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1CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France
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Abstract—This paper presents a new method to compute
enveloping grasps with a multi-fingered robotic hand. The
method is guided by the idea that a good grasp should maximize
the contact surface between the held object and the hand’s
palmar surface.

Starting from a given hand pregrasp configuration, the
proposed method finds the hand poses that maximize this
surface similarity. We use a surface descriptor that is based
on a geodesic measure and on a continuous representation of
the surfaces, unlike previous shape matching methods that rely
on the Euclidean distance and/or discrete representation (e.g.
random point set). Using geodesic contours to describe local
surfaces enables us to detect details such as a handle or a thin
part. Once the surface matching returns a set of hand poses,
sorted by similarity, a second step is performed to adjust the
hand configuration with the purpose of eliminating penetration
of the object. Lastly, the grasp stability is tested in order to
definitely validate the candidate grasps.

I. INTRODUCTION

Grasp planning can be simply stated as the problem of

finding a penetration-free configuration such that the robot

can hold the object stably in grasp. With this definition, many

hypotheses concerning the object and the definition of the

robot configuration can be proposed.

Bohg and Kragic [1] proposed three families of objects

that lead to three different grasping approaches: Known

objects, familiar objects, and unknown objects. In the first

case, the robot already knows a set of grasps for the object.

Once the object pose has been estimated, a valid grasp is

selected depending on the context. Familiar objects can be

grasped by adapting some grasps that were previously learnt

for objects with similar shapes, whereas unknown objects

require the computation of a new set of grasps.

The finality of grasp planning can also be classified by

what has to be computed by the grasp planner: The hand

configuration only (6D pose plus finger joint parameters),

the whole robot (hand plus arm) configuration, or the robot

configuration plus a valid approach motion.

The method proposed in this paper deals with unknown

objects and the computation of valid hand configurations.

It relies on the computation of the hand poses that give

the best similarities between the object surfaces and the

hand surfaces, where the similarity scores measure how well
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the two surfaces fit together locally. We are interested in

enveloping grasps (i.e. grasps with contacts on all the finger

phalanges), not precision grasps (i.e. grasps with contacts

only on fingertips). Enveloping grasps do not allow grasping

of small parts as precision grasps do, but they may give more

stable grasps while decrease the risk of damaging the object,

because less pressure is required to hold it stably.

Some grasp planning techniques (e.g. [2], [3], [4]) ex-

plicitly compare the shapes of the object and the hand

to find grasps. On the contrary, methods based on object

segmentation [5], [6], [7], [8] can be seen as implicit shape

matching methods, because the object’s shape is not directly

compared to the hand’s shape, but compared to predefined

primitive shapes (for which specific grasp planners have

been implemented) in order to decompose the object into

a collection of the primitive shapes.

The usual shape decompositions build a tree of convex

primitive shapes, biasing the alignment of the grasp approach

on the main axes of the convex parts of the object, not neces-

sary leading to the best alignment if object or hand shapes are

non-convex. Furthermore, the previously mentioned shape-

matching-based methods rely on the Euclidean metric when

computing distances between two surface points and/or dis-

crete representation (e.g. representing local surfaces with

randomly sampled surface points). Our method is based on

contours around a surface point instead of randomly sampled

surface points. Since these contours are clearly defined due

to the employed geodesic measure, our method can better

represent local surfaces. Consequently, the method presented

in this paper offers the following contributions:

• The surface similarity computation is based on con-

tinuous surfaces, not on discrete points as in [2], [3],

[4]. The use of the geodesic distance instead of the

Euclidean distance allows us to correctly deal with

object with small holes (e.g. a mug with handle).

• Surface matching and computation of the hand align-

ment are performed within the same algorithm unlike

other techniques (e.g. [2], [3], [4]) that only use shape

matching to find the best candidate in a grasp database.

The paper is organized as follows. Section II gives a brief

overview of the related grasp planning methods. The overall

principle of the method is then explained in Section III.

Section IV details the surface similarity computation that is

the base of the proposed method. Results of computed grasps

for objects with various shapes are shown in Section VI.



II. RELATED WORK

Here is a brief overview of the grasp planners that are

the most relevant to our method: Methods based on either

implicit (object segmentation) or explicit (shape similarity

computation) shape matching.

The idea behind the first group is to use techniques tailored

for the simple shapes after the object segmentation has been

performed, where the segmentation transforms the original

shape of the object into a set of simpler and known shapes.

