
HAL Id: hal-01982586
https://laas.hal.science/hal-01982586

Submitted on 15 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Costmap planning in high dimensional configuration
spaces

Romain Iehl, Juan Cortés, Thierry Simeon

To cite this version:
Romain Iehl, Juan Cortés, Thierry Simeon. Costmap planning in high dimensional configuration
spaces. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Jul
2012, Kachsiung, Taiwan. �hal-01982586�

https://laas.hal.science/hal-01982586
https://hal.archives-ouvertes.fr


Costmap planning in high dimensional configuration spaces

Romain Iehl1,2, Juan Cortés1,2, Thierry Siméon1,2
1CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France

2Université de Toulouse; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France
{riehl, jcortes, nic}@laas.fr

Abstract— For many applications, path planning algorithms
are expected to compute not only feasible paths, but good-
quality solutions with respect to a cost function defined over the
configuration space. Although several algorithms have been pro-
posed recently for computing good-quality paths, their practical
applicability is mostly limited to low-dimensional problems.
This paper extends the applicability of one of such algorithms,
T-RRT, to higher-dimensional problems. To this end, we propose
to introduce ideas from the ML-RRT algorithm, which can
efficiently solve high-dimensional path planning problems by
relying on a hierarchical partitioning of the configuration space
parameters. Simulation results show the good performance
of the new costmap planner, MLT-RRT, for solving problems
involving up to several hundreds of degrees of freedom.

I. INTRODUCTION

Sampling-based path planners are general, efficient, and
easy to implement algorithms (see [1], [2] for a survey).
These planners have been successfully applied to diverse
problems in robotics and in other domains such as man-
ufacturing, computer animation, and computational biology.
In particular, variants of the Rapidly-exploring Random Tree
(RRT) algorithm [3] have been shown efficient for solving
path planning problems in all these domains.

Despite the many advantages of sampling-based planners,
they suffer from some limitations. One of them is that the
computed paths do not satisfy any optimality or quality
properties, they are simply feasible paths. However, in many
application domains, it can be important to compute good-
quality paths with respect to a continuous cost criterion.
In recent works, this notion of quality has been integrated
into RRT-like planners [4], [5], [6], [7]. Nevertheless, these
methods are often restricted to a specific application domain,
or can be difficult to apply to high-dimensionality problems.
The recently developed Transition-based RRT planner (T-
RRT) [8] is aimed at generating low-cost paths according
to a general cost function defined on the configuration
space. The main idea behind T-RRT is to include a state
transition test that avoids the expansion of the tree toward
high-cost regions. The algorithm has been shown successful
on a variety of moderately high-dimensional problems [8],
[9]. Another limitation of sampling-based planners concerns
dimensionality. Although such methods can in theory solve
problems in any dimension, there are practical computational
limits. In particular, the uniform sampling scheme of the
standard PRM [10] and RRT [1] planners is not suited for
planning in very high dimensions. Several variants have
been developed, which are able to handle a much higher

Fig. 1. Multi-robot costmap planning problem : initial and goal configura-
tions of the active arm (red) and solution path that minimizes end-effector’s
displacements of the two passive arms (blue) hindering the path to the goal.

dimensionality in specific contexts [11], [12], [13].
This paper presents a method aimed to face these two

limitations, thus enabling the computation of good-quality
paths in high-dimensional problems. The proposed method
extends the T-RRT algorithm by introducing ideas from
the Manhattan-like RRT algorithm (ML-RRT) [11]. The
principle of ML-RRT is to introduce two types of configura-
tion parameters, labeled active and passive, and to generate
their motions in a decoupled manner. The partition of the
configuration parameters into active and passive parameters
corresponds to their role in the planning problem. The active
parameters are essential for the planning query, while the
passive parameters only need to change when they hinder
the motion of parts controlled by active parameters. ML-
RRT has been applied to disassembly path planning [11],
and in the domain of computational biology, to the study of
ligand induced conformational changes in proteins [14].

