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Abstract—A smartphone runtime environment consists of mul-
tiple entities with different goals and scope. Indeed, critical
applications such as banking applications that make contactless
payments, share the same environment with other applications
of varying levels of trust. This paper presents a novel approach
allowing a standard Android user to launch its applications in a
configurable secure execution context. The security rules defined
for each application are enforced by a dedicated security archi-
tecture implemented in several parts of the Android ecosystem.
A performance assessment of the solution is also provided.

I. INTRODUCTION

Smartphones are nowadays increasingly used to support
several daily life activities, and more and more hold both per-
sonal and professional data. Furthermore, with the continuous
development of wireless communication technologies, such as
Bluetooth Low Energy (BLE) or Near-Field Communication
(NFC), it is possible now to remotely control IoT devices or
perform contactless payments with a smartphone. However,
this large amount of data is generated by multiple applications
of varying levels of trust, which raises serious concerns about
the security and the privacy of the users.

Our work focuses on the Android platform, which already
implements a permission system that controls access to system
resources and restricts applications actions. Nevertheless, these
permissions on their own are not adequate to provide the
expected level of segregation, as they do not take into account
the execution context. Indeed, it is not possible to define rules
that constrain the permission system based on runtime obser-
vations. For example, it should be interesting from a security
point of view to forbid any usage of the NFC component while
a banking application is processing a contactless payment, so
that other applications can not tamper with the process. Similar
attacks have been demonstrated on BLE [1] and Bluetooth [2].

Standard isolation solutions used in Bring Your Own Device
contexts, like Android for Work or Samsung KNOX, define
a strong isolation between the personal and the professional
environment. However, such solutions involve strong resources
isolation that may not be optimal for the end users, as the
resulting usability restrictions may not be acceptable for them.

In this paper, we present two contributions to tackle the
aforementioned issues: i) A novel approach allowing a stan-
dard Android user to control applications execution rights
or their access to system resources depending on the smart-
phone runtime context; ii) An isolation architecture, based
on low-level application communications interception, and

implemented in several parts of the Android ecosystem, which
enforces these security rules.

The paper is organized as follows. Section II provides a
short background of the Android software ecosystem, and
Section III discusses the state of the art. Section IV presents
the attack model and introduces the secure manifest, which is
an additional manifest dedicated to store our security rules.
Section V outlines the architectural details of our isolation
framework which is then evaluated in Section VI.

II. ANDROID BACKGROUND

Android is a fully fledged and open source OS developed
by Google under the Android Open Source Project (AOSP). It
essentially consists of a framework layer that runs under the
supervision of a customized Linux kernel. This layer drives the
execution of Android applications (so-called ”apps” in the re-
maining of the paper). Android apps are written in Java and are
executed under a specific runtime environment, named Android
Runtime (ART). Additionally, Android apps can embed native
code parts written in C/C+ for shared libraries or to support
high performance computing. Specifically, Android apps can
be decomposed into four types of components:

• Activities: represent the different screens of the apps.
• Services: handle background tasks.
• Content providers: allow to share data with other apps.
• Broadcast receivers: manage asynchronous events.
Android apps rely on the framework which provides a

rich set of APIs for both Java and native languages. Addi-
tionally, the framework includes numerous system services
and daemons dedicated to manage apps lifecycle and system
resources, and embodies an Inter Process Communication
(IPC) system, named binder. This communication channel
allows application components to interact with each other or
with system services seamlessly, in the same way as if they
were performing Remote Procedure Calls (RPCs). The binder
subsystem communicates with the binder driver included in the
Linux kernel through ioctl system calls. Furthermore, this IPC
mechanism is also used to carry higher level communication
messages named Intents. The latter represent an abstract
description of an operation, either implicit or explicit, and are
used to start activities/services or broadcast events. Intents are
handled by the Activity Manager Service (AMS).

Other more privileged layers are also parts of the Android
ecosystem. Android being mostly developed for the ARM
CPU architecture, the details provided are specific to this



architecture. These most privileged layers are enabled by
several extensions included in current ARM processors. One
of them, the virtualization extensions, bring up the ability to
execute a hypervisor at a higher privilege level than the Linux
kernel, and to benefit from virtualization capabilities.