Miller et al. [5] decompose the object into convex primitives

(spheres, cylinders, cones, and boxes) and associate a pre-

grasp configuration of the hand to each primitive. Different

approaches of the hand are then tested by closing the hand

until contact, and the validity of the grasp is tested with the

original shape using GraspIt! [9]. Other decompositions are

possible (e.g. the ones based on superquadrics [6], simple

boxes [8], or minimum volume bounding boxes [7]).

Instead of relying on primitives, Li et al. [2] start from a

user-created database of human grasps that is representative

of the different human grasp types. After a shape matching

algorithm finds the hand shape that best matches the query

object, another algorithm is used to find the alignment of

the hand pose to the object shape. Kim’s example-based

method [3] does not perform object segmentation either.

Instead, the object with the most similar shape to the query

object is retrieved from the database. Secondly, a routine

finds the point-to-point correspondence between the two ob-

jects. Finally, the correspondence is used to find the contact

points on the query object from the contacts stored in the

database. Goussous et al. [4] use a shape matching technique

very similar to [2], albeit focus on virtual humans and also

consider the effect of the upper body on the feasibility of

the grasp.

III. METHOD OVERVIEW

The overview of the method is presented in Fig. 1. The

input to the method is a pregrasp configuration of the hand.

For now, it is defined manually. For instance, a set of hand

pregrasps could be defined by an engineer for a given robotic

hand during the design process.

As the hand model is composed of several bodies and

not as a unique envelope, the first step of our method

is to compute a valid mesh for the hand. A solution to

this problem is given in the following subsection. After

the triangulated mesh over the surface of the hand in the

given configuration has been constructed, the hand mesh

is compared to the object mesh in order to find the best

alignments between them. If the hand penetrates the object

at one of these top alignments, adjustments of both the finger

configurations and the palm pose around the configuration

computed in the previous step must be performed in order

to find a penetration-free configuration. At last, the grasp

stability is checked to validate the final configuration.

Although the method shares similar ideas as [2], there are

two major differences between the two methods. First, the

output of the surface matching in our method contains the

grasp alignment unlike the one in [2] (i.e. the shape matching

in our method tells us not only the best hand preshape, but

also how to grasp). The second major difference is in the

employed surface matching method: Our method is based

on continuous surface matching, not on discrete features.

Fig. 1. Overview of the method.

A. Hand Mesh Computation

As a multibody system, the robot hand model is composed

of several parts. Our goal is to obtain one manifold mesh for

the whole hand or at least the parts of the hand that will be

used to grasp the object.

Neither skeleton-based nor vertex-blending-based mesh

deformation methods (e.g. [10]) are well-suited for a robotic

hand as they will deform the mesh in the area close to the

joints. Although the resulting meshes may still look realistic

for character animation, they are not suitable for extracting

the surface of the robotic hand. Instead, the marching cubes

algorithm [11] was used to convert an isosurface to a

triangulated mesh. The mesh is constructed as follows:

1) Build a grid of 3D points in the axis-aligned bounding

box of the hand model.

2) For each point of the grid, set the value of the point

to the distance between it and the closest point on the

hand surface.

3) Apply the marching cubes algorithm [11] to get the

surface of zero value as a set of triangles.

The original hand meshes we have are not well-defined,

because they have multiple holes and consist of disjoint

surface patches. Therefore, they can not be used directly

to compute distances because the surface is not closed and

hence their inside and outside are not clearly defined. Instead,

a volumetric representation was chosen such that the bodies

were modelled manually with superellipsoids. The radial

Euclidean distance between a point and a superellipsoid,

though not the exact distance, is easily computed from its

algebraic expression [12]. Fig. 2 shows the result of the mesh

computation for the Schunk Anthopomorphic Hand (SAH

hand). Although the dorsal side of the surface differs from

the original model, only the palmar side is meant to grasp

the object.

Once the hand mesh was obtained, a mesh point, that is on

the palmar surface and among the closest ones to the center

of the middle finger’s middle phalanx, was chosen manually

as the center of the contact zone (Fig. 2).

IV. FINDING BEST HAND PLACEMENTS BY MATCHING

CONTINUOUS SURFACES

Now that triangulated meshes of both the hand and the

object have been obtained, multiple mesh points are sampled



Fig. 2. Original model of the hand (a), remodeled with superellipsoids
(b), and the final manifold mesh (c). The distance between two adjacent
points of the grid was set to 2.2mm. The first (d) and second (e) hand
preshapes that were used for grasp computation in section VI. The frames
of the hand surface patches — inputs to the surface matching algorithm —
are also shown, where the red arrows represent the surface normals at the
patch centers.

uniformly on the object and their local surface geometry

characteristics are compared with the characteristics around

a given mesh point on the hand (i.e. compare how similar

the local surfaces around two mesh points are) in order to

find the hand placements that maximize the contact surface

between the hand and the object.