The MLT-RRT algorithm proposed in this paper com-
bines the underlying principles of T-RRT and ML-RRT
at a low level. It can efficiently solve high-dimensional
costmap planning problems involving multi-robot systems,
for planning paths of a given set of active robots, together
with the necessary motions of the passive ones considered
as movable objects that possibly hinder reaching the desired
goal, and while minimizing a cost function defined over
the configuration space of the whole multi-robot system.
Figure 1 illustrates an example of such problem solved by
MLT-RRT where the objective is to compute a path for the
active arm (red) while minimizing the end-effector’s motions
of the two other passive arms (blue).

After a brief overview of the T-RRT algorithm (Section II),



the proposed MLT-RRT extension is presented in Section III.
Next, Section IV describes an improvement to the basic T-
RRT algorithm that also applies to the new variant. Finally, in
Section V, MLT-RRT is applied to different types of prob-
lems involving a cost function: disassembly path planning
with clearance constraints, multi-robot path planning with
distance and task constraints, and protein-ligand accessibility
problems. The performance of the method is analyzed and
compared to the basic T-RRT and ML-RRT algorithms, as
well as to the RRT* planner [7].

II. BASIC T-RRT ALGORITHM

T-RRT [8] extends the Rapidly-exploring Random Tree
(RRT) algorithm by incorporating a stochastic transition test
that is used to accept or reject new expansions of the search
tree, based on the cost variation associated with the expan-
sion. The pseudo-code of T-RRT (Algorithm 1) is similar to
that of RRT, with the addition of the TransitionTest and
MinExpandControl functions.

The TransitionTest function is based on the Metropolis
criterion from Monte Carlo algorithms [15]. Its role is to bias
the exploration towards low-cost regions. This function is
described in Algorithm 2, the principle is as follows. When
performing an expansion from a configuration qi to a con-
figuration qj , TransitionTest is called with the following
arguments: the costs ci and cj of the configurations, and the
distance dij between them. If the expansion is downhill (i.e.
cj < ci), it is always accepted. However if it is an uphill
expansion, it is accepted with a probability p that decreases
exponentially with the slope (cj − ci)/dij . This probability
is further modified by an adaptive temperature parameter, T ,
that changes along with the iterations: after each accepted
uphill extension, T is divided by α to avoid over-exploring
higher cost regions; while after nFailmax rejections, T
is multiplied by α, to allow for easier exploration. This
automatic tuning allows T-RRT to balance the exploration
between the Voronoi bias of RRT and a bias towards low-
cost regions. The nFailmax parameter determines the trade-
off between computation time and quality of the path. As
explained in [8], it can be set a low value (e.g. 10) for a
greedy search, or a high value (e.g. 100) for a computation-
ally more intensive but better quality exploration.

The role of the MinExpandControl function (see [8]) is
to avoid an undesirable behavior of the algorithm, which can
spend a significant time over-exploring easy regions of the
costspace. This will be further explained in Section IV, along
with an improvement introduced in this work.

III. MLT-RRT

MLT-RRT extends the applicability of the T-RRT algo-
rithm to higher-dimensional problems by introducing ideas
from the Manhattan-like RRT (ML-RRT) variant [14]. ML-
RRT relies on a decomposition of the configuration space
parameters into two sets, labeled active and passive: C =
Cact × Cpas. The mobile parts of the system controlled by
active or passive parameters are called active parts or passive
parts, respectively. The active parameters are treated directly

Algorithm 1: Transition-based RRT
input :

the configuration space C;
the cost function c : C → <;
the root qinit and the goal qgoal;

output: the tree T ;
begin
T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

qrand ← SampleConf(C) ;
qnear ← NearestNeighbor(qrand, T );
qnew ← Extend(T , qrand, qnear);
if qnew 6= NULL
and
TransitionTest(c(qnear), c(qnew), dnear−new)
and MinExpandControl(T , qnear, qrand) then

