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Abstract

Motion planning is a fundamental problem in robotics that has motivated
active research from more than three decades ago. A large variety of algo-
rithms has been proposed to compute feasible motions of multi-body systems
in constrained workspaces. In recent years, some of these algorithms have
surpassed the frontiers of robotics, finding applications in other domains such
as industrial manufacturing, computer animation and computational struc-
tural biology. This papers concerns the latter domain, providing (up to our
knowledge) the first overall survey on motion planning algorithms applied to
molecular modeling and simulation. This paper discusses both the algorith-
mic and application sides of these methods as well as the different issues to be
taken into consideration when extending robot motion planning algorithms
to deal with molecules. From an algorithmic perspective, the paper gives a
general overview on the different extensions of sampling-based motion plan-
ners that proposed in this context. From the point of view of applications,
the survey deals with problems involving protein folding and conformational
transitions, as well as protein-ligand interactions.

Keywords: Motion Planning, Sampling-based Algorithms, Molecular
Simulations, Protein Flexibility, Protein Folding, Protein-Ligand
Interactions.

1. Introduction

Nowadays, computer simulations are widely used to model biomolecules,
mimic their behavior and gain insight about their physiochemical properties
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and biological functions. Indeed, a whole field dedicated to such simulations
currently exists under the name of Computational Structural Biology.

The need for such molecular simulations mainly stems from the limi-
tations of current experimental methods. For example, determining three-
dimensional structures of proteins can be achieved experimentally using meth-
ods like X-Ray Crystallography [1] and Nuclear Magnetic Resonance (NMR)
[2]; however, such methods suffer from several shortcomings. These meth-
ods provide only static or averaged information about the structure under
study, which is insufficient as proteins are known to be flexible and dynamic.
Computational methods have been developed for complementing, and even
for replacing experimental methods. For instance, methods such as Molecu-
lar Dynamics (MD) [3] and Monte Carlo (MC) methods [4] are largely used
to study thermodynamic properties and activity of proteins from an initial
structure determined by X-Ray crystallography or NMR. Other computa-
tional methods can be used to determine the structure of proteins without
prior experimental information [5]. They are also used for predicting molecu-
lar interactions (Molecular Docking) [6], and for understanding how proteins
move from random coils to their native structure (Protein Folding) [7]. Nev-
ertheless, the current status of these computational methods is still far for
providing completely accurate and reliable results in all the cases, and the
most complex instances of the aforementioned problems remain out of reach
for state-of-the-art methods. For example, current computational power per-
mits performing Molecular Dynamics simulations that cover up to some mi-
croseconds of the physical time. This is of course insufficient since molecular
motions in some events like protein folding can occur over the range of a few
seconds [8]. On the other hand, Monte Carlo (MC) simulations also suffer
from shortcomings in their search and sampling of the conformational space
of proteins, which is a rugged landscape that is full of local minima. MC
methods tend to get trapped in these local minima and waste considerable
time trying to escape out of them.

For these reasons, active research is currently focused on enhancing sim-
ulation techniques (see [9, 10, 11] for examples) and producing alternatives
for them. This paper surveys a particular family of such alternative methods
that are inspired from the field of robot motion planning. Robotics-inspired
methods have been introduced recently for simulating motions of proteins
and studying problems like protein folding and protein-ligand interactions.
They borrow ideas from sampling-based motion planning algorithms [12, 13],
which have proven to be very successful in tackling high-dimensional robot
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motion planning problems.
Although the two fields of robotics and molecular simulations seem very

distant at first glance, a look under the hood reveals many similarities in
terms of the formulation of the tackled problems. In an early survey [14],
Parsons and Canny have shown that several of the problems studied in the
field of computational structural biology are actually geometric problems that
have counterparts in the field of robotics. This is mainly due to the fact that
motion plays a central role for both robots and proteins. Robots cannot be
called robots unless they move; they are otherwise simply computers or elec-
tronic devices. Similarly, protein motions are integral part of the biological
processes proteins are involved in, such as catalysis and signal transmission.
Understanding how proteins move is directly linked to understanding such
processes, as well as understanding disfunctions and their contribution to
diseases such as the mad cow disease and Alzheimer’s disease [15].

Since motion-planning-inspired algorithms for molecular simulations are
relatively new, up to our knowledge, no dedicated reviews have been written
on this subject. Nevertheless, there are two works that are noteworthy in
this regard. The first is a survey by Moll et al. [16] that is dedicated to
applications of motion planning roadmap methods to protein folding. The
second is an online course prepared by Kavraki entitled “Geometric Meth-
ods in Structural Computational Biology”[17]. This course is a good and
comprehensive reference on the broad subject of using geometric methods in
computational biology. It is oriented towards explaining in detail the back-
ground, algorithms and implementations rather than surveying the current
literature; which is the aim of this paper.

The paper is structured as follows: Section 2 begins by introducing the
general problem of motion planning and by presenting basic algorithms, espe-
cially sampling-based algorithms. The discussion then proceeds by explain-
ing the different issues to be taken into account when moving from motion
planning in robotics to performing molecular simulations. Main molecular
simulation methods that are inspired by robot motion planning are then sur-
veyed and explained in Section 3. Next, Section 4 discusses the three main
application domains in computational structural biology where these algo-
rithms have been applied. These application domains are: the analysis of
conformational transitions, protein folding and unfolding, and protein-ligand
interactions. For each of these domains, the general problem is presented and
then results achieved using motion-planning-inspired techniques are surveyed
and discussed. Finally, Section 5 summarizes and concludes the survey.
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2. From Robot Motion Planning to Molecular Simulations

This section introduces the motion planning problem and briefly presents
some of the algorithms that have been proposed during the last three decades.
More attention is given to the two classes of planning algorithms called Prob-
abilistic Roadmap (PRM) [18] and Rapidly-Exploring Random Trees (RRT)
[19], as robotics-inspired algorithms for molecular simulations mainly follow
these approaches. The discussion will then proceed to how these algorithms
can be extended for computing molecular motions.

2.1. Motion Planning in Robotics

Robot Motion Planning consists in deciding automatically what motions
a robot should execute in order to achieve a task specified by initial and goal
spatial arrangements of physical objects [20]. A frequently used example
to explain the idea is as follows: Given a piano in a certain room, what
motions should be applied to the piano in order to transfer it from position
A to position B without colliding with any of the room’s furniture. The
formalized version of this problem is known as the Piano Mover’s Problem
[21].

Motion planning is generally formulated using the notion of Configuration
Space [22]. A configuration q describes the pose of the robot (e.g. the x and y
coordinates of a rigid robot translating in a 2D workspace). The configuration
space C is the set of all possible configurations the robot can take, and the
number of dimensions of this space equals the number of degrees of freedom
of the robot (i.e. the number of parameters needed to describe the pose
of the robot). Some regions in the configuration space may be considered
forbidden due to the presence of obstacles or due to other constraints. These
regions are usually denoted Cobs and the rest of the space is denoted Cfree.
The motion planning problem becomes now a problem of search problem in
Cfree for paths that connect the initial and goal configurations.