Furthermore, an existing security model is deployed in sev-
eral parts of Android. Firstly, a sandboxing mechanism isolates
apps from each others and from other parts of the system.
All apps are launched in a different process, thus benefiting
from the Linux process isolation, and are restricted in their file
access capabilities. Indeed, a Linux User ID (UID) is assigned
to each installed app, thus ensuring that they can only access
their own files or world readable ones. Consequently, Android
apps must use the Binder IPC mechanism or emit direct system
calls to the kernel to communicate with other parts of the
system. Secondly, an app must have an adequate access right
in order to access a specific resource. Those access rights,
named permissions, are either declared by an app at install
time in their manifest, or requested from the user at runtime
since Android 6.0. Each resource access is then enforced in
different parts of the Android ecosystem, such as in system
services or daemons.

III. STATE OF THE ART

A. Access control policies

Several access control models for Android have been pro-
posed. Most notably Guo et al. [3] defined a security frame-
work composed of both Mandatory Access Control (MAC)
and Role Based Access Control (RBAC) models for Android.
Additionally, the work of Smalley et al. [4], which ported the
SeLinux MAC model to Android, has been integrated into the
Android code-base since the 4.3 version.

Some context-aware policies have been studied in the past.
In [5], [6] spatial or temporal contexts, determined from the
hardware sensors, are used to define the current set of security
rules enforced for each running application. DR BACA [7] and
CA-ARBAC [8] focused on integrating context-awareness in
RBAC models: A role, carrying a set of allowed permissions,
is associated to each application. Then, either a new role is
assigned to each application when the context changes [7], or
the set of permissions associated to the role are conditionally
enabled depending on the current context [8].

Another study [9] has considered the use of machine
learning and context sensing techniques to dynamically select
the access control rules for each application based on the
current context. The main advantage is to reduce the burden
of the policy definition and configuration by a standard end
user, which is assumed to not have the required expertise
to perform this task. The usability concerns have been also
investigated in [10], where machine learning is used to create
context based access control rules that match the user privacy
preferences. Furthermore, resources can be obfuscated instead
of only allowing/denying their access, therefore lowering the
chance of application crashes while preserving some privacy.

Most of the aforementioned works have only considered
external context sources (such as Geolocation) and the global

phone state but none of them (except [10]) took into account
the list of running applications as part of their context def-
inition. Furthermore, in this paper we also aim at providing
a solution usable and configurable by ”non experts” Android
users but without using machine learning techniques.

B. Isolation architecture

As stated in our previous work [11], an efficient isolation for
Android applications should rely on a multi-level architecture,
providing the required control over all communication means,
while avoiding any semantic gap and still being resilient to low
levels attacks. To our best knowledge, such type of architecture
has not been addressed in the previous research. Furthermore,
many access control model implementations do not even
consider the communication paths accessible by native code
embedded in applications. Indeed, their interceptions only
rely on either the framework modification [5]–[7] or on its
dynamic instrumentation [10]. The remaining implementations
are based on both framework modifications together with
kernel level modifications. Especially, [9] is based on the
Flaskdroid framework [12] which uses the existing Linux
kernel hooks provided by SEAndroid [4], and adds several
hook points in the Android framework called Userspace
Object Managers. Similarly, CA-ARBAC [8] uses the Android
Security Modules (ASM) [13] that provide the required kernel
and framework hooks. In addition, SEAndroid and ASM take
advantage of Linux Security Modules (LSM) framework which
provides hooks in different parts of the Linux kernel.

IV. ATTACK MODEL & SECURE MANIFEST

Our solution aims to describe and enforce several rules
that complement those defined by the existing permission
system in Android. These rules specify additional access
restrictions to resources. They are defined in supplementary
secure manifests that are specific to each application and can
be complemented by user input. There are two types of rules:
static rules which further restrict the resource access of the
target application; dynamic rules, or secure context, which
limit the access of other applications to shared resources while
the target application, or one of its components, is running.

In our attack model, the attack source is an untrusted
application installed by the user and which can be remotely
controlled by the attacker. This application can either be a
malevolent app or a benign app hijacked by the attacker. The
goal of this app is to bypass the rules defined in its secure
manifest, or those of other installed apps.