AddNewNode(T ,qnew);
AddNewEdge(T ,qnear , qnew);

Algorithm 2: TransitionTest(ci, cj , dij)
begin

nFail = GetCurrentNFail();
if cj < ci then

return True;

p = exp(
−(cj−ci)/dij

T
);

if Rand(0, 1) < p then
T = T/α;
nFail = 0;
return True;

else
if nFail > nFailmax then

T = T ∗ α;
nFail = 0;

else
nFail = nFail + 1;

return False;

at each iteration of the exploration process, while the passive
parameters are treated only when their associated passive
parts hinder the movement of active parts.

In the proposed algorithm, sketched in Algorithm 3, the
underlying principles of T-RRT and ML-RRT are combined
at a low level. The algorithm, like ML-RRT, explores the
active and passive parameters of the configuration space in a
decoupled manner. However, passive parameters to be moved
are not only selected based on collisions between moving
parts, but also on their importance within the cost function.

The passive part selection is carried out within the
ExpandAndSelect function, described in Algorithm 4. This
function performs a standard RRT expansion but when a
collision is encountered along the path from qnear to qrand,
SelectColliding identifies the list of passive parameters
Lpas
c involved in the collision (see Fig. 2). Similarly, the

uphill expansions rejected by the TransitionTest function
because of a too high cost increase, are also checked by
the SelectByCost function for a cost-based selection of



Algorithm 3: Construct MLT-RRT
input :

the configuration space C;
the root qinit and the goal qgoal;
the partition {Lact, Lpas};

output: the tree T ;
begin
T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

// Active expansion
qactrand ← SampleConf(C, Lact);
qnear ← BestNeighbor(qrand, T );
(qnew, L

pas′
c )← ExpandAndSelect(qnear, q

act
rand);

if qnew 6= null then
AddNewNode(T , qnew);
AddNewEdge(T , qnear, qnew);

// Passive expansion
while Lpas

c 6= ∅ do
qpasrand ← PerturbConf(qnear, L

pas
c );

(qnew, L
pas′
c )←

ExpandAndSelect(qnear, q
pas
rand);

if qnew 6= null then
AddNewNode(T , qnew);
AddNewEdge(T , qnear, qnew);

Lpas
c ← Lpas′

c \ Lpas
c ;

Algorithm 4: ExpandAndSelect(qnear, qrand)
begin

qnew ← Expand(qnear, qrand);
if qnew /∈ Cfree then

Lpas
c ← SelectColliding(qnew);

return (Null , Lpas
c )

else if TransitionTest(qnear, qnew) = false then
Lpas

c ← SelectByCost(qnear, qnew) ∩ Lpas;
return (Null , Lpas

c );

else
return (qnew, ∅)

the passive parameters Lpas
c that significantly contribute to

the cost increase. When ExpandAndSelect returns a non
empty Lpas

c list of (blocking or high-cost) passive parts, a
new expansion attempt is performed in order to move the
identified parts. The manhattan-like expansion mechanism
is iterated until a successfull expansion is performed or a
maximum number of steps is reached.

Cost-based selection: The role of SelectByCost is
to identify the list of passive parameters (if any) that are
involved in the cost increment between the configurations
qnear and qrand. This requires, for a given configuration q
and a cost function f , to accurately determine the individual
cost contribution of parameters subsets qk associated to the
active subchain Lact and to the set Lpas,k of kinematically
independant subchains formed by the passive parts. This
leads us to consider a decomposition of the cost function
as a sum of elementary terms: f(q) =

∑
fk(q

k), where
each term fk assigns a cost to the qk subset of configuration

Fig. 2. Manhattan-like exploration of the active (red) and passive (blue)
configuration parameters : only the passive parameters of parts hindering
the motion of the active parameters are considered

space parameters. Each fk function is itself decomposed
into a term depending only on qk and a sum of pairwise
costs also depending on the other parameter subsets ql

(l 6= k). Thus, each elementary cost is expressed as :
fk(q

k) = f ′k(q
k)+

∑
l f
′′
k,l(q

k, ql). Using this decomposition,
the SelectByCost function described in Algorithm 5 returns
the list of all parameters involved in terms that contribute
more than a minimum threshold value to the cost increment.
Empirically, consistently good results have been obtained
by using threshold = 0.1 ∗ n

max
k=1

(fk(q
k
rand) − fk(q

k
near)),

thus limiting the selection to parameters with a significant
contribution, relatively to the most contributing term.