Early work focused on complete motion planning algorithms, i.e. algo-
rithms that always report a solution if one exists and report failure otherwise
[23]. Some examples of such methods are: Cell Decomposition [24], Visibil-
ity Graphs [25] and Voronoi-Diagram-based methods [26]. These methods
construct roadmaps that are guaranteed to cover the whole space. The prob-
lem, however, is that they rely on an explicit representation of Cobs, which
can be difficult to construct, especially for high-dimensional configuration
spaces. Indeed, it has been shown that finding a complete solution for the
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motion planning problem in general is PSPACE-hard [27], and that, even if
a roadmap is constructed, finding the shortest path between any two ver-
tices in a three dimensional configuration space is NP-complete [28]. For
this reason, attention has shifted to practical motion planning algorithms
rather than complete ones. Sampling-Based Motion Planners [29, 30, 12]
are one type of such algorithms that have gained a lot of momentum lately.
These algorithms trade off completeness for the sake of generality, efficiency
and simplicity of implementation. They guarantee a weaker notion of com-
pleteness called probabilistic completeness, which means that with enough
samples, the probability to find an existing solution converges to one [12].

Sampling-based planners sample the configuration space to build a repre-
sentative set of configurations, which substitutes for the explicit representa-
tion of the configuration space. The difference between a planner and another
lies mainly in how sampling is performed and how the samples are connected.
Sampling-based planners are often classified into two categories: Roadmap-
Based Planners and Tree-Based Planners. Roadmap methods basically work
in two phases: a construction phase and a query phase. In the construction
phase, a graph that covers the configuration space is built and in the query
phase this graph is used to plan the motion between any needed start and
goal configurations. These methods are also called multiple-query methods
since the built roadmap can be used multiple times. Tree-based planners, on
the other hand, are usually single-shot methods. A tree is grown from the
start configuration by sampling the space until a path to the goal configura-
tion is found. Thus, the construction of the tree and the search for the path
are done at the same time. The two algorithms described next, PRM and
RRT, are the most representative methods of each of these main classes.

2.1.1. Probabilistic Roadmap

The Probabilistic Roadmap (PRM) algorithm was introduced in the nineties
[18] and was a breakthrough. It was able to successfully solve motion plan-
ning problems with higher dimensions than what was achieved before. The
basic version of PRM1 works by performing the following steps iteratively:

1. A random sample is drawn from the configuration space and is checked
for collision. If the sample is a valid configuration, it is added to the

1This is one of the basic variants of the algorithm. Another version performs sampling
and connections in separate loops.
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Figure 1: An illustration of a simple PRM.

roadmap as a node.

2. A search is performed to find the nearest neighbors in the roadmap to
the new node.

3. An attempt is made to connect the new node to its neighbors using a
straight line2. If a connection can be established without collision, a
new edge is added to the roadmap.

The roadmap is built by repeating the previous steps until a stopping cri-
terion is met. The graph at hand can then be searched for paths using any
of the conventional graph search algorithms such as Dijkstra’s shortest path
and the A* algorithms. These basic steps of the PRM have been improved
over the years and several variants have appeared (e.g. [31, 32, 33, 34]).
However, the general structure of the algorithm remains the same. Figure 1
shows an illustrative example of the basic PRM.

2.1.2. Rapidly Exploring Random Tree

The most popular tree-based motion planner is the Rapidly-Exploring
Random Tree (RRT) [19]. Rooted at the start configuration, this tree grows
in the configuration space until the goal configuration can be connected to
one of its nodes. An interesting feature of the algorithm is that nodes with

2This applies for systems without differential constraints and which admit any inter-
polation between a pair of states. Under such constraints, more complex methods are
required to perform local connections.
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Figure 2: Illustration of a simple RRT at an intermediate stage during its construction.
Here, qinit and qgoal are the initial and goal configurations, respectively.

larger Voronoi regions (i.e. the portion of the space that is closer to the node
than to other nodes of the tree) are more likely to be chosen for extension,
and therefore the tree is pulled towards unexplored areas, spreading rapidly
in the configuration space.

The basic version of the RRT works by performing the following steps
iteratively (this applies for systems without differential constraints and which
admit any interpolation between a pair of states):

1. A random configuration qrand is sampled from the configuration space.

2. The tree is searched for a configuration qnear, which is the nearest node
in the tree to qrand.

3. A new configuration qnew is created by interpolating on the straight
line between qnear and qrand with a predefined distance d.

4. If qnew is a valid configuration that falls in Cfree, and if the local path
between it and qnear is collision-free, then qnew is added to the tree as
a new node and an edge is created between qnew and qnear.

This process repeats until the goal configuration can be connected to the tree
or a maximum number of iterations is reached. Figure 2 shows an illustra-
tive example of the basic RRT algorithm. Variants of this basic algorithm
appeared later on (e.g. [35, 36, 37, 38]). Moreover, other tree-based planners
that are not directly based on RRT have also been proposed. Two examples
of such planners are the Expansive Spaces Tree [39] and the Path-Directed
Subdivision Tree [40].
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2.2. Needed Extensions For Molecular Simulations

Since the algorithms discussed above have been developed with robotic
applications in mind, they need to be extended or adapted in order to suit
the requirements of studying molecular motion. Generally speaking, there
are several issues that need to be taken into account before applying such
algorithms. First, a molecular representation that is suitable for applying
motion planning algorithms needs to be adopted. Next, appropriate simi-
larity measures (i.e. distance metrics) and collision detection methods for
proteins need to be used. In addition, specific sampling methods can be re-
quired to satisfy structural constraints. Energies of molecular conformations
also need to be taken into consideration since they determine the probabil-
ity of their existence in reality. Furthermore, the very high dimensionality
of problems involving biological macromolecules needs to be faced. These
issues are discussed in the following along with a quick survey of the relevant
literature.

2.2.1. Molecular Representation

The most straightforward way for representing molecules geometrically is
to list the Cartesian coordinates of all the atoms. Bonds can then be con-
structed automatically using the distances between atoms and the knowledge
about their types. This representation is called the Cartesian representation
and it is used by the Protein Data Bank [41] to describe proteins. This
representation is also frequent among conventional modeling tools based on
Molecular Dynamics or Monte Carlo methods. The problem with such a
representation is that it does not directly describe the internal degrees of
freedom of the molecule.

There are three types of variables that can be considered as internal de-
grees of freedom in molecules: bond lengths, bond angles and dihedral angles.
A bond length is the distance between two bonded atoms and a bond angle
is the angle between two consecutive bonds. The dihedral angle around the
bond between atoms Ai−1 and Ai is the angle formed by planes Ai−2-Ai−1-Ai

and Ai−1-Ai-Ai+1. See Figure 3 for an illustration. Although bond lengths
and bond angles vary, their variation is known to be very small at room
temperature, to an extent that it is possible to ignore them. On the other
hand, major conformational changes in the molecule occur due to variations
in dihedral angles. For this reason, it is commonly assumed that dihedral
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Figure 3: Parameters defining the relative position of bonded atoms.

angles are the only degrees of freedom of the molecule3This is usually called
the rigid geometry assumption [42].). Hence, the conformation of a molecule
can be represented as a vector of dihedral angles. This representation is
called the internal coordinates representation and it has been adopted by
most motion-planning-inspired algorithms as it corresponds to how articu-
lated robots are represented. Figure 4 shows a protein model together with
a representation of dihedral angles corresponding to one of its amino acid
residues. Note that the atom coordinates, which are required for some op-
erations like energy computation and collision detection, can be computed
from the internal coordinates using forward kinematics [43].