We can identify several types of applications that could be
targeted by any other application controlled by an attacker.
For example, a social media app, or any application with a
login page, could be hijacked to retrieve the login credentials
and therefore steal the identity of the smartphone user. Any
application that performs online or contactless payments could
be also subject to money robbery. Furthermore, if the user
does not need all the features of an application, he can restrict
resource access of an application to preserve his privacy.



To illustrate the capabilities extent of the secure manifest,
we go through an example provided in the Listing below.

<secure_manifest>
<pkg_info name="com.example.app" pub_key="..." />
<!-- Resource restriction for the package -->
<resource_restriction>
<resource name="camera" />

</resource_restriction>
<!-- Secure context for an app component -->
<secure_context target="login_activity">
<!-- restrictions for the following apps -->
<app_restriction>

<app_list>
<app name="com.example.badapp" />

</app_list>
<resource_restriction>
<resource name="wifi" />

</resource_restriction>
</app_restriction>
<!-- restrictions for all running apps -->
<resource_restriction>

<resource name="nfc" />
</resource_restriction>

</secure_context>
</secure_manifest>

The first part of the manifest is dedicated to application
information, like the package name and the developer public
key. This kind of data is used to match the Android app with
its secure manifest. Furthermore, an alert can be raised when
the public key mismatches the one used to sign the app.

The second part is dedicated to the static rules and defines
the list of resources banned for the app. When the target
app tries to access these resources, the policy handler service
replies with empty data. Therefore, the application should not
crash due to the unavailability of a required resource.

The third part is related to the dynamic rules, or secure
context rules, which define resource access control when
one or more components of the application are running. We
designed this part to cover the maximum of cases: The secure
context target can be as large as the whole application, or
limited to one or a list of components separated by commas.
Furthermore, each secure context definition is additive. More
precisely, if two secure contexts are defined, one for a spe-
cific component and one for the whole app, if this specific
component is running, the policy handler service aggregates
all dynamic rules defined in both secure contexts. In addition,
the secure context can specify rules that further restrict the
resource access of a list of applications, or just prohibit the
use of these applications if no resources are mentioned.

For Android, a resource can either refer to the ability to
access data or to perform an action on the system, like enabling
the wifi. In the secure manifest, we consider as for now 20
resources gathered into 6 groups, listed in Table I.

Motivating examples

1) Banking application: A banking application is a critical
application and a user may wish to run such an application in
a paranoid mode, i.e., no other application is authorized to run
at the same time. This can be used to mitigate attacks such
as Cloak and Dagger [14]. This case corresponds to a simple
<secure_context> containing an empty <app_restriction>.

Table I - CONSIDERED RESOURCES

Group Resources
Location Coarse location, GPS
Communication Mobile data, Wifi, Bluetooth, NFC

Peripherals Camera, Microphone, Motion sensors,
Environmental sensors

Personal data SMS, Contacts, Phone, ID information
Storage Internal storage, SDCard, USB devices
High risks
resource

System settings, Draw over applications,
Automation services (e.g. accessibility...)

2) Mutual exclusion of applications: A user may wish to
never run at the same time two specific applications. For
instance, an application collecting private data (such as a
fitness app that may collect private health and location data)
and facebook app. To do this, the <secure_context> must
include an <app_restriction> containing a single <app />

tag for the facebook app.
3) Mutual exclusion of a specific resource: The mutual

exclusion may be specified at the granularity of a specific
resource usage. For instance, a user may forbid the use of
the NFC device by any other application when it is used by
his banking application during a payment operation. In this
case, a single <resource_restriction> containing the ”nfc”
<resource /> must be provided for the <secure_context>

targeting the payment operation.

V. SECURITY ARCHITECTURE

To enforce the secure manifest rules, we designed a security
architecture able to intercept the required communication paths
between applications and resources. The architecture is built
around the following design goals: G1 Complete application
communication mediation. All possible application commu-
nication channels shall be intercepted to ensure a thorough
policy enforcement. G2 Integrity protection. The integrity of
our solution must be protected to ensure its robustness against
attacks. G3 Limited changes over the existing codebase. To
help implementing our solution in future Android versions, the
amount of modifications over the existing Android code must
be reduced. G4 Efficiency & usability. Also, the performance
impact must be as low as possible. Furthermore, the mandatory
interactions with the user should be limited for better usability.