Discussion on the cost function decomposition: While
T-RRT operates on an arbitrary, user defined cost function
f(q), the need for a decomposition as a sum of simpler
terms imposes an additional constraint. However, this is not
a restrictive assumption since cost functions can generally
be defined in such a way that the configuration parameters
can be decoupled into subsets with pairwise contributions
to the cost. For example, if we consider a clearance-based
cost to maximize the distance between the active and passive
parts of a multi-robot system, such a function depends on the
pairwise distance between parts. Similarly, in a molecular
context, the energy of the molecular system can be defined
as a sum of pairwise atomic interactions. Consequently, a
simple decomposition is readily available in these examples.
Note that in situations for which such decomposition is not
possible, the elementary cost contributions of qk subsets
could also be approximated using the jacobian δf/δq.

IV. IMPROVED TEMPERATURE TUNING

This section presents an improvement made to the adaptive
temperature tuning method of T-RRT (see Algorithm 2),
and which also benefits to MLT-RRT. The motivation is to
provide a better way to balance exploration versus refinement
during the tree construction.



Algorithm 5: SelectByCost(qi, qj)
begin

Lcost ← ∅;
for (k in 1..n) do

if fk(qkj )− fk(qki ) > threshold then
Lcost ← Lcost ∪ (qk)

return Lcost

Exploration versus Refinement: As explained in [8],
the adaptive temperature tuning in T-RRT may yield an
undesirable behavior of the algorithm in some situations.
Indeed, when the tree has already covered a low cost region,
and expansion toward other favorable region requires to
go through higher cost configurations, most of new nodes
only contribute to refine the covered portion of the space.
Such a slowing down of the T-RRT exploration is due to a
stabilization of the temperature parameter.

In [8], the method for ensuring a minimal exploration
rate, implemented in the MinExpandControl function, uses
a rejection criterion that is based on the distance between
the sampled configurations qrand, and their nearest neighbor
qnear: when this distance is less than the expansion step size
δ, the new node from the expansion of qnear is considered
to be a refinement node. If half of the nodes in the tree
are refinement nodes, the addition of new refinement nodes
is rejected. This rejection criterion was shown to improve
the performance of T-RRT. However, this method does not
scale well to higher dimensions, due to the low probability of
sampling within the neighborhood of an existing node. The
following paragraph presents a modification that provides a
better control of the tree expansion.

Cost-dependent temperature tuning: The proposed im-
provement of T-RRT is to change the temperature reduction
strategy in the transition test by replacing the line T = T/α
in Algorithm 2 by : T = T/(α(cj−ci)/normalization value),
where normalization value is a parameter explained be-
low. With this change, the reduction of the temperature after
a successful uphill expansion depends on the local steepness
of the costmap. An easy transition, which will contribute
slightly to the overall cost of the solution path, will have a
small effect on the temperature, and therefore, on the speed
of the exploration process. However, when accepting a steep
transition, the temperature parameter is reduced significantly,
ensuring that no other steep transition will be accepted
without first performing an extensive search in the neigh-
borhood of the search tree. The effect of this modification is
illustrated in Figure 3. This modification provides an implicit
expansion control mechanism and a significant speed-up of
the exploration process. Note that the proper setting of the
normalization value parameter is important. A too low
value will result in an unnecessarily aggressive temperature
reduction, which will lead to poor performance. Contrarily,
a too high value will yield rapid exploration but degraded
quality of the solution path. Setting normalization value
to one tenth of the cost variations along the path has

steep

a)

c)

b)

easy

Fig. 3. Illustration of the effect of the new temperature tuning method
on the behavior of T-RRT. a) Intermediate stage of the T-RRT construction.
The tree is covering a basin of the costmap. b) With the original temperature
tuning strategy of T-RRT, many iterations are nedded to escape the bassin
since every uphill expansion implies a constant temperature reduction. The
tree will tend to cover very densely the basin before finding the saddle area.
c) With the new strategy, the temperature decrease after an easy transition
is minor compared to a steep transition, which favors exploration of the
saddle area versus refinement in the basin.

been found empirically to yield good results in general.
However, such variations cannot be known beforehand. Thus,
the strategy used is to initialize normalization value to a
small, conservative value, and to reset it at each iteration
to 0.1 ∗ cost delta, where cost delta is the current cost
difference between the configuration with the highest cost
and the configuration with the lowest cost in the search tree.
The efficiency of this new temperature tuning method is
shown in the results presented in Section V.

V. RESULTS

The MLT-RRT algorithm has been implemented in the
path planning software Move3D [17]. The algorithm is ap-
plied to two motion planning problems issued from robotics
(Figs. 4 and 1), and to a third example that showcases the
application in the domain of computational biology (Fig. 8).
On the first two examples, MLT-RRT is compared, in terms
of computation time and quality of the solution paths, to
RRT, ML-RRT and T-RRT (Sections V-A, V-B) as well as to
RRT* [7] (Section V-C). In all cases, MLT-RRT (and T-RRT)
runs were performed with the nFailmax parameter set to 100
to favor high-quality of the solution paths over performance
in computation time.

A. Academic disassembly problem

This set of examples from [11] is useful for empirical
performance analysis. The first example, 2d-simple (Fig. 4.a),
represents a simple mobile object to be extracted from an
articulated object formed by a static body and 3 mobile
sticks (7 dofs in total). The second and third examples, 2d-
medium (Fig. 4.b) and 2d-hard (Fig. 4.c), are more difficult
versions involving a longer static object with 6 and 12 mobile
sticks (10 and 16 dofs) respectively. The mobile object
is considered active, while the movable sticks are treated
passively. The cost function, aimed to maximize clearance,
is defined as 1/dmin, where dmin is the minimal distance
between the active object, and the static and passive parts.



2d-simple (7 dofs) 2d-medium (10 dofs) 2d-hard (16 dofs)
nb of nodes time (seconds) clearance nb of nodes time (seconds) clearance nb of nodes time (seconds) clearance

RRT 1742 10.57 0 — — — — — —
ML-RRT 294 0.29 0 609 1.2 0 1070 2.58 0
T-RRT 5524 703 0.2 — — — — — —
MLT-RRT 311 0.77 0.45 1077 5.8 0.4 1639 22.4 0.4

TABLE I
DISASSEMBLY: NUMERICAL RESULTS

Fig. 4. Three variants (single, medium, hard) of the 2d disassembly problem

Fig. 5. Clearance along the solution path for the 2d-medium problem.

Table I shows the simulation results (averaged over 5 runs
of the algorithms) for this set of problems. The table contains
the number of nodes in the search tree, the computation time
(in seconds), and the minimum clearance obtained along the
solution path, in internal distance units. Fig. 5 compares
the clearance along two paths for the 2d-medium problem,
computed with the ML-RRT and the MLT-RRT algorithms.

The RRT and ML-RRT planners show better performance
in terms of computation time than their costmap planning
counterparts, T-RRT and MLT-RRT. This is expected, since
they are solving a much easier collision-free planning prob-
lem, with no concern for the cost function. Note however
that the computation time ratios between ML-RRT and MLT-
RRT are very reasonable: about 1:3 on 2d-simple, up to 1:9
on the 2d-hard problem. The results for the RRT and ML-
RRT algorithms are consistent with those presented in [11].
The basic RRT planner failed to solve the 2d-medium and
2d-hard problems after several hours of computation. It can
solve the 2d-simple problem in reasonable time, but still

required an extensive search tree (1742 nodes). ML-RRT
displays much better performance and scalability with the
increase in difficulty over the set of problems, thanks to the
decoupling of motions.

Results also show the higher performance of MLT-RRT
compared to the original T-RRT costmap planner that could
only solve the 2d-simple case and required a significant
computation time (703 seconds). The MLT-RRT algorithm
solves all 3 examples in a short time (1.2, 5.8 and 22.4
seconds) and results show its good scalability to high dimen-
sional problems. Additionally, for the 2d-simple example,
the clearance of the MLT-RRT solution path is higher than
for T-RRT. This can be explained by the fact that MLT-
RRT performs a more exhaustive sampling of the relevant
parameters, and thus find more favorable configurations.

B. Robotic arms

The second test exemple is the multi-arm planning sce-
nario of Figure 1, where an active robotic arm, in red,
evolves in an environment obstructed by an obstacle and
two other robotic arms, considered passive, in blue. Each
arm has 7 dofs, for a total of 21 dofs. The objective is
to solve the planning query involving the active arm, while
minimizing the movement of the end effectors of the other
arms. However, it is geometrically impossible to extract the
active arm without moving the passive arms significantly. To
this end, we use a cost function that is a composite of a
clearance term, representing a safety distance between the
robotic arms, and a penalty proportional to the displacement
of the end effectors of the passive arms. The Table II shows
the tree size and computation time for T-RRT and MLT-
RRT, averaged over 5 planning queries, and Fig. 6 shows the
cost along a solution path. The computation times between
both algorithms are similar, slightly in favor of MLT-RRT.
However, the quality of the generated paths is significantly
better when using the MLT-RRT algorithm. This is due to
the nature of the planning problem: on this example, it
is relatively easy to find a geometric solution, where the
three arms move in a mostly upwards movement, allowing
extraction of the active arm. However, the cost function adds
an important constraint by restricting the movement of the

robotic arms
nb of nodes time (seconds)

T-RRT 1390 27.7
MLT-RRT 733 19.7

TABLE II
ROBOTIC ARMS: NUMERICAL RESULTS



0 20 40 60 80 100
0

0.5

1

Position along the solution path

E
nd

ef
fe

ct
or

di
sp

la
ce

m
en

t
(m

et
er

s)

T-RRT
MLT-RRT

Fig. 6. Robotic arms: end effectors displacement.

end effectors. Consequently, the decoupled motion of parts
does not provide a significant benefit in a geometrical sense,
however, it is necessary in order to find low cost paths.
This is illustrated in Fig. 6, that shows the sum of the end
effector displacements for the two passive arms, along the
solution path. The maximum value for the MLT-RRT path
corresponds to a total displacement of 49cm, whereas the
T-RRT path contains an important displacement of 1m33cm.

C. Comparison with RRT*

RRT* [7] is a recently published RRT variant with asymp-
totic optimality guarantees. RRT* builds an exploration tree
in a similar fashion to RRT, with the main difference that
the tree is incrementally rewired to improve the quality of
the paths originating from the start configuration. Results
presented in related work (as well as our own experiments)
show that RRT* quickly converges towards the optimal so-
lution when applied to low-dimensional problems. However,
the results presented below show that the method performs
poorly on higher-dimensional and constrained problems,
such as the ones addressed in this paper. Indeed, optimizing
the initial path becomes a very expensive process.