2.2.2. Dimensionality Reduction

Although using internal coordinates with the rigid geometry assumption
reduces the number of variables, the number of degrees of freedom required
to model biological macromolecules such as proteins remains very large. For
example in molecular docking problems (see Section 4.3), ligands typically
have 3-15 dihedral angles and receptors have in general more than 1000 di-
hedral angles, which makes the dimension of the combined search space pro-
hibitively large [44]. This problem of high dimensionality is actually one of
the fundamental difficulties to be faced by computational methods in struc-
tural biology.

Several strategies have been used to reduce the dimensionality of the
studied problems. For example, molecular docking problems have been tack-
led for a long time with the assumption that only the ligand is flexible and

3(
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Figure 4: The main image shows a protein model in van der Waals representation (spheric
atoms). The detail shows one its constituent amino acid residues and the dihedral angles
required to define its conformation.

that the receptor protein is rigid [45]. However, it has been shown that this
assumption renders the achieved solutions unrealistic since receptors may
go through important conformational changes [46]. Other works have made
more realistic assumptions based on prior chemical knowledge of the receptor
protein. Using this knowledge, dihedral angles that can contribute most to
the motions of the receptor are identified. These dihedral angles are then
assumed to be flexible and the rest of the receptor to be rigid. The drawback
with such methods is that they are problem-dependent and hard to automate
[44]. A more general approach proposed in [47] consists in choosing auto-
matically which parts of the protein can be considered as rigid bodies and
which parts have to be considered as flexible using methods based on rigidity
theory [48, 49]. Another strategy to reduce the problem dimensionality is to
assume that secondary structure elements are rigid, and that loops, linkers
and side-chains are flexible. This approach, as in [50], reduces the number
of variable parameters significantly and allows concentrating on important
motions of the protein.

A different approach for addressing the problem is to use statistical di-
mensionality reduction methods [51, 52] to map the current degrees of free-
dom into a lower-dimensional space. These methods usually begin with a
priorly available ensemble of structures for the protein under study, which
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are analyzed in order to create a reduced set of degrees of freedom. An ex-
ample of such methods is Principle Component Analysis (PCA) [53], which
is commonly used in the analysis of near-equilibrium fluctuations sampled
by molecular dynamics simulations [54]. However, PCA may not be suitable
for large-amplitude molecular motions given that it provides a linear approx-
imation and that molecular motions are generally non-linear. An example
of methods that can capture non-linear features is the Isometric Feature
Mapping (IsoMap) method [55]. This method produces a low dimensional
space that preserves as much as possible the geodesic distances between the
conformations in the original high-dimensional space. This requires the con-
struction of a nearest neighbor graph using a big number of distance compu-
tations, which makes the algorithm suffer when dealing with large datasets.
A scalable version of IsoMap called Scalable IsoMap (ScIMAP) was intro-
duced and applied to protein modeling applications [54]. This method was
further extended in [56] to be even more efficient by performing distance
measures in yet another projection on a lower dimensional Euclidean space.

Normal Mode Analysis [57] has also been used in this regard. It has been
shown that large-amplitude motions in proteins are related to low-frequency
normal modes [58, 59]. Consequently, low-frequency normal modes can be
used to predict the direction of large-amplitude motions. In [60], transition
pathways between conformations are computed using an RRT-like algorithm
that explores linear combinations of low-frequency normal modes. An ad-
vantage of such a method over methods like PCA and IsoMap is that normal
modes are computed online and no data set of conformations is required to
be available a priori.

2.2.3. Distance Metrics

In molecular simulations, we often need to measure how much a molecu-
lar conformation is different from or similar to another conformation. This
notion of similarity (or distance) is also essential for most motion-planning-
inspired methods. As explained in section 2.1, RRT-based methods rely on
finding the most similar conformation to every new random sample. PRMs
also searches for local connections between neighbor nodes corresponding to
similar conformations. This makes the choice of the distance measure very
influential on the performance of the whole algorithm.

A widely used and straightforward distance measure is the coordinate root
mean squared deviation (cRMSD). If two molecular conformations are rep-
resented as vectors of the Cartesian coordinates of their atoms, then cRMSD
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is the square root of the average squared distance between the correspond-
ing atoms. This requires both conformations be aligned in order to remove
the effect of any translation or rotation of the whole molecule. Another
widely used measure that eliminates the need to align the conformations is
the distance root mean squared deviation (dRMSD). Here, distances are first
computed between pairs of atoms of the same molecular conformation, then
the root mean squared deviation is computed between these distances and
the corresponding distances in the other molecular conformation. It is also
possible to apply the root mean squared deviation using dihedral values in-
stead of atom coordinates, which is how robot configurations are typically
compared within motion planning algorithms. Yet, it is important to note
here that in molecular simulations we are more interested in distance mea-
sures that capture structural differences in proportion with their effect on the
potential energy of the molecule. This is not the case with RMSD metrics in
general, since they give the same weight to all atom fluctuations regardless
of how much these fluctuations affect the potential energy.

Since computing distances can be a bottleneck for motion-planning-inspired
methods, especially if all-atom measures like dRMSD and cRMSD are used,
several works have resorted to using approximate metrics instead of the exact
ones. The rationale behind using such metrics is that an exact distance is not
always required for the algorithm as a whole to function well, which justifies
trading off exactness for the sake of performance gain. Several such methods
appear in the literature. One example is the work of Lotan and Schwarzer
[61], in which the protein is replaced by a lower dimensional averaged ver-
sion that is used instead of the original one. This is done by subdividing
the protein into n subsequences, each of which is replaced by its centroid.
The authors used Haar Wavelet analysis to justify their metric and showed
that it is highly correlated with the exact metric. Another example can be
found in [62]. In this work, the conformation of the whole protein is repre-
sented by only three variables that capture the overall topological differences
between conformations. These variables are: the mean atomic distance to
the centroid (ctd), the mean atomic distance to the farthest atom from the
centroid (fct), and the mean atomic distance from the atom farthest from
fct (ftf). An even more simplified metric is used in [63] for the problem of
molecular disassembly (see section 4.3), where the degrees of freedom of the
protein side-chains and the torsions of the ligand are both ignored and only
the reference frame associated with the ligand’s geometric center is used for
computing the distance.
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A general method, which could be applied for molecular simulations, is
proposed in [64]. This method projects the sampled conformations S to an
m dimensional Euclidean space and performs the distance measures in that
space. The projection is done by first selecting m pivots from S and then
replacing each variable s in S by a vector of the distances between s and each
of the pivots. Choosing pivots as far as possible from each other is believed
to best preserve the distances as computed in the higher-dimensional space.

2.2.4. Collision Detection

Another important problem is the detection of collisions between parts of
the same molecule and between different interacting molecules. As explained
in Section 2.1, sampling-based algorithms need a collision checker to decide
at every step if a new conformation is valid, and to check if two adjacent
conformations can be connected by a collision-free path. Collision detection is
indeed intensively performed inside these algorithms. Very efficient collisions
checkers tailored for molecular models are therefore necessary for the overall
efficiency of the planning algorithms.

Collision detection has been widely studied in the fields of robotics and
computer graphics [65, 66] and several general-purpose collision detection
packages are available (e.g. [67, 68, 69]). However, the problem with most
of these methods is that they do not directly address the complex chain-
like structure of large molecules such as proteins. This makes such methods
less efficient than what can possibly be achieved, since the number of pairs
considered for collision in the chain can be significantly reduced by exploiting
the structural properties of the chain (see [70, 71] for some examples of works
that address the specific problem of collision detection in kinematic chains).

