architecture and some BB implementations used in RT

environments� We will see that most of the characteristics which make these various implementations well suited
for RT environments have been added on to the original architecture�
Section � will present a comparison of the two approaches� PRS and BB� with an emphasis on the BB system

used in REAKT
Lalanda et al�� ����b��
In Section �� we will present other systems and architectures which address the issue of RTRS� This short

survey ranges from �Compilation Techniques� to �High Level Architecture��

� What is a Real Time Reasoning System�

The de�nition of a real�time reasoning system
RTRS� has been the subject of many publications� and is still
a controversy in the AI community� From our point of view� there is no general de�nition of a RTRS� there are
only reasoning systems which satisfy some temporal properties�
To some people� it is not reasonable to �view real�time performance as a provable� guaranteed� universal

property of the agent�
Hayes�Roth� ������ Other think that an upper bound on the response time is always
required
Kaelbling� ������ even if the price to pay is an almost complete loss of �exibility at run�time�
We believe that a so�called RTRS must guarantee some temporal properties� In fact� the very essence of

the real�time system domain is that one can prove some temporal properties before hand� People will only �nd
interest in RTRS� and will trust them if� and only if� for a given application� one can prove given properties
about them� Which patient would accept to be under the control of an automatic respirator system which
cannot guarantee a bound on reaction time� Which pilot will accept to �y a plane if his assistant may fail
whenever he needs it most� One cannot trust a system if we can only guarantee that it works in most or average
situations� but may loose events or exceed a given reaction time from time to time��

The problem remains to decide which temporal properties we need� what do we want to prove and what is
the trade o� we are willing to make to guarantee these required properties� For example� in some applications�
one needs to prove that there exists an upper bound on the response time� and indeed� there is plenty of �tradi�
tional computer science� literature on systems which can guarantee such a thing
Benveniste and Berry� ������
However few reasoning systems are able to guarantee this property� The cause is not lost� we can in some
situations use a more �exible mechanism while still guaranteeing some basic temporal properties�
Coming back to the RTRS de�nition� most people commonly expect a real�time system to give an appropriate

response in a bounded� known in advance� amount of time� Although this is desirable� it is not possible for
most AI reasoning systems� Among the various underlying reasons� the most obvious one is that� contrary to
standard programming systems� the control is not de�ned as imperative and therefore� it is very tedious� if not
impossible� to predict exactly which execution path will be taken�

��� Time intervals

We shall now de�ne a number of time intervals which will be of interest to de�ne temporal properties� As shown
on Figure �� we can de�ne the following time intervals for a given event�

Transmission time is the elapsed time between the date of creation of the event and the date at which the
event arrives in the system input bu�ers� which is asynchronously accessible by the external modules� In
other words� we recognize the existence of a bu�er� where external modules can put events for the RTRS
when desired� From time to time� the RTRS picks up all the events in this bu�er and parses them�

�Note that this type of situation tends to appear exactly when you are in a critical phase� where many events occur at the same
time and the risks of exceeding the capabilities of the RTRS are high�

Creation Date
Reception Date

TIA Date
Parsed Date

Done Date

Transmission
Time

Reaction
Time

Parsed Time

Response Time

Time

An event
occurs.

It is received
by the
system The system reads

the event from its
input buffer

The event has
been parsed by the
system The last action applicable

because of this event
completed

Figure �� Important dates in the life of an event

Reaction time is the elapsed time between the date of arrival of the event in the input bu�er and the date at
which the event is taken into account by the system
or picked up from the input bu�er�� In other words�
for each event� it is the time spent waiting in the input bu�er�

Parsed time is the elapsed time between the date at which the event is taken into account by the system and
the date at which the event has been parsed by the triggering mechanism of the RTRS�

Response time is somewhat more complex to de�ne� It basically depends on what we consider to be a response
to an event� i�e�� what type of solution we want to use in response to an event� The solution to arbitrary
problems can be arbitrary complex� � �By using internal states� most systems �build up� the response over
more than one cycle
except for �re�ex� or �
�� computation�� Thus� it is certainly not reasonable to
de�ne the response time as the time elapsed between the date of creation and the date at which the �rst
action to be performed� because of this event� has completed� We de�ne it at as the elapsed time between

the date of creation of the event and the date at which the last action to be performed� because of this
event� has completed�

Note that for a given event� reaction time is always inferior or equal to the response time� which means that
an upper bound must be found on the former if the latter is to be bounded�
These intervals being de�ned� here is a non exhaustive list of some temporal properties which can participate

to the design and the validation of a RTRS�

� upper bound on reaction time� which allows the system to guarantee that it will detect every event in a
given amount of time�

� upper bound on transmission time� which insures that the event will arrive after a given amount of time
in the input bu�er�

� upper bound on �rst response time� which insures a bound on the �rst response given to an event�

� upper bound on last response time� which guarantees that all responses to any event will be delivered in
a prede�ned amount of time�

We believe that the de�nition of a RTRS
or at least its validation� should be based on some of these
properties� or derived ones�

� Description of PRS

��� General Description

The Procedural Reasoning System
PRS� can be described as a generic architecture for representing and rea�
soning about actions and procedures in dynamic domains� It has already been applied to various tasks with
real�time demands� that range from malfunction monitoring for di�erent subsystems of NASA	s space shut�
tle
Ingrand et al�� ������ to the diagnosis� monitoring and control of telecommunications networks
Wesley et al�� ������
the control of a mobile robot
Revillod� ������ and system control for a surveillance aircraft
Ingrand et al�� ������
The architecture of a PRS kernel is composed of three main elements�

Invocation Part:

Invocation Part:

(overpressurized FRCS)
(! (position valve close))

(soak ka1 ka4)

Invocation Part:
(pressurization-alarm)

Procedures Library

Task 1
(soak <Ka-7> <Ka-3>)

Task 2
(! (position valve close))

Task 3
(position tb bp)

Task 4

Task5
(Alarm)

S

W

7

Intention Graph

New goals & new facts

Procedure Execution

External events

Posting new subgoal

Triggering and
Unification

Intend the KA

Execute the intention

Primitive
action

1

2

3

6

5

4

Posting Meta
Facts

(position valve op)

orAction KA:
(signal switch s1)

Graph KA:

Invocation Part:
(overpressurized $x)

Invocation Part:
(! (position switch $x))

Action Part:
(signal switch $x)

Invocation Part:
(! (position valve $x))

Figure �� PRS Interpreter

�� a database contains the system current beliefs about the world and is constantly and automaticallyupdated
as new events appear�

�� a library of plans
or procedures�� called Knowledge Areas
KAs�� describes particular sequences of actions
and tests that may be performed to achieve given goals or to react to certain situations�

�� an intention graph consists of a
partially� ordered set of all plans or tasks to be executed at runtime�

��� The Interpreter

As shown in Figure �� an interpreter
inference mechanism� manipulates these components� It receives new
events and internal goals
��� selects an appropriate plan
KA� based on these new events� goals� and system
beliefs
��� places the selected KA on the intention graph
��� chooses a current intention among the roots of
the graph
�� and �nally executes one step of the active KA in the selected intention
��� This can result in a
primitive action
��� or the establishment of a new goal
���
The PRS kernel interacts with its environment both through its database� which acquires new beliefs in

response to changes in the environment� and through the actions that it performs as it carries out its intentions�
Di�erent instances of PRS� running asynchronously� can be used in an application that requires the cooperation
of more than one subsystem�
In PRS� goals are descriptions of desired tasks or behaviors� In the logic used by PRS� the goal to achieve

a certain condition C is written as �� C�� to test for the condition is written as �� C�� to wait until the
condition is true is written as �� C�� to maintain C is written as �� C�� to assert the condition C is written as
��� C�� and to retract the condition C is written as ��� C�� For example� the goal to close a valve v	 could be
represented as �� �position v	 cl��� and to test for it being closed as �� �position v	 cl���
Knowledge about how to accomplish given goals or to react to certain situations is represented in PRS by

declarative procedure speci�cations called Knowledge Areas
KAs�� Each KA consists of a body� which describes
the steps of the procedure� and an invocation condition� which speci�es under which situations the KA is useful�
Together� the invocation condition and the body of a KA express a declarative fact about the results and utility
of performing certain sequences of actions under certain conditions
George� and Lansky� ������
The set of KAs in a PRS application system not only consists of procedural knowledge about a speci�c