The following is the procedure for finding the best hand

placements by matching continuous (local) surfaces. Firstly,

geometry characteristics of the local surfaces around all

sampled/given mesh points are encoded by geodesic circles

(as done in [13]) in subsection IV-A. Secondly, a quadratic

shape descriptor (QSD) [14] based filter (subsection IV-B)

and a symmetry-based filter (subsection IV-C) are applied

sequentially to extract the local surfaces on the object that

are more likely to be the good grasping spots. Finally, the

similarities (actually dissimilarities) between the object local

surfaces and the hand local surface, which are used to rank

the remaining local surfaces on the object, are computed in

subsection IV-D using the normal variation encoded in the

geodesic circles.

Note that the normal variation based dissimilarity measure

can not distinguish between a concave local surface and

a convex local surface, if these two surfaces have very

similar shapes. Consequently, the QSD based filter has to

be applied first to filter out concave/convex local surfaces

from convex/concave ones. The QSD is also used to align

the hand local surface to the object local surfaces in order

to obtain hand placements.

A. Encoding Local Surface Geometry Characteristics

Geometry characteristics of the local surface around a

point are encoded with M geodesic circles. On each geodesic

circle, K points with equal distance between all neighbor-

ing points are sampled (Fig. 3). The geodesic circles are

constructed by computing the geodesic distance from the

point using the Fast Marching Method (FMM) applied to

triangulated domains [15]. If the mesh has n mesh points,

the computational complexity of the FMM is O(n log n).

B. The Quadratic Shape Descriptor Based Filter

The representation of a local surface is converted from

geodesic circles to the QSD, which can easily distinguish

Fig. 3. 8 geodesic circles around one mesh point on a mug model, along
with the normals of 50 sampled points on the geodesic circles. For clarity,
the edges of the mesh are not shown here.

between concave local surfaces and convex ones. Given a

mesh point p and the geodesic circles that represent the local

surface around it, the first step of constructing the QSD is to

transform all sampled points on the geodesic circles to the

coordinates (u, v, w) on a second coordinate system spanned

by three orthogonal unit vectors i, j, and k as follows:

r(u, v) = ui + vj + w(u, v)k, (1)

where k is aligned with the surface normal n at p, while

i and j span the plane tangent to n at p. Note that when we

refer to a surface normal in this section and the normal is

on the hand surface, we have in mind the negated surface

normal.

The local range curvatures and directions — represented

by (κmin, λmin) and (κmax, λmax), where κmin ≤ κmax

— of the local surface are simply the eigenvalues and

the eigenvectors, respectively, of the local Hessian matrix

H(u, v, w). The detail of calculating the elements of H can

be found in [14]. The degree of concavity or convexity of

a local surface patch is then given by the shape index Si,

which is defined as

Si = −
2

π
arctan

κmax + κmin

κmax − κmin

. (2)

Since we are looking for surface patches on the object that

are similar to a certain surface patch on the hand, a surface

patch on the object with shape index Sio is pruned if |Sio−
Sih| > ∆S, where Sih is the shape index of the surface

patch on the hand and ∆S is a shape filtering threshold. The

threshold ∆S is set empirically to 0.3 in [14].

For description of how to utilize the local range directions

to superimpose a surface patch from the hand to a surface

patch from the object, we refer to [14].

C. The Symmetry Based Filter

We propose the hypothesis that So — a surface patch on

an object around point po — that is not symmetrical with

respect to planes yz and zx of the right-handed orthogonal

coordinate system, which is established by the rows of

Ro =





λmin,o

λmax,o

no



 , (3)



is not a good spot for grasping and hence should be

discarded. In (3), no represents the surface normal at po,

while λmin,o and λmax,o represent the two local range

directions on So.

The coordinate system is constructed such that: The origin

is at the mesh point po, its z axis is aligned with the surface

normal no at po, and its x and y axes are determined by the

local range directions λmin,o and λmax,o, respectively. The

orthogonal coordinate system corresponds to (3) is shown in

Fig. 4.

Fig. 4. The right-handed orthogonal coordinate system constructed from
the surface normal no at the mesh point po and the local range directions
λmin,o and λmax,o.

The measure of a surface patch’s reflective symmetry —

the symmetry distance Sd — is defined as the L2-difference

between the geodesic circles over the surface patch and their

reflections (inspired by [16]):

Sd(P, γ) =
∑

p∈P

min
q∈γyz(P )

‖p − q‖ + min
q∈γzx(P )

‖p − q‖, (4)

where P is a point set of all sampled points on the

geodesic circles and γ is a reflection.