Fig. 7 shows the quality and computation time of the solu-
tion paths computed by RRT*, T-RRT and MLT-RRT on the
2d-simple and the robotic arms examples. In agreement with
its incremental nature, the results of RRT* are represented
as a function of time : the black line represents the quality
of the best solution path so far computed by RRT*. The
solutions found by T-RRT and MLT-RRT are represented by
a dot. As can be seen in the figure, for both exemples, RRT*
quickly finds an initial solution, but is unable to generate
better quality solutions than both T-RRT and MLT-RRT, even
after many iterations. Note however, that RRT* may also
benefit from the introduction of some level of biasing to
speed up the expansion of the search tree as in MLT-RRT,
but at the price of loosing its guarantee of asymptotically
optimal solutions.

D. Ligand-protein interactions

The last example presents MLT-RRT applied to the domain
of computational biology. As shown in previous work [14],
path-planning algorithms operating on mechanistic molecular

0 1,000 2,000 3,000
0

200

400

600

RRT*

T-RRT

MLT-RRT

0 1,000 2,000 3,000

50

100

150
RRT*

T-RRT

MLT-RRT

time (seconds)

C
os

t
of

so
lu

tio
n

pa
th

Fig. 7. Comparison to RRT*: cost of the solution path (summation of the
configuration costs along the path) as a function of time, on the 2d simple
example (top) and the robotic arms example (bottom).

models can be applied as efficient methods to compute the
access/exit pathway of a ligand to the active site in a protein,
thus providing important information to understand protein-
ligand interactions. We applied T-RRT and MLT-RRT to the
ligand exit problem illustrated in Fig. 8. The ligand has 12
degrees of freedom (6 for the pose, and 6 internal torsion
parameters). For MLT-RRT, the protein has been modeled
with full sidechain flexibility, for a total of 627 torsional
joints. For T-RRT, only the flexibility of the ligand is taken
into account, as the algorithm cannot handle the additional
dimensionality from the flexible sidechains (considered as
passive chains in MLT-RRT). Fig. 9 shows the benefit of
the additional flexibility: the energy of the path computed
by MLT-RRT is significantly improved, compared to that
of T-RRT which has high energy barriers corresponding to
unlikely conformations. For MLT-RRT, the possible rear-
rangements of the sidechains allows for the computation of
a more realistic motion. Remarkably, the computation times
are of the same order: about 3 minutes and 10 minutes for
T-RRT and MLT-RRT respectively, despite the increase in
dimensionality.

E. Effect of the cost-dependent temperature reduction

All the results above were obtained using the modifi-
cation to the transition test presented in Section IV. For
comparison purposes, Table III shows results on the various
preceding problems, when this improvement is not used. The
table shows that the proposed cost-dependent temperature
tuning yields a notably improved performance, with speed-
ups ranging from 3 to 5 on the 2d-medium, 2d-hard and
robotic arms problems and negligible impact on the quality
of the solution (path costs, not reported in the table, remain
almost the same for the three problems). The effect is
particularly important on the ligand exit example. When
using the modified transition test, MLT-RRT found a solution
path in only 533 seconds, but could not find one after 5
hours without the change. Indeed, the ligand exit example
is the one that suffers the most from the exploration versus
refinement problem. The volume of reachable space is large,



Fig. 8. Protein-ligand exit problem. The light blue elements are some of the
flexible sidechains, handled passively by MLT-RRT. The problem involves
627 dofs.

0 1 2 3 4 5 6 7
0

10

20

30

+23 030

Distance along the exit path (Ångströms)

E
ne

rg
y

(k
ca

l.m
ol

−
1
)

T-RRT
MLT-RRT

Fig. 9. Energy of ligand exit paths computed with T-RRT and MLT-RRT.

and the costspace has a complicated topology, with a very
high number of small local minima in which the algorithm
can spend a long time refining the space.

VI. CONCLUSION AND FUTURE WORKS

This paper has presented a new algorithm, called MLT-
RRT, which extends T-RRT to high-dimensional problems
by introducing the principle of decoupled motions from ML-
RRT. Experiments on several types of problems, both in the
contexts of robotics and computational biology, show the
good performance of the algorithm.

A possible improvement of the method will consist in
introducing multiple levels of passivity associated with dif-
ferent parts of the system according to their properties. This
principle was already introduced in the context of com-
putational biology to simulate protein motions induced by
protein-ligand interactions [14], but needs to be generalized.

As future work, we also plan to further investigate the
application of MLT-RRT to human-aware path planning

2d-medium 2d-hard robotic arms ligand exit
with 5.8s 22.4s 19.7s 533.2s
without 16.1s 50.4s 112.5s >5h

TABLE III
EFFECT OF THE TEMPERATURE REDUCTION MODIFICATION ON THE

COMPUTATION TIME, IN SECONDS.

in the presence of Human-Robot Interaction constraints.
This application domain involves possibly highly-articulated
multi-arm robots like humanoid torso and the presence of
the human requires to account for various comfort and safety
criteria [18].

REFERENCES

[1] S. LaValle and J. Kuffner, “Rapidly-exploring random trees : Progress
and prospects,” in Algorithmic and Computational Robotics: New
Directions, B. Donald, K. Lynch, and D. Rus, Eds. Boston: A.K.
Peters, 2001, pp. 293–308.

[2] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementations. Cambridge: MIT Press, 2005.

[3] J. Kuffner and S. LaValle, “Rrt-connect: An efficient approach to
single-query path planning,” Proc. IEEE Int. Conf. on Robotics and
Automation, pp. 995–1001, 2000.

[4] A. Ettlin and H. Bleuler, “Randomised rough-terrain robot motion
planning,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and Sys-
tems, pp. 5798–5803, 2006.

[5] J. Lee, C. Pippin, and T. Balch, “Cost based planning with rrt
in outdoor environments,” Proc. IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, pp. 684–689, 2008.

[6] C. Urmson and R. Simmons, “Approaches for heuristically biasing
RRT growth,” Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems, pp. 1178–1183, 2003.

[7] S. Karaman and E. Frazzoli, “Incremental sampling-based algorithms
for optimal motion planning,” Int. Journal of Robotics Research, 2010,
submitted.

[8] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning
on configuration-space costmaps,” IEEE Transactions on Robotics,
vol. 26, 2010.

[9] D. Berenson, T. Siméon, and S. Srinivasa, “Addressing cost-space
chasms for manipulation planning,” IEEE International Conference
on Robotics and Automation, 2011.

[10] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation, vol. 12(4), pp. 566–
580, 1996.

[11] J. Cortés, L. Jaillet, and T. Siméon, “Disassembly path planning
for complex articulated objects,” IEEE Transactions on Robotics and
Automation, pp. 475–481, 2008.

[12] A. Shkolnik and R. Tedrake, “Path planning in 1000+ dimensions
using a task-space voronoi bias,” IEEE International Conference on
Robotics and Automation, 2009.

[13] X. Tang, S. L. Thomas, P. Coleman, and N. M. Amato, “Reachable
distance space: Efficient sampling-based planning for spatially con-
strained systems,” The international journal of robotics research, 2010.

[14] J. Cortés, D. T. Le, R. Iehl, and T. Siméon, “ligand-induced confor-
mational changes in proteins,” Physical Chemistry Chemical Physics,
vol. 29, 2010.

[15] D. Frenkel and B. Smit, Understanding Molecular Simulation: From
Algorithms to Applications. San Diego: Academic Press, 2002.

[16] A. Yershova, L. Jaillet, T. Siméon, and S. LaValle, “Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain,” Proc.
IEEE Int. Conf. on Robotics and Automation, pp. 3867–3872, 2005.

[17] T. Siméon, J.-P. Laumond, and F. Lamiraux, “Move3D: A generic
platform for path planning,” Proc. IEEE Int. Symp. on Assembly &
Task Planning, pp. 25–30, 2001.

[18] J. Mainprice, E. Sisbot, T. Siméon, and R. Alami, “Planning Human-
aware motions using a sampling-based costmap planner,” in IEEE Int.
Conf. Robot. And Autom., 2011.