domain� but also includes metalevel KAs
See Figure �� � that is� KAs able to manipulate other KAs� beliefs�
goals� and intentions of PRS itself� The use of metalevel KAs range from methods for choosing among multiple
applicable KAs� to insure mutual exclusion on critical resource� or to compute the amount of additional reasoning
that can be undertaken� given the real�time constraints of the problem domain� To achieve such goals� these
metalevel KAs make use of information about KAs� goals� facts that is contained in the system database or in
the property slots of the KA� For example� the Meta KA presented on Figure � will insure that any procedure
invoked because of an external event� such as an external fact� will be intended��

�This type of KA is usually required in monitoring and control applications�

Figure �� A Simple Meta Level KA

��� PRS Main Loop

If one must understand the way meta level KAs get executed� the PRS main loop is of great interest�

while �TRUE� f �� Loop for ever� ��
check input bu�er��� �� Check the input bu�er� ��
shift facts goals��� �� Get new facts and new goals� ��
soak � �nd soak��� �� Look for new applicable KAs� ��
while �� �list empty�soak��� f �� While we have Applicable KAs� ��

post soak meta facts�soak�� �� Post the Meta Facts� ��
previous soak � soak� �� Save the previous soak value� ��
shift facts goals���
soak � �nd soak���

g
if �� �list empty�previous soak��� f

post soak meta facts�soak��
intend�select randomly�previous soak��� �� Intend one randomly� ��

g
current intention � choose intention��� �� Choose an intention to execute� ��
execute intention�current intention�� �� Execute one step of the intention� ��
previous soak � soak�

g

It is basically composed of one meta level reasoning loop inside the normal main loop� The goal of this inner
loop is to determine the successive Sets Of Applicable KAs
SOAK�� at the light of the concluded beliefs on the
previous SOAK� This inner loop stops when the SOAK is empty� i�e� when no applicable KA is found�

��� Other Aspects of PRS

Many aspects of the PRS architecture have been designed to address real�time reasoning� For example the
system provides mechanisms to handle� in constant time� operations which can be in O
n�� such as a look up
mechanism in the fact database or the procedure library� In most applications� we can �nd in advance the
maximum number of facts
or at least �nd an upper bound� which will ever be concluded in the database� and
the number of KAs which will be stored in the library� There exist mechanisms
mostly hashing mechanisms�
which can thus guarantee an upper bound on an access time�
Moreover� other mechanisms� although seldom presented� prove to be very useful� if not critical in RT

applications� We present some of them in the following sections�

Term indexing mechanism in the database� The PRS database uses a term indexing mechanism� The
detail of this mechanism� and its complexity can be found in
Stieckel� ������ In short� all the facts are indexed
in such a way that �consult� operations can be done in constant time� Moreover� this mechanism is particularly
useful when one consults the database with facts containing variables
which is most often the case with PRS��
However� there is a tradeo�� as the deletion and the conclusion of a fact can be rather expensive� Nevertheless�
the overall gain in speed is substantial�

Functional predicates� Functional predicates are predicates which can be expressed as a function of a subset
of their arguments which gives the rest of their arguments as a result� In other words� for such a predicate P �

P x� � � � xn� �
P y� � � � yn� � x� � y�� ��xj � yj�� xi � yi� i � j �� � � � � n
In this case� P is functional with respect to the �rst j arguments� In PRS� when a predicate is declared
functional� the database automatically d�s the bookkeeping and removes previous values� For example if we
consider the following statement� �pressure tk	
���� there is� most likely� only one possible value of pressure
at one time� therefore any previously recorded pressure value for tk	 should be discarded� In this case� if we
received �pressure tk	
�
� few minutes
or seconds� ago� it will be removed from the database�

Triggering mechanism� The triggering mechanism� i�e�� the mechanism which �nds the currently applicable
KAs� has also been optimized for dynamic environments� The KA syntax and semantic require the Invocation
Part to contain a condition on triggering goals or facts� In other words� only the presence of one of these goals
or facts may render this KA applicable� When procedures are loaded and compiled in the system� several hash
tables are built and used by the kernel to very quickly retrieve
in constant time� the procedures which are
triggered by a particular fact or a particular goal� Therefore� the kernel d�s not have to scan the whole library
of procedures for applicable procedures� but only a subset of those procedures which are �relevant� to a new fact
or a new goal� Of course� this d�s not prevent the system from using a full uni�cation to check the applicability
of the relevant procedures afterwards� but this is then done on a very small subset of the set of KAs�

Asynchronous Action� The measure of the reaction time of PRS heavily depends on the time of the longest
action� Therefore� one of the main concern of a PRS application designer is to keep the actions as short as
possible� However� some operations can either take a long time to execute� or may need to synchronize with
external events
such as waiting until a user types the response to a question�� For this type of action� the
system provides a mechanism which allows an action to return before completion� with a particular value which
is interpreted by the kernel as �I do not have the result yet� call me back later��

C Language� Real�time Unix� The most recent version of PRS
called C�PRS� has been written in C under
Unix� Most people would not consider this as a serious argument for its ability to be used as a RTRS� Indeed
from a research point of view� this argument d�s not hold� But from a practical point of view� if you need to
put the kernel on the ���X� board of your mobile robot� you cannot a�ord a Lisp interpreter� In fact� from
our experience with previous versions of PRS written in Lisp� it appears that the overall performances of the C
version are far better� and the most visible e�ect is the size of the C�PRS kernel which is less than ��� Kbytes
on a Sparcstation� while the Lisp one was over �� Mbytes� In many applications� one needs to run more than
one C�PRS kernel in parallel
communicating with a message passing mechanism�� and in some cases� one even
has tens of C�PRS cooperating on a workstations network� It is then obvious that fast and small kernels are
preferable even for research study�
As presented above� PRS numerous mechanisms and features participate to its ability to be used in dy�

namic� real�time environments� Nevertheless� the main characteristics that make it particularly powerful as
an embedded reasoning system remain�
�� The semantics of its plan
procedure� representation� which is
important for veri�cation and maintenance�
�� Its ability to construct and act upon partial
rather than
complete� plans�
�� Its ability to pursue goal�directed tasks while at the same time being responsive to chang�
ing patterns of events in bounded time�
�� Its facilities for managing multiple tasks in real�time�
�� Its
default mechanisms for handling stringent real�time demands of its environment� and
�� Its metalevel
or
re�ective� reasoning capabilities� Most of these features have been discussed in earlier reports and papers

Ingrand and George�� ����� George� and Ingrand� ����� George� and Ingrand� ������

� Blackboard Architecture

Blackboard architectures
Hayes�Roth� ����� have been heavily used in various systems with real time constraints
like BB� in the Guardian system
Hayes�Roth et al�� ������ RT�
Dodhiawala et al�� ����� for the pilot associate�
REAKT
Lalanda et al�� ����a�� or ATOME�TR
Mentec and Brunessaux� ������

��� General presentation

The Blackboard architecture is generic and provides an interesting framework to develop control and monitoring
systems� In short� a Blackboard system is composed of the following modules�

�� the blackboard� a common solution space shared by the Knowledge Sources
KS��

�� the Knowledge Sources
KS�� which are mostly independent knowledge modules working on their �part�
of the problem� reading their data and writing their results in the blackboard�

�� the Control� which is in charge of selecting the appropriate KSs for execution�

This framework is in fact too general to provide powerful mechanisms to handle RT constraints� Therefore�
it must be modi�ed or extended� For example� none of the default mechanisms of the blackboard architecture
allows� a priori� a bound on reaction time� Di�erent �techniques� have been used to allow the BB system
designer to use its application in a real time environment�
In
Dodhiawala et al�� ������ the authors present RT�� a Blackboard architecture used in the DARPA Pilot

Associate program� This particular BB implementation uses four event channels with di�erent priorities to
allow the processing of more important events before others�
In
Hayes�Roth et al�� ����� and
Hayes�Roth� ������ the authors present the Guardian system� a system

to monitor patients under ventilator
an arti�cial breathing machine� in a surgical intensive care unit� Here
also there are extensions to the original BB paradigm to handle real�time data� The application is organized
around various modules specialized in a particular subtask� scheduler� executor� agenda manager� etc� All these
modules are conceptually interesting� but from an implementation point of view� it is rather di!cult to �gure
out what d�s what� Moreover� there seems to be serious design �aws which may lead the system to forget about
some events� mainly when the input bu�ers are full� Another problem we see in this particular implementation
is the large overhead induced by the scheduler at each cycle to reorder the applicable KSs�

��� REAKT

The REAKT system presented in
Lalanda et al�� ����a� Lalanda et al�� ����b� is also based on a Blackboard
architecture� We shall concentrate on this particular implementation which seems to be the most advanced to
handle RT problems�
The BB present in REAKT has been enhanced in the following mechanism�

�� The addition of interruptible KSs� This is certainly the most signi�cant change in terms of improvement to
handle real�time constraints� In a RT environment� the computation performed in a particular KS should
not take an arbitrary long time� otherwise� the reaction time
and consequently the response time� of the
system could be arbitrary long� Therefore the use of interruption mechanisms appears to be necessary�

�� The use of the intention concept� The introduction of this notion allows the control mechanism to focus
on and reason about tasks instead of individual rules� Intention o�ers a better level of abstraction when
the control needs to deal with tasks� or with sets of rules dealing with a particular goal�

�� The use of RETE algorithm in KSs� This change allows a faster triggering mechanism to �nd out the
applicable rules�

� Comparison of the two approaches

If we compare the two approaches� and particularly the REAKT BB system and PRS� we �nd some inter�
esting common points� However� there are some subtle di�erences which we believe give an edge to the PRS
architecture�
The interruption mechanism in REAKT is also present in PRS
by design�� When procedures are executed�

the control g�s back to check the input bu�er after each goal posting� or each action execution� As a result�
the reaction time of the system is very small� and there are even mechanisms to enable actions to give back
control when they take too long to complete�
The BB architecture uses the KS representation� Each of these KSs is a set of rules organized in a single

module because of their relation with the problem this particular KS is solving� In PRS� a similar partition of
an application can also be considered by using multiple C�PRS kernels which can easily communicate between
each other�
In REAKT� there is the possibility of using a particular KS to control the execution of the other KSs� This

is done in a particular intention� the control intention� We believe that the PRS meta level mechanism is
somewhat more general and more �exible because it provides more control on the main loop of the kernel
KA
applicability� intending KA� re shu"ing the intention graph� etc�� Moreover� this mechanism is designed in such
a way that it is �self� interruptible�
The notion of intention� introduced in PRS in ����� is present in both architectures and appears to be very

practical when it comes to deal with change of focus or tasks management� However� its use appears to be
more advanced in PRS� as an intention graph is built from the set of intentions� This intention graph� from
which only the root can be executed at any time� allows the user to easily implement and represent complex
priority mechanisms� Moreover� meta level KAs can change dynamically the layout of this graph to implement
a particular con�guration of execution� For example� after a serious alarm� a meta level KA may reorganize the
intention graph to explicitly put the new intention� which takes care of the alarm� before all the other intentions�
The knowledge representation used in both systems is quite di�erent� Most BB systems use a rule based

representation� while PRS uses a procedural representation of knowledge� We think that� in most real�time
applications� such as monitoring and supervision of complex processes� the procedural representation is better
suited as it enables the user to keep explicit the control structure embedded in the knowledge and in the various

operational procedures� In fact� for this type of application� there often exist books of procedures and plans to
execute in speci�c and critical situations� Moreover� when it comes to write meta level control� it is easier to
prove its validity if it is written as a procedure then a set of rules�
At last� but not least� PRS guarantees some temporal properties providing some well de�ned assumptions�

We show in
Ingrand and Coutance� ������ that an upper bound on reaction time is a prerequisite to most
temporal properties
such as the bound on response time�� and we show that a bound on reaction time can be
guaranteed�
If we consider �Max� the maximum frequency of arrival of events� and TPars� the parsing time� i�e�� the time

spent looking for KAs and choosing one KA�
If there is a bound on the parsing time TPars� and �Max�TPars � �� and the meta level KAs
i�e�� the KAs

which may trigger in the inner loop of PRS main loop�� do not loop on themselves� and the set of applicable
KAs in this inner loop monotonically decreases in at most n inner loop� then it exists a bound on reaction time�
Note that this condition d�s not depend on the longer action of the system� TMax