Several algorithms dedicated to chain-like molecular models have been
proposed. The technique described in [72] exploits the topology of the molec-
ular (kinematic) chain to avoid testing for self-collision parts that are known
to be rigid. It uses a hierarchical representation of the chain that allows for
efficient updates and queries in O(logN) time, and superimposes on top of
this representation a hierarchy of bounding boxes, which allows for efficient
collision detection and distance computation. The algorithm detects self-
collisions with a worst-case complexity of O(N4/3). Another algorithm called
BioCD [73] was specifically designed to be used within sampling-based mo-
tion planning algorithms applied on proteins described as kinematic chains.
It assumes that only a pre-selected set of the protein degrees of freedom can
change arbitrarily and the rest are blocked. The algorithm works by creating
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a two-level hierarchy that allows it to avoid detecting collisions between atom
pairs whose interaction does not change from one iteration to another.

2.2.5. Treating Loop Closure

Loops are portions of proteins that are highly irregular and varied in
terms of their sequence and structure. They can play important roles in
controlling enzyme activity, and are often found at the interface in protein-
protein or protein-DNA/RNA interactions [74]. Sampling such portions of
the protein poses a challenge that requires extra care. Conformations of loops
must not only satisfy geometric constraints for collision avoidance, but must
also satisfy what is known as the loop-closure constraint. The two ends of the
loop must remain bonded to the rest of the molecule, which greatly restricts
the space of admissible conformations of the molecular chain. Therefore,
defining an appropriate sampling strategy is a prerequisite for any sampling-
based exploration method that takes loop flexibility into consideration.

The protein loop closure problem has often been addressed using robotics-
inspired methods (e.g. [75, 76]). Note however that most of such methods
are limited to 6 degreed of freedom, and therefore, extensions are necessary
to deal with long loops. In [77], an algorithm called RLG (short for Random
Loop Generator) was proposed for sampling configurations of long loops.
The main idea of RLG is to decompose the loop into several parts: a passive
chain and one or two active chains. RLG progressively constructs a random
configuration for the active chains by alternating sampling between them.
This sampling is performed in a way that increases the probability of satis-
fying loop closure when finding a configuration for the passive chain, which
is computed by solving inverse kinematics for 6 consecutive bond torsions.
In [78], a modification was introduced to RLG for enhancing its efficiency.
The idea was to include steric-clash checks during the sampling of the active
chains, rather than only after the complete conformation is generated. In
[79], another sampling strategy for protein loops is proposed that works in
a similar manner to RLG. It decomposes the loop into three parts called:
front-end F, mid-portion M and back-end B, samples F and B first, and
then uses inverse kinematics to find a conformation for M.

An alternative to the methods above, which apply (semi-)analytical in-
verse kinematics, is to use optimization-based inverse kinematics. A notable
example of such methods is the Cyclic Coordinate Descent (CCD) [80]. Given
the start and end points, CCD samples an open conformation for the chain
segment rooted at the start point, and then iteratively adjusts one dihedral
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angle at a time in a way that minimizes the distance between the end frame
in the sampled conformation and the required end point.

2.2.6. Energy Computation

As mentioned in Section 2.2.1, there is a high similarity between the rep-
resentation of robot configurations and molecular conformations. Yet, there
is a fundamental difference that needs to be taken into account whenever
dealing with molecules, which is the potential energy associated to confor-
mations. Each molecular conformation has an energy level that depends
on the interactions between its constituent atoms and with the surrounding
molecules (e.g. the solvent). This energy is an indicator of how likely it is
for the molecule to adopt this conformation (conformations with low energy
are naturally preferred over conformations with high energy). Hence, the
conformational space of the protein is not a binary space with only valid or
invalid conformations, but a continuous space with conformations that are
more or less likely to occur. For many applications, the algorithms must be
able to find least energy paths rather than geometrically valid ones. There-
fore, sampling-based algorithms need to be adjusted to cope with this by
accepting or rejecting new conformations based on their energy level, and
by associating transition probabilities between conformations based on the
energy difference between them.

The energy of a conformation can be computed with high precision using
quantum mechanics [81]; however, it is highly time consuming and can be
even intractable in large molecules, since it deals directly with the electronic
structure of the molecule. Molecular mechanics [82] is usually used to pro-
vide approximate energy values of protein conformations. These values do
not make much sense when read alone, but are very useful when read in
comparison to each other. Functions that compute energy based on molec-
ular mechanics are usually called molecular force fields. They take as input
the atom positions and evaluate energy based on different terms that vary
from one force field to another. Yet, these terms usually include: changes
in bond lengths and bond angles, bond torsions, Van der Waals interactions
and electrostatic interactions. The choice of the terms and the shape of the
function affect the accuracy of the computation, its speed, and its suitability
to some types of molecular systems or applications. See [83, 84] for reviews
on force fields and software packages that are widely used in the study of
proteins.

The drawback of using such all-atom force fields is that they are still
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computationally expensive, and thus, their usage can limit the size of the
studied molecules and the time-scale of the performed simulations. This has
motivated the introduction a Coarse Grained force fields [85]. These force
fields measure interactions between blocks of functional groups rather than
between the individual atoms. This leads to a rough approximation of the
actual force field, but also to a significant performance gain. Some examples
of coarse grained force fields are MARTINI [86] and OPEP [87].

3. Motion-Planning-Inspired Methods for Molecular Simulations

Seminal work on the application of motion planning algorithms to the
study of proteins was published in 1999 [88]. Since that time, many methods
inspired by different motion planning algorithms have appeared and have
been applied to a variety of molecular simulation problems. Most of these
methods follow the lines of either PRM or RRT, with PRM-based methods
being more oriented towards the computation of ensemble properties and
RRT-based methods more towards the computation of feasible paths. In
this section, we survey literature related to these methods and provide brief
explanations of each of them.

3.1. PRM-Based Methods

3.1.1. Probabilistic Conformational Roadmaps

The method proposed by Singh et al. [88] builds a roadmap by randomly
sampling the molecular conformation space. Samples are accepted or rejected
using a probability function that favors low energy conformations. This
feature makes the method be different from the conventional PRM in robotics
that uses collision detection for evaluating new samples. The used probability
function is as follows:

P (accept, q) =


1 if Eq < Emin

Emax−Eq

Emax−Emin
if Emin ≤ Eq ≤ Emax

0 if Eq > Emax

(1)

where Eq is the potential energy of conformation q, and Emin and Emax are
threshold values that depending on the molecular system in hand. Neighbor-
ing nodes are then connected, and a weight is associated to each edges. These
weights are actually probabilities that represent the likelihood of transitions
between the connected conformations. For each edge eij, the algorithm gen-
erates intermediate conformations {qi = c0, c1, c2, ..., cn = qj} along the path
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between the two connected conformations qi and qj. The number of these in-
termediate conformations is a user-defined parameter. The weight of the edge
eij is then computed by summing the negative logarithm of the transition
probabilities between each of the consecutive intermediate conformations ci

and ci+1:

Pi =
e−(Ei+1−Ei)/KT

e−(Ei+1−Ei)/KT + e−(Ei−1−Ei)/KT
, (2)

where Ei is the energy of ci, T is the temperature and K is the Boltzmann
constant. A connectivity-enhancement step is also added to this PRM vari-
ant, where extra nodes are sampled around nodes that have very few edges.