A. Components overview

To fulfill the design goals, the security architecture is split
into four different components. This architecture embodies a
multi-level isolation approach for whom a preliminary concept
has been presented in [11]. Figure 1 recaps the components
of our solution.

The first component, named policy handler service (PHC),
is the keystone that links the other components of our security
architecture together. It includes most of the control logic
that manages the secure manifest of each hosted application.
Furthermore, it aims at intercepting high level IPC initiated
by running apps, namely the Intent messages (G1). For this
purpose, this component is implemented as a system service
of the framework, tightly coupled with the AMS. To be
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Figure 1. Solution overview

more specific, we added several hook points in the AMS to
mediate the Intent execution, as well as to retrieve information
about the running application components states. That way,
we are able to be aware of the applications life-cycle which
is mandatory to enforce the policy.

The second component, named system call interception
handler (SCIH), aims at intercepting the remaining com-
munication channels of applications, i.e. lower-level binder
transactions and system calls (G1). We implemented this
component as a Linux kernel module which hooks the system
calls table to mediate the aforementioned communication
channels. We decided not to use the LSM hooks to avoid
interfering with the SELinux subsystem, as well as to keep
more freedom over the intercepted data. Furthermore, the
module performs dynamic memory introspection in the binder
driver to identify the target of a binder transaction (G3).
In addition, the module implements a basic character device
which allows the communication between the SCIH and the
PHS through ioctl system calls.

The third component, named integrity hypervisor (IH), is a
bare metal hypervisor which acts as the root of trust of our
solution (G2). It performs integrity checks over critical parts
of the Linux kernel to detect any malicious alteration [15],
traps accesses to crucial kernel memory pages, and checks at
startup the signature of the other parts of our solution.

The last component, the policy definition application (PDA),
is a standard system application providing the user interface
of our solution. It aims at: 1) retrieving the default secure
manifest of each installed application; 2) allowing the user
to modify the secure manifests by adding/removing rules; 3)
appropriately inform the user about any conflicts over the
current policy at runtime (G4). The PDA communicates with
the PHS with traditional binder transactions.

B. The architecture in details

When a user installs a new application, the PDA retrieves
the corresponding default manifest automatically and stores

them in a specific private folder that is therefore not accessible
by other applications (G2). The PHS then retrieves and parses
the manifest at startup or when any modification on the folder
occurs. In order to generate the rules from the manifest,
the PHS needs to convert several strings into meaningful
information. It has to: 1) match each application ID with it
corresponding Linux user id; 2) associate each system resource
name to the set of object identifiers that provide the resource.

Once the rules are generated from the retrieved data, the
PHS has to decide when to enforce the rules associated with
each app components. To do this, it needs to be aware of the
application components lifecycle, i.e. when the components
are started or stopped. There are multiple cases. Activities can
be started either by intents, as a result of pressing the ”back”
key, or by using the recent apps screen. These events can be
intercepted by inserting additional hooks in the AMS. The
same kind of hooks can be applied for services and content
providers, as services are only launched via intents and content
providers are directly managed by the AMS. However there
are no similar ways to intercept the component shutdown,
as processes running these components can be killed at any
moment due to low memory. Therefore the PHS has to monitor
the AMS internal structures to detect this kind of event.

Our architecture must also handle potential conflicts that
may occur at runtime, which are actions, forbidden by the
current rules, that an application tries to perform. They can
either result from an operation that the user wants to achieve,
or not at all. Therefore, we are not able to resolve the conflicts
automatically, because this should depend on the user decision.
To do this, the conflict details are displayed to the user, and
he is asked to allow or deny the action. For the first case, all
applications in conflict with the action to be performed have to
be closed. Otherwise, the operation is blocked. The conflicts
are either detected by the SCIH or the PHS depending on
the kind of access. In both cases, we first have to block the
access, and then ask the user. Otherwise, the source application
would hang up until the conflict resolution, and be considered
as faulty by the system. Then, after the conflict resolution,
the same operation is allowed (or not) to be executed. The
user interaction for conflict resolution is carried out by the
PDA, which customizes its UI depending on the state of the
operation issuer. If it is a foreground activity, the user is asked
to take a decision via a popup. Otherwise, only a notification
is issued by the PDA, allowing the user to answer whenever
he wants (G4).

VI. IMPLEMENTATION & EARLY PERFORMANCE RESULTS

Our implementation is based on the Android 8.1 source
code available on the Android Open Source Project (AOSP)
repositories. Two kinds of hardware are used: i) A computer
running the x86 64 version of the Android emulator, with a
quad-core Intel Xeon E3-1270 clocked at 3.6GHz and running
the Ubuntu 17.10 OS with 16GB of RAM; ii) The 96boards
hikey development board equipped with an octa-core ARM
Cortex-A53 64-bit clocked at 1.2GHz and 2GB of RAM.



Table II - OVERHEAD RESULTS

intent intercept.
(3000 rules)

intent intercept.
(15000 rules)

periodic check
(7 running apps)

periodic check
(14 running apps)

PHS ⇔ SCIH
comm.

PHS ⇔ SCIH comm.
w/ syscalls intercept.

1st quartile 0.639ms 1.923ms 0.525ms 0.678ms 1.409ms 1.609ms
median 0.672ms 1.989ms 0.612ms 0.931ms 1.590ms 1.776ms

3rd quartile 0.740ms 2.081ms 0.843ms 1.050ms 2.136ms 2.285ms

We have implemented a prototype of a bare-metal hyper-
visor on the hikey development board. Indeed, as the board
bootloader is mostly open source, we used the virtualization
capabilities of the CPU for this purpose. The rest of the
implementation has been performed and tested on the Android
emulator, and only the PDA and the SCIH are not yet fully
featured. Nevertheless, it is possible to evaluate the overhead
of our interception solution, as all the corresponding code has
been developed. All tests performed were carried out on the
Android emulator, and are gathered in Table II.

We first focused on the performance of intents interception
by the PHS. Without any modifications, the system performs
an intent delivery in about 30±10ms (resp. 65±25ms if the
destination app is not running). With the PHS interception
enabled, the overhead is around 672µs for 3000 rules, and
1.989ms for 15000 rules, including both the interception and
the rules evaluation time. Even with the extreme number of
15000 rules, this only corresponds to a 6.6% overhead. We
also assessed the overhead of component termination checks
performed by the PHS. This operation is performed every
500ms, and its execution time fluctuates in accordance with
the number of app launched. For instance, this operation takes
612µs with 6 apps running, and 931µs with 14. Finally, we
measured the communication time between the PHS and the
SCIH, that occurs for each rule to be enforced or removed by
the SCIH when an app component starts or stops, or when
the SCIH must notify the PHS about a conflict. Our analysis
shows that a round trip between the PHS and the SCIH incurs
a delay of 1.590ms. Indeed, this delay is mainly caused by the
context switch between the framework and kernel. Although
we estimate that this specific delay should cause most of the
overhead induced by our security solution, there is always
room for optimization. For instance, we can gather multiple
rules in one message to reduce the resulting overhead. Fur-
thermore, we performed an analysis of the overhead induced
by the system call interceptions. To do this, we compared
standard communications between the PHS and the SCIH with
and without the aforementioned interception. The resulting
overhead is about 200µs. Globally, the measured interception
overheads are significantly low and should not lead to any
impact on the user perceived performance.

VII. PERSPECTIVES

As ongoing work, we are aiming at finishing the imple-
mentation of a fully integrated prototype of our solution. In
the future, we plan to focus on the retrieval of default secure
manifest for each application through crowd sourcing. Another
point that we plan to address is the adaptation of the isolation
behavior of our solution based on the resource type. Indeed,

nonvolatile data like the one present in the SDCard cannot
be mediated the same way as volatile data produced by in-
device sensors. Furthermore, we seek to provide an extension
to the secure manifest that would allow finer grain resources
parameters to the policy. For instance, a user may want to
restrict the Internet access of some applications by defining a
white-list of allowed URL.
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