Exec� However the value of
the reaction time depends on it��

The upper bound on reaction time is then�� TMax
Rea �

TMax

Exec
�c

���Max�TPars

To our knowledge� no such study or analysis has been done with Blackboard based real�time reasoning
system� while it appears to be a prerequisite to most temporal properties�

� Other Systems and Architectures

Various other reasoning systems and architectures o�er some capabilities to handle real time constraints while
executing� In some cases� the system or the language is de�ned in such a way that some real time properties
can be identi�ed� as is the case for Synchronous Systems� Nevertheless� few reasoning system architectures or
algorithms allow any provable real time property� which remains the real criteria from our point of view�

��� Synchronous Systems and Compilation Techniques

Synchronous systems and systems using compilation techniques can usually guarantee an upper bound on
reaction time and even on response time� However� the tradeo� is very high and �response time� is to be taken
in a very restrictive way� All these systems are unable to compute� in a predictable bounded time� arbitrary
operations as simple as factorial� just because everything needs to be known in advance and can therefore be
compiled in a �nite state automata of reasonable size� Moreover� these approaches are often too restrictive�
They do not provide much �exibility at runtime and� in most cases� the produced result is only interesting if
the produced automata has been parallelized by compiling it in an electronic circuit�
The synchronous approach can intuitively be de�ned as using a model where the outputs of the system are

produced synchronously with their inputs� � �Even if this seems rather di!cult to implement� it turns out to
be easier to describe and analyze temporal properties for this system than for the asynchronous approach� An
abundant literature �ourishes on these systems� but seldom shows interest for the AI �eld and the Reasoning
Systems we deal with in this paper�
The Rex#Gapps approach presented in
Kaelbling� ����� is in fact similar and can be placed in the family of

real�time synchronous systems� The user can describe a set of automata which completely de�nes all the system
operations� However� a couple of critics can be made to this approach� The produced automata is the �worst
case� automata� i�e�� all computations are done in every cycle� whatever inputs are fed in the system� If this is
not critical in a parallelized solution
such as a silicium chip�� this can be rather annoying if the automata is
interpreted on a sequential machine sharing resources with other processes� Another problem with this approach
is that the semantic of goals presented in Gapps d�s not hold very well in a compiled environment�� for example�
there is no di�erence
from the automata point of view� between an �achieve� or �maintain� goal�
The KHEOPS system
Ghallab and Philippe� ������ using expert rules in propositional logic� is also a system

with a bound on reaction and response time� Here also� the tradeo� is important� but at least� the produced
decision tree is optimal since only the computation required to produce the result is done�
For all the systems presented above� response time and reaction time are the same� However� we should

keep in mind that a response in this case can only be obtained by at most one transition of the state automata

which is a �nite automata��

��� High Level Architecture

Other systems such as Ph�nix
Cohen et al�� ����� or RAP presented in
Firby� ����� are intended to be used�
or have been used� in real�time environments� However� none of them seems to provide any proof of their ability

�Note that to exhibit this value� we computes it in the worst case� Therefore� this value is in fact less important than its
existence�

�
c is a constant corresponding to the time needed to intend a new condition and to choose one intention to execute�

�Of course� this d�s not mean that it cannot be done�
�After all� is a compiled goal still a goal�

to guarantee a bound on reaction time or other temporal properties�
In
Musliner et al�� ������ the authors present a cooperative intelligent real�time control architecture
CIRCA��

They propose a cooperative architecture� in which they introduce two separate subsystems� an AI reasoning
system� and a real�time subsystem which cooperate while still addressing the problem each system is designed
for� This is actually a very interesting and promising approach� Some recent work done at LAAS
Revillod� �����
attempts to implement a somewhat similar architecture by combining PRS and the KHEOPS system presented
above� in a multi layered architecture� where each layer guarantees a number of temporal properties� at the
lowest level KHEOPS guarantees response time� while upper layers using PRS provide more advanced reasoning
with still bounded reaction time� and if desired� other temporal properties implemented with meta level KAs�
To conclude this section on compiled systems and advanced architectures� let us point out that strong

restrictions prevent high level architecture knowledge systems from being compiled in situated automata� For
example� if we consider the assumptions we make to still guarantee reaction time in PRS� why cannot we just
compile the whole system in a huge automata� If this is theoretically possible� it is in practice unreasonable�
The number of states necessary to represent a group of application KAs in a propositional logic can still be
reasonable� However� if we later consider the meta level reasoning� i�e�� all the possible ways and orders in which
these KA instances can be applicable and executed� we are likely to quickly reach an unreasonable number of
states�

� Conclusion

In this paper we have shown that it is rather di!cult to de�ne what a Real�Time Reasoning System is� It
appears to be more correct to de�ne a number of temporal properties� and then to prove that a particular
reasoning system satis�es any given property under some speci�c assumptions�
We have presented the PRS system and the Blackboard architecture� which have both been used in real�

time applications� The two approaches are quite di�erent� but have a number of interesting characteristics
in common� However� we believe that some of these critical characteristics are better handled by the PRS
architecture� either because of its original design� or because of more generic mechanisms�
We concluded with an overview of some of the current systems and architectures which have been used or

developed to be used in real�time environments� If some of them can guarantee high level temporal properties�
such as a bound on response time� it is usually done by using some compilation techniques which tend to freeze
all the reasoning at compile time� Other systems are able to carry on more advanced reasoning� but usually
lack formal proofs of their ability to satisfy some of the temporal properties presented�
We believe that the RTRS research area will grow and become ever more accepted in the AI community

and more generally in the computer science community�� if and only if RTRS designers can prove that their
systems satisfy the temporal properties their applications require�
As for PRS� a commercial version� written in C and named C�PRS
Coutance and Ingrand� ����� is available

and runs on various Unix platforms� under the X��#Motif graphic environment� It is used in various applications
ranging from telecommunication network management to industrial process control and supervision� C�PRS
also runs under VxWorks
a real�time Unix operating system�� and among other tasks� we are using it on board
the various mobile robots at LAAS as a system to do control execution and plans re�nement in the MARTHA
Esprit project�

References

Benveniste and Berry� ����� A� Benveniste and G� Berry� The Synchronous Approach to Reactive and Real�
time Systems� Proceedings of the IEEE� ��
�������$����� �����

Cohen et al�� ����� P� R� Cohen� M� L� Greenberg� D� M� Hart� and A� E� Howe� Trial by Fire� Understanding
the Design Requirements for Agents in Complex Environments� Arti�cial Intelligence Magazine� ��
�����$���
�����

Coutance and Ingrand� ����� V� Coutance and F� F� Ingrand� C�PRS Development Environment Manual� ACS
Technologies� �� Place du Village d	Entreprises� BP ���� ����� LABEGE Cedex� France� �����

Dodhiawala et al�� ����� R� Dodhiawala� N� S� Sridharan� P� Raulefs� and C� Pickering� Real�time AI sys�
tems� A de�nition and an architecture� In Proceedings of the International Joint Conference on Arti�cial

Intelligence� pages ���$���� Detroit� Michigan� U�S�A� August �����

Firby� ����� R� J� Firby� Adaptative Execution in Complex Dynamic Worlds� PhD thesis� Yale University�
Department of Computer Science� Yale University� May �����

�The AI reasoning system main loop is in fact very similar to the one used in PRS as described in �Ingrand and George	� ���
��

George� and Ingrand� ����� M� P� George� and F� F� Ingrand� Decision�Making in an Embedded Reasoning
System� In Proceedings of the Eleventh International Joint Conference on Arti�cial Intelligence� pages ���$
���� Detroit� Michigan� U�S�A� �����

George� and Ingrand� ����� M� P� George� and F� F� Ingrand� Real�Time Reasoning� The Monitoring and
Control of Spacecraft Systems� In Proceedings of the Sixth IEEE Conference on Arti�cial Intelligence Appli�

cations� Santa Barbara� California� U�S�A� March �����

George� and Lansky� ����� M� P� George� and A� L� Lansky� Procedural Knowledge� Proceedings of the IEEE
Special Issue on Knowledge Representation� �������$����� �����

Ghallab and Philippe� ����� M� Ghallab and H� Philippe� A compiler for real�time Knowledge�based Systems�
In International Workshop on Arti�cial Intelligence for Industrial Applications� Hitachi City� Japan� May
����� IEEE�

Hayes�Roth et al�� ����� B� Hayes�Roth� R� Washington� R� Hewett� M� Hewett� and A� Seiver� Intelligent
Monitoring and Control� In Proceedings of the International Joint Conference on Arti�cial Intelligence�
pages ���$���� Detroit� Michigan� U�S�A� August �����

Hayes�Roth� ����� B� Hayes�Roth� Architectural Foundations for Real�Time Performance in Intelligent Agents�
Technical Report KSL ������ Knowledge Systems Laboratory� Department of Computer Science� Stanford
University� Stanford� California� U�S�A� December �����

Ingrand and Coutance� ����� F� F� Ingrand and V� Coutance� Real�Time Reasoning using Procedural Reason�
ing� Technical Report ������� LAAS#CNRS� Toulouse� France� �����

Ingrand and George�� ����� F� F� Ingrand and M� P� George�� Managing Deliberation and Reasoning in Real�
Time AI Systems� In Proceedings of the ���� DARPA Workshop on Innovative Approaches to Planning�
Santa Diego� California� U�S�A� November �����

Ingrand et al�� ����� F� F� Ingrand� J� Goldberg� and J� D� Lee� SRI#GrummanCrew Members	 Associate Pro�
gram� Development of an Authority Manager� Final Report� Arti�cial Intelligence Center� SRI International�
Menlo Park� California� U�S�A� �����

Ingrand et al�� ����� F� F� Ingrand� M� P� George�� and A� S� Rao� An Architecture for Real�Time Reasoning
and System Control� IEEE Expert� Knowledge�Based Diagnosis in Process Engineering� �
�����$��� December
����� Also available as LAAS Technical Report �������

Kaelbling� ����� L� P� Kaelbling� Goals as Parallel Program Speci�cations� In Proceedings of the Seventh

National Conference on Arti�cial Intelligence� pages ��$��� Saint Paul� Minnesota� U�S�A� �����

Lalanda et al�� ����a� P� Lalanda� F� Charpillet� and J�P� Haton� A Real�time Blackboard based architecture�
In Proceedings of the Tenth European Conference on Arti�cial Intelligence� Vienna� Austria� �����

Lalanda et al�� ����b� P� Lalanda� F� Charpillet� and J�P� Haton� Conduite du raisonnement dans un syst�eme

�a base de tableau noir temps r�eel� PhD thesis� University of Nancy� CRIN� Nancy� France� December �����

Mentec and Brunessaux� ����� J�C� Le Mentec and S� Brunessaux� Improving Reactivity in a Blackboard Ar�
chitecture with Parallelism and Interruptions� In Proceedings of the Tenth European Conference on Arti�cial

Intelligence� Vienna� Austria� �����

Musliner et al�� ����� D� J� Musliner� E� H� Durfee� and K� G� Shin� CIRCA� A Cooperative Intelligent Real�
Time Control Architecture� IEEE Transactions on Systems� Man� and Cybernetics� ��
��� ����� To Appear�

O	Reilly and Cromarty� ����� C� A� O	Reilly and A� S� Cromarty� �Fast� is not �real�time�� Designing e�ective
real�time AI systems� In Applications of Arti�cial Intelligence II� pages ���$���� Bellingham� Washington�
����� Int� Soc� of Optical Engineering�

Revillod� ����� F� Revillod� Une Architecture D�ecisionelle pour le Contr�ole d	un Robot Autonome� Rapport
de Stage Ecole Sup�erieure d	A�eronautique et de l	Espace� LAAS#CNRS� Toulouse� France� September �����
In french�

Stieckel� ����� Mark Stieckel� Term Indexing Database� Technical Report ����� SRI International� Menlo Park�
California� U�S�A� �����

Wesley et al�� ����� L� Wesley� F� F� Ingrand� J� Rushby� J� Garcia Luna� and J� D� Lee� Application of PRS to
Network Management System� Final Report� Arti�cial Intelligence Center� SRI International� Menlo Park�
California� U�S�A� �����

