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Abstract� We describe in this paper a complete
architecture for action planning and execution for in�
tervention robots� The architecture is based on a de�
composition of the robotic system into a Ground Sta�
tion that embeds the functions for mission planning
and teleprogramming� and an on�board system on the
remote robot� This last system is decomposed into
two main levels� a �decisional level� that interprets
the mission according to the actual execution context
and controls its execution by a �functional level� em�
bedding the necessary processings for action and per�
ception� The decisional level makes use of PRS� a
procedural reasoning system that will be presented�

� Introduction
Applications such as planet or submarine explo�

ration require a speci�c class of robots we call �In�
tervention robots�� Such robots have to perform non�
repetitive and time�constrained tasks in ill�known en�
vironments� with speci�c constraints on communica�
tion �delays� limited bandwidth�� In this context� clas�
sical teleoperation as well as telerobotics�like 	
�� ap�
proaches with a human operator in the control loop
are not adequate 	
� because the environment is not
known well enough beforehand to simulate or model
it� and it may be too dynamic�

The global functional architecture we propose is
composed of an Operator Station and an on�board
Robot Control System �Figure 
�� The Operator Sta�
tion includes the necessary functions to allow a human
operator to build an executable mission� i�e� a mission
that can be interpreted by the Robot Control System�
and to supervise its execution�

The process of building an executable mission is
decomposed into two phases which correspond to two
di�erent levels of abstractions and to di�erent plan�
ning techniques�


� a phase called �mission planning� which pro�
duces a �mission plan�� i�e� a set of �partially�
ordered steps that will allow the robot to achieve
a given goal�

�� a phase called �teleprogramming� that consists
in re�ning the steps in the mission in terms of

�This paper has appeared in the �Undersea Robotics and In�
telligent Control� workshop proceeding� March ���� ����� Lis�
bon� Portugal	

Figure 
� Architecture for Remote Intervention
Robots

tasks that can be interpreted and then executed
by the robot�

Mission planning must be performed at the Opera�
tor Station because the determination of the goal itself
is based on the human interpretation of the working
environment� Depending on the nature of the mis�
sion and its di�culty� and the amount of information
available at planning time� an executable mission can
range from an elementary step including every detail
in the robot actions� to a complete sequence of steps�

Teleprogramming is also a planning phase as it is
based on a projection into the future� However� this
planning phase relies upon specialized planners �e�g�� a
geometric motion planner� a manipulation action plan�
ner� that are able to take into account� in an explicit
way� the interactions between the robot and its envi�
ronment� The key aspect for an intervention robot is
that this programming phase must be performed us�
ing partial and inaccurate information about the robot
world� and about the consequences of the robot�s ac�
tions� This means that the resulting program must
rely on sensor�based actions to allow the robot to con�
stantly adapt its execution �e�g� feature tracking� and
take appropriate actions when it detects any discrep�






ancy between between the planned and the actual
state of the world�

On�board the remote robot itself� on�line planning
and reasoning is necessary to adapt e�ciently to the
actual execution context because of the sparsity or
uncertainty of knowledge� This is for example the case
when the environment is gradually discovered by the
robot�

We propose an architecture that answers the re�
quirements for robot autonomy composed of a func�
tional level embedding the robot sensing and acting
capacities� including closed�loop processes� and a deci�
sional level based on a layered plan�based framework
that integrates interaction between deliberation and
action 	���

We shall focus on this aspect of embedded control
and supervision� and describe the use of PRS �Proce�
dural Reasoning System� �rst developed at SRI 	��� as
a tool for implementing the interaction between de�
liberation and reaction� PRS� and its implementation
C�PRS that we use� provides tools and mechanisms to
represent and execute plans� scripts and procedures�
i�e�� conditional sequences of actions which can be run
to achieve given goals or to react to particular situa�
tions�

� Deliberation and Action in the Robot
System

In the robot architecture� the Supervisor interacts
with the other layers and with the re�nement plan�
ner� The other layers are viewed as a set of processes
which exchange signals with the supervisor� These
processes correspond to the actions of the agent as
well as events associated with environment changes
independent from robot actions�

The re�nement planner is given a description of
the state of the world and a goal resulting from the
teleprogramming phase �e�g�� to reach a given location
with some constraints on the motion�� it produces a
plan �e�g�� the sequence of motions and perception ac�
tions to take�� One criterion that should be considered
when speaking about planning is the �quality� of the
produced plan which is related to the cost e�ective�
ness of achievement of a given task or objective �time�
energy�� � � �� and to the robustness of the plan� i�e�� its
ability to cope with non�nominal situations� This last
aspect is one of the motivations of our approach� be�
sides providing a plan� the planner should also provide
a set of execution �modalities�� expressed in terms of�

� constraints or directions to be used for execu�
tion� These directions may be considered as
meta�knowledge for the supervision of execution�

� description of situations to monitor and the ap�
propriate reactions to their occurrence in order
to prepare a more e�ective robot behavior to
some possible events� such reactions are imme�
diate re�exes� �local� correcting actions �with�
out questioning the plan�� or requests for re�
planning�

The activity of the supervisor consists in monitor�
ing the plan execution by performing situation detec�
tion and assessment and by taking appropriate deci�
sions in real time� i�e�� within time bounds compatible

with the rate of the signals produced by the processes
and their possible consequences�

The responsibility of �closing the loop� at the level
of plan execution control is entirely devoted to the su�
pervisor� In order to achieve it� the supervisor makes
use only of deliberation algorithms which are guar�
anteed to be time�bounded and compatible with the
dynamics of the controlled system�

This execution control is done through the use of
the plan and its execution modalities� as well a set of
situation�driven procedures embedded in the supervi�
sor and independent of the plan� These procedures
are prede�ned at design phase� They can take into
account the current goal and plan when they are exe�
cuted� by recognizing speci�c goal or plan patterns�

The execution processes are represented by �nite
state automata �FSA�� In the FSA we use� the set of
allowed external signals correspond to all the actions
that can be taken by the supervisor� Similarly� the set
of possible internal signals correspond to all environ�
ment changes that could be perceived by the supervi�
sor� The execution processes are embedded in robot
modules controlled by an �Executive� implemented
as a compiled �� rule based�system� that produce a
bounded�depth decision tree�

It is important to note that the supervisor is not
just an interpreter that would execute a �reactive plan�
composed of the plan and modalities produced by the
planner� Indeed� the supervisor actually makes eval�
uations and takes decisions on the way the actions
should be executed� Furthermore� the supervisor may
decide that a replanning of a task is necessary� and
in this sense it also controls the planner considered as
a resource� and it may ask for a new mission plan or
decision from the control station�

� Procedural Reasoning for Supervi�
sion

Procedural reasoning is a suitable framework for
implementing the supervisor part in the robot archi�
tecture� Before discussing how it is used we �rst present
a brief description of its main features�

��� The Procedural Reasoning System
PRS is composed of a set of tools and methods to

represent and execute plans and procedures� These
plans or procedures are conditional sequences of ac�
tions and goals which can be run or posted to achieve
given goals or to react to particular situations� Pro�
cedural reasoning di�ers from other commonly used
knowledge representations �rules� frames� � � � � as it
preserves the control information �i�e� the sequence of
actions and tests� embedded in procedures or plans�

A complete description of PRS is given in previ�
ous papers 	
��� Nevertheless� we �nd it necessary to
provide a brief description of its main components�
a database which contains facts representing the

system view of the world and which is constantly and
automatically updated as new events appear�
a library of procedures �or scripts�� each de�

scribing a particular sequence of actions and tests that
may be performed to achieve given goals or to react
to certain situations�
an intention �or task� graph which is a dy�

namic set of intentions�tasks currently executing �Fig�

�



Figure �� A KA with multiple threads

ure � shows an example of an intention graph snapshot
�from a multi robot experiment performed at LAAS���
Intentions �or tasks� are dynamic structures which ex�
ecute the �intended procedures�� they keep track of
the state of execution of these intended procedure� and
of the state of their posted subgoals�

There exist various implementations of PRS� SRI
PRS 	
��� ADS PRS� UM�PRS 	
��� The one we use�
and present in this paper is called C�PRS 	
� and is an
implementation of PRS in C� under Unix�

����� KAs� Scripts and Procedures

Knowledge about how to accomplish given goals or to
react to certain situations is represented in PRS by
declarative procedures historically called Knowledge
Areas �KAs�� �See Figure ��� Each KA consists of a
body� which describes the steps of the procedure�plan��
an invocation condition� which speci�es the goal the
KA may ful�ll or the events to which it reacts� and
a context describing under which situations the KA
is applicable� Together� the invocation condition and
body of a KA express a declarative fact about the
results and utility of performing certain sequences of
actions under certain conditions 	��� Other piece of in�
formation are stored in KA such as facts to conclude or
retract upon successful execution or properties which
hold user�de�ned property�value pairs �See Figure ���

In PRS� goals are descriptions of a desired state
associated to a behavior to reach�test this state� For
example� the goal to position robot�� in sea�area��� is
written �ACHIEVE �position robot�� sea�area������
The goal to test �without modifying the environment�
if the robot robot�� is in sea�area��� is represented
�TEST �position ������ The goal to passively wait
until the robot robot�� gets in sea�area��� is rep�
resented �WAIT ������� The goal to check that the
robot robot�� stays in sea�area��� while performing
other actions is represented �PRESERVE ������� Sim�

�Some KAs� called action KAs� just have an external func�
tion call as a body	
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Figure �� PRS Interpreter

Figure �� Partial Intention Graph Snapshot

ilarly� the goal to maintain the robot robot�� in sea�
area��� is represented �MAINTAIN ������� For ex�
ample� the goal to follow a submarine cable while
maintaining a safe distance in between another inspec�
tion robot could be written� �� �ACHIEVE �follow
cable�� �MAINTAIN �safe�distance ��myself robot�	����

����� Meta�level KAs

The set of KAs in a PRS application system not only
consists of procedural knowledge about a speci�c do�
main �See Figure ��� but also includes meta�level KAs
� that is� KAs able to manipulate applicable KAs�
goals� and intentions of PRS itself� The use of meta�
level KAs ranges from methods for choosing among
multiple applicable KAs� to insure mutual exclusion
on critical resources� or to compute the amount of
additional reasoning that can be undertaken� given
the real�time constraints of the problem domain� To
achieve such objectives� these meta�level KAs make
use of information about KAs� goals� facts that is con�
tained in the system database or in the properties slot
of the KA� For example� a meta KA could insure that
any procedure invoked because of an external event�
such as an external fact� will be intended��

����� The Interpreter

The PRS kernel interacts with its environment both
through its database� which acquires new beliefs in

�This type of KA is usually required in a monitoring and
control application where external events are considered more
urgent than internal goals	
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response to changes in the environment� and through
the actions it performs as it carries out its intentions�

As shown in Figure �� an interpreter manipulates
these components� It receives new events �both from
outside and from asserted facts� and internal goals �
��
selects an appropriate KA based on these new events�
goals� and system beliefs ���� places the selected KA
on the intention graph ���� chooses a current inten�
tion�task among the roots of the graph ��� and �nally
executes one step of the active KA in the selected in�
tention �
�� This can result in a primitive action ����
or the establishment of a new goal ����

An important part of the main loop is the one which
�nds applicable KAs and selects those which will be
intended ���� Basically� this part is composed of one
meta�level reasoning loop inside the main loop� The
purpose of this inner loop is to determine the succes�
sive sets of applicable KAs� in the light of the con�
cluded beliefs on the previous set of applicable KAs�
This inner loop stops whenever no applicable KA is
found� This means that there exist no more criteria
�i�e�� an applicable meta procedure� to select among
the applicable procedures�

��� Implementation of a Supervisor using
C�PRS

There are a number of reasons why the PRS ap�
proach appears to be well suited for the implementa�
tion of a supervisor which satis�es the requirements of
the above mentioned architecture� We shall now ex�
amine them� Some of these reasons relate to the orig�
inal capabilities of the PRS and some relate to new
features implemented in C�PRS� the speci�c version
we use�

����� Partial Plan	Script Representation

In PRS� each KA is self�contained� as it describes
in which condition it is applicable and the goals it
achieves� It usually contains in its �body� tests which
condition the proper posting of its subgoals while leav�
ing to the interpreter �and the meta�level KAs� the
choice of the adequate procedure to try to satisfy each
posted subgoal�

This is particularly well adapted to context based
task re�nement and to a large class of robot tasks
which can be viewed as incremental� The same task
corresponding to the achievement of a given goal has
to be pursued for a given period of time while its con�
ditions change due to its own execution state or to
changes in the environment state or the robot state�
A typical task of this type is navigation is a partially
known and�or dynamic environment�

For example� in the the experiments we have per�
formed on mobile robot at LAAS� a number of tests
and actions must be performed before the robot be�
gins to plan its motion� Nevertheless� the choice of
the motion planner used is left to the interpreter and
possibly to meta�level KAs which will decide which
method is the best in the current situation�

����� Event and Goal Driven Behavior

KAs can be triggered upon occurrence of events or
posting of goals� This is a key feature for implement�

ing a periodic monitoring through a set of situation
driven procedures while re�ning and execution a plan
as provided by the planner�

A convenient way to interface the supervisor and
the planner is the PRS data base� This will allow
for example to express �execution modalities� as facts
which will modify� inhibit or awaken some of the situ�
ation driven procedures installed in the supervisor�

One can also make use of other mechanisms for im�
plementing more speci�c monitoring embedded in KA
descriptions such guarded task execution�

The KA in Figure � illustrates one of these mecha�
nisms� Out from node N
� two threads are started� one
to execute a trajectory� another one to set a monitor�
ing� If the trajectory executes properly� it then stops
the monitoring task which will return without modify�
ing the �REPLY variable� Otherwise� if the monitoring
detects an obstacle� it returns and the �REPLY vari�
able is set to nil� which leads this thread to cancel the
trajectory execution�

Other types of monitoring and supervision can be
implemented using the WAIT� PRESERVE and MAINTAIN
operators�

����� Reasoning on robot capabilities

The meta level reasoning available under PRS pro�
vides a mechanism to control the PRSmain loop� Cur�
rently� meta level reasoning is mainly used in the KA
selection part of the PRS main loop��

The meta level reasoning can be used to endow the
supervisor with reasoning on robot capabilities e�g�� to
ensure mutual exclusion of the execution of incompat�
ible procedures� or to implement a preference on the
method used to achieve a particular goal when multi�
ple alternatives are given� or to implement some event
or procedure based priority mechanism�

����
 Time bounded reaction

As discussed above� one mandatory feature of the su�
pervisor is its ability to react with a guaranteed time
time bound compatible with the dynamics of the con�
trolled system�

The algorithms and the main loop used in C�PRS
are such that� under some reasonable assumptions� the
C�PRS main loop can guarantee an upper bound on
reaction time �see 	���� This upper bound is a func�
tion of the longest action of the system and of the
maximum frequency of event arrival� From this� the
user can derive or implement other complex and ad�
vanced temporal properties� such as priority mecha�
nisms� deadlines� and so on�

For example� using meta level KAs� it is easy to
implement a mechanism which can guarantee that a
KA with a particular property will be intended as root
of the intention graph �therefore executed before any
other KA��

�However� it can easily be extended to other parts of the PRS
interpreter 
for example to react to intention graph changes or
to goal failure�	

�



����� Other useful C�PRS features

C�PRS provides a set of features which allow its ef�
fective use in autonomous robot applications� Besides
complementary constructions which facilitate program�
ming �e�g� Multi�threading� Elaborated programming
environment�� C�PRS provides mechanisms to allow
its integration with other systems�

A communication library �called mp�prs� has been
developed which provides simple but e�cient commu�
nications over Internet sockets between C�PRS pro�
cesses and other processes� It is also possible to link
user C functions to the C�PRS kernel which will be
invoked through an action KA or when evaluating a
PRS function or predicate�

Another key aspect is the availability of C�PRS on
Unix workstations but also ���X� or Sparc board un�
der VxWorks enables an easy migration of the appli�
cation from the workstation to the robot�s on�board
CPUs�

��� Future Developments
There are a number of developments which we think

would improve the overall capabilities of C�PRS to
handle supervision and control of mobile robots�

An important issue which remains open in the cur�
rent version of C�PRS is the ability to execute a sub�
set of the loaded KAs with a guaranteed bound on
their execution time� This could be achieved using
compilation techniques similar to the ones used in
KHEOPS 	��� a �� rule based�system� that produce
a bounded�depth decision tree or using situated au�
tomata such as in Rex�Gapps 	

��

Another point which appears critical in the two
mentioned applications is the ability to handle errors
at the �procedure� level� We could implement in C�PRS
some kind of error handling mechanism on procedures�
Each procedure would then have a number of error
handlers which trigger under speci�ed conditions or
with particular signals� These handlers could be im�
plemented using the internal mechanisms currently
used by the PRESERVE and the MAINTAIN operators�

Last� we think that the notion of activity� which
corresponds to tasks under execution� although more
or less present in the intention�task concept� must be
further developed to be easily handled by the user 	���
The activity tree is an important representation level
in mobile robot control as it allows to send events or
signals to activities and propagate them to its children�
This notion would improve the control mechanism be�
cause it represents more accurately the status of the
robot execution tasks�

� Related Work
The earliest work on procedural reasoning is the

study performed by George� et al at SRI and de�
scribed in 	��� One of the major criticisms one can
make to this study is that it never reached a point
where a real robot ran under the control of SRI PRS�
For various reasons� but mainly performances� the pro�
cedures were ran with a robot simulator� Moreover�
the version of SRI PRS used at that time lacked many
of the functionalities which now make an implemen�
tation such as C�PRS better suited for this type of
application�

More recently� other research laboratories have found
interest in using the PRS approach for mobile robot
applications� In 	
��� the authors describe an imple�
mentation of procedural reasoning �called UM�PRS�
to control an outdoor environment vehicle�

A well known architectural paradigm for robot con�
trol is NASREM 	��� However� this is not actually a
system� but rather a set of guidelines and mechanisms
for implementing hierarchical control systems�

A global architecture� TCA� for autonomous robot
control was also proposed by R� Simmons 	
��� The
architecture features several properties that we �nd in
the one presented above� and is in the same �school
of thought� of integrating deliberation and reactivity�
as opposed to behavior�based approaches which are
rather event�driven 	��� TCA is based on a central con�
trol that handles several classes of messages exchanged
with speci�c modules� It manipulates a task tree sim�
ilar in a way to the intention graph in PRS� TCA also
includes explicit temporal constraints on tasks� One
important di�erence with the PRS approach is that
the execution of a KA is questioned at each step� with
respect to the content of the database� This is a pow�
erful feature for easy and incremental programming
and for adapting the execution to the context�

� Conclusion
We presented in this paper a generic architecture

for intervention robots� Mission planning and telepro�
gramming takes place on a Ground station� and au�
tonomous execution� including mission re�nement� is
carried out by the remote robot� The robot control
system is composed of a a decisional level and a func�
tional level based on a distinction between decision
based on global and abstract representations and com�
putations on low level numerical representations� The
decisional level is composed of a planner�supervisor
pair to ensure a deliberative and reactive behavior�
The supervisor makes use of procedural representa�
tions for plan execution and goal re�nement� and pur�
sues goal�directed tasks while being responsive to chang�
ing patterns of events in bounded time� The use of
PRS to implement the supervisory part was detailed
and its critical features presented� Work on re�ning
this architecture and improving some features in PRS
is on�going to better suit control and supervision of
autonomous intervention mobile robots�
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