This method was first introduced for the study of protein-ligand interac-
tions, more precisely, to identify potential active sites in the proteins. The
weights of paths entering and leaving low energy nodes were also used to esti-
mate energy barriers around active sites and to distinguish true binding sites
from other low-energy active sites. Later, in [89], this method was given the
name of Probabilistic Conformational Roadmaps (PCR), and was applied to
study protein folding.

3.1.2. Stochastic Roadmap Simulations

Stochastic Roadmap Simulations (SRS) [90, 91, 92, 93, 94] is an evolution
of PCR. The main difference between the two methods is found in the tran-
sition probability assigned to edges in the roadmap. SRS uses a transition
probability that is consistent with the Metropolis criterion [95], which allows
for establishing a connection between SRS and Monte Carlo methods. The
transition probability used in SRS is as follows:

Pij =

{
1
ni

exp(−4Eij

KT
) if 4Eij > 0

1
ni

otherwise
(3)

Pii = 1−
∑
j 6=i

Pij, (4)

where 4Eij is the difference in potential energy between nodes qi and qj, ni

is the number of neighbors to qi. ε = exp(−E/KT ) is the Boltzmann factor.
A self-transition edge is added to each node such that the sum of transition
probabilities for every node is one.

Once the roadmap is constructed, tools from Markov Chain Theory (e.g.
First Step Analysis) can be applied to study ensemble properties like folding
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rates, phi-values and the Transition State Ensemble (see Section 4.2). Every
path in the roadmap can be looked at as the run of Markov Chain Monte
Carlo (MCMC) method. This allows for interpreting the whole roadmap
as the result of a set of MCMC being run simultaneously. In fact in [91],
SRS is shown to converge at the limit to the same sampling distribution
as that of MCMC. The difference between MCMC and SRS is that MCMC
provides a single but fine-grained path, whereas SRS provides many coarse-
grained paths covering a wider area of the conformational space. This is of
course a tradeoff, since although SRS covers a wider area of the space in
a relatively short time and overcomes the local minima problem inherent to
MCMC, coarse granularity comes with the cost of possibly loosing important
information along the paths between nodes.

3.1.3. PRMs for Folding Pathways

Another research line that started early is the work led by Nancy Amato
[96, 97, 98, 99, 100, 101, 47, 102, 103]. The PRM-based algorithms proposed
by this group to study protein (un-)folding are largely inspired by the PCR
method. The method builds a roadmap by sampling the conformational space
of the protein with a probability function that is similar to that of PCR (see
equation 1). New samples are first checked for collisions between atoms and
then accepted or rejected based on the probability function. In this function,
Emin is suggested to be set to the potential energy of the extended chain and
Emax to be twice Emin [103]. This method also uses the following formula
for edge weights, which is a slightly modified version of equation 2:

Pi =

{
e
−4Ei

KT if 4Ei > 0
1 if 4Ei ≤ 0

(5)

where 4Ei = E(ci+1)−E(ci), T is the temperature and K is the Boltzmann
constant.

This method has gone through several evolutions over time. Changes
mainly concerned the strategy used for sampling new nodes and the method
used to analyze folding pathways. The three main sampling strategies are
summarized in the following:

1. In [96, 97], sampling was performed around the native fold (which is
assumed to be known) using a set of normal distributions centered
around this conformation with various standard deviations. This was
done to ensure capturing important details close to the native fold
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using small standard deviations and to ensure adequate coverage of
the conformational space using larger standard deviations.

2. In [98, 99] another strategy was proposed since the first one worked
well only for proteins with around 60 residues or less. The new strat-
egy also starts from the native fold but generates new conformations
by iteratively applying small perturbations. Conformations are parti-
tioned into bins according to the number of native contacts present. A
native contact is defined as a pair of Cα atoms that are within 7 Å of
each other in the native state. At each round, bins with a small number
of conformations are chosen and sampling is performed around them.
Newly generated conformations are placed at the appropriate bins and
the loop repeats.

3. The last method based on native contacts was also found to scale poorly
beyond proteins with 100 residues. In [47], another totally different
method was proposed for sampling based on Rigidity Analysis. Here,
the protein is analyzed to identify three types of bonds: rigid bonds,
flexible bonds whose motion does not affect other bonds (called in-
dependently flexible) and flexible bonds that form a set such that the
motion of any of them affects the rest of the set (called dependently flex-
ible). The method perturbs rigid bonds with a low probability denoted
Prigid and independently flexible bonds with a high probability denoted
Pflex. For each set of dependently flexible bonds, a number of bonds
are chosen randomly and are perturbed with probability Pflex, whereas
the others are perturbed with probability Prigid. This method was able
to characterize the energy landscape more efficiently, with fewer and
more realistic conformations.

Works by other researchers derived from this method have been proposed
more recently. An example is the MaxFlux-PRM [104, 105], which uses a
different edge weight function in order to find optimal reaction paths that
are temperature-dependent.

3.2. RRT-Based Methods

3.2.1. Manhattan-Like RRT

Manhattan-Like RRT (ML-RRT) is a variant of the RRT algorithm pro-
posed in [106] for treating a special case of the motion planning problem
called (dis)assembly path planning. The problem consists in finding a path
to (dis)assemble two objects, one of which is considered to be mobile, and the
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other one to be fixed. In the more general instance addressed here, both the
mobile and the fixed object contain articulated parts. This problem resem-
bles the problem of computing access/exit paths for a ligand (small molecule)
to/from the active site of a protein (see Figure 5 for an illustration).

ML-RRT works by dividing configuration parameters into two groups,
called active and passive, and by generating their motion in a decoupled
manner. Active parameters correspond to parts whose motions are essential
for the disassembly task, whereas passive parameters correspond to parts
that need to move only if they hinder the motions of other mobile parts
(active or passive). Roughly speaking, motions of active parts are planned
exactly the same way they are planned using an RRT, but when motion is
hindered by a passive part, the conformation of this part is perturbed in
order to allocate free space for the motion of active parts. The performed
perturbation may also cause collisions with other passive parts, which are
then perturbed producing a domino-like effect.

The ML-RRT algorithm presents two main advantages when compared
to the basic RRT. First, it is considerably faster, and second, but not less
important, it allows identifying automatically (without user intervention or
the need of prior knowledge) which parts of the protein need to move in order
for the ligand to enter or exit from the active site.

The original ML-RRT algorithm was able to solve efficiently problems
involving the flexibility of the ligand and the protein side chains. The exten-
sions proposed in [50] enables the introduction of the protein backbone flex-
ibility. In this extension, the protein is represented as groups of rigid bodies
connected by flexible loops that are assigned based on structural knowledge.
Additionally, a mobility coefficient is assigned to each passive parameter.
This coefficient is used to differentiate passive parts that are allowed to move
easily from those that should be moved only if the solution path cannot be
found otherwise.

3.2.2. Transition-RRT

Another RRT variant called Transition-RRT (T-RRT) was introduced in
[107, 108] for exploring energy landscapes. The algorithm introduces a state
transition test inspired from the Metropolis criterion in MC methods. The
goal is to favor the exploration of low-energy regions. New nodes are accepted
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Figure 5: The image on the left illustrates an academic disassembly planning problem for
two articulated objects. An analogy can be made with the protein-ligand “disassembly”
problem represented in the right-hand image. The red object can be considered as the
ligand and the blue sticks as flexible side-chain of the protein.

and added to the tree with the following probability :

Pij =

{
e
−4Eij

KT if 4Eij > 0
1 otherwise

(6)

In this equation, 4Eij is the difference between the energy at qnear and at
qnew. In contrast to MC methods, where the temperature T is usually a
constant for the simulation, T-RRT incorporates a reactive scheme to dy-
namically adapt this parameter. To do so, the algorithm keeps track of the
number of consecutive node insertion rejections. When the T-RRT search
reaches a maximum number of consecutive rejections, the value of T is in-
creased, which increases the probability to accept subsequent transition tests.
In contrast, each time an uphill transition test succeeds, the value of T is
decreases, therefore increasing the severity of the transition test. Thus, the
temperature is automatically regulated along the exploration depending on
the shape of the energy landscape. This temperature regulation strategy
is a way to balance the search between unexplored regions and low energy
regions. Note that T-RRT does not yield a Boltzmann-weighted set of con-
formations. However, it allows finding efficiently energy minima and saddle
points in the energy landscape, as well as likely transition paths between
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stable conformations.

3.2.3. NMA-RRT

The work by Kirillova et al. [60] proposes an RRT-based methods that
applies Normal Mode Analysis (NMA) [57] for computing global macromolec-
ular motions. As mentioned in Section 2.2.2, low-frequency normal modes
are associated with collective, large-amplitude molecular motions, and can
be used as predictors for the direction of such motions. This fact is put
into use by the NMA-RRT method, which performs an RRT-like exploration
in the coordinate space of the low-frequency normal modes. The goal is to
cover the most important areas of the conformational space while exploring
a low-dimensional search space. Although, NMA-RRT performs its search in
a space that is defined in terms of the amplitudes of low-frequency normal
modes and not in terms of the degrees of freedom of the molecular model,
new conformations are accepted only if they satisfy the geometric constrains
of the mechanistic model (i.e. correct bond geometry, collision avoidance).
Normal mode calculations are iteratively updated during the conformational
search. This is necessary because the information provided by NMA is only
accurate in a relatively small region around the initial conformation, which
causes the guidance of the RRT search to degrade when exploring larger
regions.

3.2.4. PathRover

A simulation framework named PathRover was presented in [109] for sam-
pling and generating motion pathways between molecular conformations. It
uses the RRT algorithm and applies a branch-termination scheme to satisfy
constraints based on prior information. This scheme works by represent-
ing partial information from previous experiments and expert knowledge as
predicates that are checked periodically as the RRT grows. Branches of the
tree that do not improve a certain predicate after m consecutive iterations
are terminated (not extended anymore). This RRT variant also uses a va-
lidity test based on the energy of the conformations. All conformations with
an energy value higher than a given threshold are considered to fall in Cobs,
whereas all the rest are considered to fall in Cfree.

Note that PathRover is an extension of earlier work by the same group
[110] on the computation of conformational transition pathways of proteins.
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3.3. Other Methods

In addition to the aforementioned methods, several methods for molecular
modeling and simulations that apply other motion planning algorithms than
PRM and RRT have been proposed in recent years.

In [62], Shehu et al. proposed a tree-based method called FeLTr for
studying the problem of protein structure prediction (see Section 4.2). This
method uses a tree structure to locate low energy conformations that are
potentially close to the protein’s native conformation. These native-like con-
formations can then act as starting points for more refined search to obtain
the folded conformation. FeLTr uses a coarse grained representation of the
protein and a two-layered search strategy that tries to sample low energy
conformations without oversampling geometrically similar ones.

Another motion-planning-based method was introduced in [111] for com-
puting large-amplitude motions between molecular conformations. This method
is based on the Path Directed Subdivision Tree (PDST) algorithm [40], which
is also a tree-based sampling-based planner, but which represents samples
as path segments rather than individual states, and uses non-uniform sub-
divisions of the space to estimate coverage [40]. In order to enhance the
performance of the method, a coarse-grained protein model and a simplified
energy function were considered. The distance metric was defined in terms
of the relative positions between the secondary structure elements.

4. Applications

The methods presented in the previous section have been mainly applied
to three types of problems in computational structural biology: the com-
putation of conformational transitions of proteins, the study of the protein
folding precess, and the analysis of protein-ligand interactions. This section
discusses briefly each of these problems and present the main results achieved
by motion-planning-inspired methods.

NOTE: ADD FIGURES ILLUSTRATING THE PROBLEMS

4.1. Conformational Transitions

The most direct application for robot motion planning methods in molec-
ular simulations consists in computing transition pathways between two molec-
ular conformations. This problem requires generating a sequence of feasible
intermediate conformations for the molecule (usually a protein) to link the
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given conformations. The problem is analogous to the motion planning prob-
lem in robotics. Computing conformational transition pathways if proteins
is important for understanding their biological functions. This problem can
be seen as a general instance of several more particular problems. In protein
folding for example, the starting and end conformations are the unfolded and
folded states of the protein, and in molecular docking, the starting and end
conformations are the undocked and docked states of the molecular complex.
These two particular problems are treated in next subsections. This section
concerns transitions between stable (folded) states of proteins.

The study of protein conformational transitions is important since they
can play key roles in molecular recognition and may be essential for the
protein activity. In spite of their importance, current experimental and com-
putational methods are very limited for describing large-amplitude confor-
mational changes in proteins at the atomic scale.

Finding transition pathways is usually tackled at different levels of gran-
ularity depending on the phenomena under study. Some phenomena are
related to large-amplitude motions that occur over a relatively long period of
time and that significantly affect the whole protein (such motions are often
referred to as domain motions). For such phenomena, the problem can be
tackled at a structural level that is higher than the level of individual atoms.
In other cases interest may be focused on flexible segments of the protein.
For example, irregular segments in the protein, called loops and linkers, are
generally much more flexible than structured parts of the protein (i.e. alpha
helices and beta sheets). This calls for exploration methods that are specif-
ically tailored for these flexible regions. Figure 6 illustrates these two types
of protein motions.

4.1.1. Loop Motions

Results on the application of an RRT-based algorithm extended to treat
closed kinematic chains (RLG-RRT) [77] for computing protein loop motions
were first presented in [113]. The algorithm was tested on Amylosucrase
(AS), considering loop 7 as an articulated mechanism and the rest of the
protein as a rigid body. Results were positive, as they showed the effective-
ness of motion-planning-based methods for studying the mobility of loops.
An improved version of the method, which integrates ideas of ML-RRT, was
applied in [114] to investigate the large-scale open-to-closed movement of the
lid that controls the access to the active site of Burkholderia cepacia lipase
(BCL). Results show that the lid conformational transition computed with
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a)

b)

Figure 6: Illustration of two classes of large-amplitude motions in proteins. (a) Loop
motions: A segment of the protein (in red) moves significantly, while the rest of the
protein remains mostly static. (b) Domain motions: Large portions of the protein move
with respect to each other.

this method is comparable to the one obtained with molecular dynamics
simulations. Nevertheless, the computing time requited by the RRT-based
method is several orders of magnitude lower.

Several tests on the application of LoopTK to study motions for 20 dif-
ferent loops are presented in [79]. Results show that LoopTK can sample
efficiently loops ranging from 5 to 25 residues in length. Although the com-
bination of LoopTK with sampling-based path-planning algorithms such as
PRM and RRT seems possible, results on the application of such a combined
strategy to simulate protein loop motions have not been published yet, as far
as we know.

4.1.2. Domain Motions

The results reposted in [60] show the good performance of NMA-RRT
for computing transition pathways involving domain motions. A set of five
proteins for which structures corresponding to different conformations have
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been experimentally solved was used as benchmark. The abbreviated names
of these proteins are: ADK, ATP, DAP, EIA and LAO. Tests showed that
NMA-RRT produces results that correlate well with previous studies. NMA-
RRT was able to achieve these results using a notably low number of normal
mode calculations.

Results obtained with PathRover for computing conformational transi-
tions of the CesT and the Cyanovirin − N proteins are reported in [109].
The particular phenomenon studied in these tests is domain swapping, and
the achieved results are consistent with experimental results. Moreover, in
[110], the RRT-based predecessor of PathRover was implemented within a
larger framework of algorithms to generate pathways between a closed and
an open conformation of the KcsA protein.

Conformational transition simulations have also been performed using the
PDST-based method presented in [111]. Results are reported for the ADK,
RBP, GroEL and CVN proteins. These results show that the algorithm
significantly outperforms a classically used method such as Simulated An-
nealing [112]. The paper also shows that results of the PDST-based method
are consistent with experimental data.

4.2. Protein Folding

Protein folding is the process in which proteins move (fold) from random
coils to their native three-dimensional shape. Being in the correct folded state
is essential for proteins to function properly in many biological processes, and,
usually, unfolded or incorrectly folded proteins are inactive or even toxic [115,
15]. For this reason, it is important to understand and to characterize protein
folding and unfolding pathways. Note that the study of protein folding should
be distinguished from the problem of protein structure prediction [116], in
which only the final three-dimensional structure of the protein is searched,
regardless of how the protein actually reaches it. Nevertheless, both problems
are important, and progress in any of them may yield advances in the other.

Several experimental methods have been used for studying protein fold-
ing, such as NMR Spectroscopy [117, 118], Ultrarapid Mixing [119] and Time-
Resolved Absorption Spectroscopy [120]. However, the information obtained
from these methods is currently limited. Computational methods have been
used side by side with these experimental methods, either augmenting them
or even replacing them (for examples, see [121, 9, 122, 123]). Important
advances with these computational methods started with the advent of the
energy landscape theory [124], which hypothesizes that the energy landscape
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of a protein is funneled with many pathways all leading to the same final
folded state. This suggests that a good understanding and characterization
of the energy landscape of a protein will lead to a good understanding of
how this protein folds. Hence, motion-planning-inspired methods for protein
folding basically take this theory as a basis. The advantages of such methods
over most of conventional methods are their ability to rapidly explore the
conformational space without getting trapped in local energy minima, and
their capacity to find several pathways simultaneously.

4.2.1. Computation of Folding Quantifiers

The Stochastic Roadmap Simulations (SRS) method has been used in
the computation of different types of quantifiers and ensemble properties
related to protein folding: the probability of folding (Pfold), the Transition
State Ensemble (TSE), the folding rate, and the Φ-value of residues. Pfold is
the probability that the structure at a certain conformation would become
completely folded before it becomes completely unfolded. TSE is the set of
conformations with Pfold = 0.5 (i.e. conformations which make up the energy
barrier the protein must cross in order to fold). The folding rate measures
the ratio of proteins in a set that advance towards the folding state per unit
time. The Φ-value measures how close a certain residue is to its native folded
state.

In [91, 92], Pfold values were computed and compared using SRS and
Monte Carlo (MC) for two proteins with PDB IDs 1ROP and 1HDD. These
proteins were modeled at the secondary structure level with 6 and 12 degrees
of freedom respectively. Results showed that SRS computations improve
rapidly as the roadmap size increases, and that the correlation between SRS
and MC computations tends to increase as more MC runs are performed
per node. Nevertheless, SRS produced results at least four times faster than
MC. More extensive tests were presented in [93, 94], where 16 proteins were
analyzed using SRS to compute TSEs, folding rates and Φ-values. Results
were then compared to an existing dynamic programming method and were
found to better estimate experimental data when computing TSEs and fold-
ing rates. However, both SRS and the dynamic programming method did
not produce very good estimates for Φ-values.

PRM-based methods have also been applied to compute folding quanti-
fiers together with two new analysis methods called Map-based Master Equa-
tion (MME) and Map-based Monte Carlo (MMC). These methods were in-
troduced in [101] and used in combination with the conformational explo-
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ration method presented in Section 3.1.3 to compute relative folding rates
for proteins G, NuG1 and NuG2. These analysis methods are extensions
to the original Master Equation and Monte Carlo techniques, and they are
applied on the constructed roadmap instead of the full conformational space
as is conventionally done. The computed relative folding rates were found to
match the corresponding experimental data.

Finally mention that the capacity of FeLTr to predict native-like confor-
mations of small-to-medium size proteins has been shown in [62]. Results
in this paper show a good performance of the method on eight proteins,
modeled with 40 to 152 degrees of freedom. The conformations provided by
FeLTr can be used as starting points for more detailed biophysical studies.

4.2.2. Protein (Un)folding Pathways

Results on the performance of PRM-based methods for studying unfolding
of several proteins with up to 100 residues are reported in [96, 97, 98, 99].
The constructed roadmaps were used to extract unfolding pathways and to
identify their secondary structure formation order. The results were found
to be in good agreement with known experimental data. The method was
tested on the proteins G and L, as well as on proteins NuG1 and NuG2,
which are two mutants of protein G. Initial tests in [97] were able to capture
the folding differences between proteins G and L, but not between G and
NuG1 or NuG2. However, these differences were correctly captured after
applying the rigidity-based sampling strategy in [47].

4.2.3. RNA (Un)folding Pathways

The combination of the PRM-based exploration with MME and MMC
discussed above has also been used in [100, 102] to study the problem of RNA
(un)folding, which is a problem very similar to protein folding. Results show
that the method scales well for RNA molecules with up to 200 nucleotides.
This method was used to compute relative folding rates, and was found to
agree with experimental results. It was also able to predict the same relative
gene expression rate for wild-type MS2 phage RNA and three of its mutants.

4.3. Protein-Ligand Interactions

The study of protein-ligand interactions is indispensable for understand-
ing many biological mechanisms. In terms of applications, understanding
such molecular interactions is essential for drug design in pharmacology, or
for protein engineering in biotechnology. Different elements to be studied
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are the way the protein recognizes a particular ligand, how the ligand binds
the protein active site, and what conformational changes both molecules un-
dergo during the ligand’s entrance to the active site or its exit from it. Such
information allows predicting the possibility of association between protein-
ligand pairs, the strength of this association, or the protein activity level.
However, obtaining atomic-scale information about protein-ligand interac-
tions using current experimental methods is practically infeasible. Moreover,
the largeness of the search space to be explored and the long time-scales to
be simulated are extremely challenging for the application of computational
methods. This is especially true when full flexibility of the protein is taken
into consideration.

Some software packages for predicting protein-ligand docking are available
such as AutoDock [125], DOCK [126], FleX [127], GOLD [128] and ICM [129].
These packages use algorithms such as Monte Carlo, Molecular Dynamics,
Genetic Algorithms [130], and fragment-based search [131] (for a survey of
methods and software packages see [132]). However, none of these softwares
considers full flexibility of the protein. Moreover, these methods focus on
finding the final binding conformation disregarding the ligand access/exit
pathway, and without computing the conformational changes required for
enabling such access/exit. Next, we survey works that use motion-planning-
inspired methods for predicting binding sites and for computing access/exit
ligand pathways.

4.3.1. Predicting Binding Sites

The algorithm of Singh et. al. introduced in [88] was tested on the follow-
ing three protein-ligand complexes: Lactate Dehydrogenase with Oxamate,
tyrosyl-transfer-RNA synthetase with L-leucyl-hydroxylamine and Strepta-
vidin with Biotin. The algorithm was able to find the true binding site for
the first two complexes successfully, but not for the third one. Such a partial
success corresponds to the overall performance of state-of-the-art methods.

More recently, Stochastic Roadmap Simulations have also been used in
the study of protein-ligand interactions. In [90], SRS was applied to estimate
the escape time for a ligand from different putative binding sites in a protein.
Here, escape time is the expected amount of time for the ligand to escape from
the “funnel of attraction” at the binding site [90]. Tests were performed on
seven different protein-ligand complexes and results showed that in five out
of seven complexes, escape time proved to be a good metric for distinguishing
the catalytic site from the other putative binding sites. It is noteworthy to
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say that in both this work and in [88], only the ligand was assumed to be
flexible and the protein was assumed to be rigid. This is possibly one of the
reasons to explain why these methods fail in some cases.

4.3.2. Finding Access and Exit Pathways

The RRT-based method presented in [78] was applied to compute geomet-
rically feasible paths of (R,S)-enantiomers to exit the active site of Burkholde-
ria cepacia lipase (BCL). The flexibility of the ligand and of 17 side-chains in
the catalytic pocket of BCL were considered. Energy profiles along the path
were obtained by performing a rapid local minimization of intermediate con-
formations. Results showed a clear similarity between the computed paths
and paths obtained using pseudo-molecular dynamics. However, the com-
bined RRT-minimization approach only required some minutes to compute
the paths, whereas pseudo-molecular dynamics took several days. Results
also showed that the approach is suitable for pointing out protein residues
that constrain the access of the ligand, which is a highly valuable information
for site directed mutagenesis. Further investigations about the influence of
ligand access/exit on Burkholderia cepacia lipase enantioselectivity are pre-
sented in [133, 134]. These works show the ability of RRT-based methods
to produce results rapidly, which presented a fair qualitative agreement with
experimental studies.

The extended ML-RRT method described in [50] was applied to com-
pute the exit pathways of a bound substrate homologue (TDG) from Lactose
permease (LacY) and of carazolol from the active site of the β2-adrenergic
receptor. Results showed a remarkably good agreement with experimental
data, as well as with results obtained with other, much more computationally
expensive methods based on Molecular Dynamics.

5. Conclusion

We have surveyed the literature for methods based on robot motion plan-
ning algorithms to solve different problems in computational structural biol-
ogy. The reviewed algorithms can be grouped based on the types of problems
they have been applied to as shown in Table 1. We have also pointed out
the main challenges and issues that need to be taken into account when
extending motion planning methods for molecular simulations. A suitable
representation for the molecule needs to be adopted, and an appropriate dis-
tance metric needs to be used for comparing molecular conformations. An
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Application Domain Related Work

Loop Motions RLG-RRT [113, 78, 114], LoopTK [79].
Domain Motions NMA-RRT [60], PathRover [110, 109],

PDST [111].
Protein Folding/Unfolding SRS [90, 91, 92, 93, 94], PRM [96, 97, 98,

99, 101, 47, 103], MaxFlux-PRM [104, 105]
RNA Folding PRM [100, 102].
Protein Structure Prediction FeLTr [62].
Protein-Ligand Interactions PCR [88, 89], SRS [90], ML-RRT [133,

134].

Table 1: Motion planning inspired methods classified according to application domain.

efficient method for computing distances between atom pairs and for colli-
sion checking also needs to be considered, as well as a method for sampling
conformations that satisfy structural constraints. Moreover, the ever-lasting
problem of high dimensionality has to be faced, and an appropriate compro-
mise should be made between the number of considered degrees of freedom
and the amount of accuracy sought. Last but not least, energy needs to be
taken into account, and a choice has to be taken for the type of force field to
be used.

Motion-planning-inspired methods for molecular simulations are still in
their early stage. First results show that such methods are promising comple-
mentary methods to more conventional techniques in computational struc-
tural biology. Their strength lies mainly in their efficiency for exploring
highly complex spaces. Yet, they still require improvements and validation
on larger classes of systems. Further tests on real application problems, in
tandem with experimental methods, will provide important feedback to im-
prove the computational methods. Researchers also need to look into other
classes of problems than the ones already tackled in order to broaden the
applicability of these methods. For instance, a particularly interesting prob-
lem that remains to be addressed with motion planning methods is protein-
protein docking.

Our goal with this survey is twofold: (1) For readers in the structural
biology community, we expect this paper will serve as an introduction to
robotics-inspired methods with applications in their domain, and that this
work will contribute to spreading this new family of methods in this com-
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munity; (2) For readers in the robotics community, our aim is to incite them
to look at problems in structural biology, which represent challenging bench-
marks that motivate the improvement of algorithms.
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mational changes in proteins using a mechanical disassembly method,
Physical Chemistry Chemical Physics 12 (29) (2010) 8268–8276.

[51] I. K. Fodor, A survey of dimension reduction techniques, Tech. Rep.
UCRL-ID-148494, Lawrence Livermore National Lab (June 2002).

[52] L. van der Maaten, E. Postma, H. van den Herik, Dimensionality reduc-
tion: A comparative review, Tech. Rep. TiCC-TR 2009-005, Tilburg
University (2009).

[53] I. Jolliffe, Principal component analysis, Springer Verlag, 2002.

[54] P. Das, M. Moll, H. Stamati, L. Kavraki, C. Clementi, Low-
dimensional, free-energy landscapes of protein-folding reactions by non-
linear dimensionality reduction, Proceedings of the National Academy
of Sciences 103 (26) (2006) 9885–9890.

[55] J. Tenenbaum, V. Silva, J. Langford, A global geometric framework for
nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–
2323.

36



[56] E. Plaku, H. Stamati, C. Clementi, L. E. Kavraki, Fast and reliable
analysis of molecular motion using proximity relations and dimen-
sionality reduction, Proteins: Structure, Function, and Bioinformatics
67 (4) (2007) 897–907.

[57] Q. Cui, I. Bahar, Normal mode analysis: theory and applications to bi-
ological and chemical systems, Chapman and Hall/CRC mathematical
and computational biology series, Chapman & Hall/CRC, 2006.

[58] K. Hinsen, Analysis of domain motions by approximate normal mode
calculations, Proteins: Structure, Function, and Bioinformatics 33 (3)
(1998) 417–429.

[59] F. Tama, Y. Sanejouand, Conformational change of proteins arising
from normal mode calculations, Protein Engineering 14 (1) (2001) 1–6.

[60] S. Kirillova, J. Cortés, A. Stefaniu, T. Siméon, An NMA-guided
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