Once the symmetry distances of all surface patches on the

object have been computed, the one-third surface patches that

are the most symmetrical are kept.

D. The Normal Variation Based Dissimilarity Measure

In this final step, the similarities (actually dissimilarities)

between the hand surface patch and the object surface

patches that still remain after the first two steps are computed

using normal variation encoded in the geodesic circles [13].

The dissimilarity measure Ds between a surface patch

around the point ph on the object and a surface patch around

the point po on the hand is defined as

Ds =
M
∑

m=1

K

min
i=1

K
∑

k=1

(nh,m,k · nh − no,m,(k+i) mod K · no)
2,

(5)

where M is the number of the geodesic circles, K is

the number of all sampled points on each geodesic circle,

nh and no are the surface normals at the mesh points

ph and po, respectively, nh,m,k is the normal at the kth

point on the mth geodesic circle from ph, no,m,k is the

normal at the kth point on the mth geodesic circle from po,

and mod is the modulo operator. Essentially, each geodesic

circle on the object surface is “rotated” to find the best

match with the corresponding geodesic circle on the hand

surface (i.e. to minimize their contribution to Ds). Observe

that the “rotation” of each geodesic circle is independent of

the “rotations” of other geodesic circles in (5) as compared

to the similar equation in [13], which is more suitable for

comparisons of local surface patches on a single object.

V. FINDING THE FINAL HAND CONFIGURATION

A. Finding a Penetration-Free Hand Configuration

The result of the computations in the previous section is

a list of hand placements with respect to the object frame,

where the list is ordered from the best placement (i.e. the

one that gives the best surface match) to the worst one. If the

hand is placed with the pregrasp configuration in one of the

candidate placements, there might be penetrations between

the hand and the object, and hence the finger joint parameters

and possibly even the palm pose must be adjusted.

Some techniques have been proposed for finding a

collision-free configuration starting from a configuration in

collision [17], [18], but they were only used for free-flying

robots and can not be easily extended to a hand with

dozens of DOFs. Furthermore, a generic method is not

necessary as our application is very specific, and in particular,

collision (i.e. contacts) between the hand and the object is

actually essential, although it must be penetration-free. We

implemented a simple incremental approach to compute a

penetration-free configuration. First, a set of configurations

are sampled in the neighborhood (in the 6D space) of the ini-

tial palm configuration and the penetration-free configuration

that is the closest to the initial one is selected. Then, from

proximal to distal phalanges, the fingers are incrementally

opened/closed until they are either in contact with the object

but with zero-depth penetration or collision-free.

B. Checking Grasp Stability

With the final hand configuration in hand, the grasp

stability must be checked as the last step. Among many

grasp quality measures [19] that can be used to check and

rank a grasp’s stability, the radius of the largest ball, that is

centered at the origin of the wrench space and fully contained

in the convex hull of the primitive wrenches applied at the

contacts [20], was chosen as the stability measure. The grasp

is considered to be stable if the radius is non-null.

VI. RESULTS

To validate the proposed method, we implemented and

tested it on three object shapes (Fig. 5) that were chosen for

their complexities (important concavities, loops). The size

of the mug was increased such that any finger of the robotic

hand (except the thumb) can go through the handle’s loop.

The other two shapes were also roughly scaled to adapt to

the dimensions of the hand (with a length of about 30cm).

First, the surface matching algorithm was applied on two

different hand configurations: An almost fully closed one

and a more open one as shown in Fig. 2. 1000 points

were sampled on the surfaces of the elephant and the mug,

while 700 points were sampled on the surface of the horse.

On a workstation with 3.0GHz Opteron processors, it took



Fig. 5. The three shapes we used to validate our method. The elephant was
taken from CGAL demos [21], the mug is the reconstruction of a real object
of ours, and the horse was fetched from the Large Geometric Models Archive

at Georgia Tech. Note that the scales of the three figures are different.

24, 142, and 512 seconds to compute the grasp candidates

(i.e. the hand poses) for the horse, the elephant, and the

mug, respectively. The surface matching algorithm runs in

O(mn log n) time, where m is the number of the sampled

mesh points and n is the total number of mesh points. Next,

the computation of the final configuration (i.e. adjustments of

the palm and the finger joints) for each hand pose takes about

1 second. The contact points are computed as the points on

the object’s surface (after a discretizing phase) that are closer

than 6mm to the superquadric modelling of the hand surface.

Again, the distance is the radial Euclidean distance, that is

slightly greater than the exact distance and hence the contacts

are actually closer than 6mm.

A. The First Hand Preshape

The grasp candidates resulting from the surface matching

algorithm are shown in Fig. 6.

Fig. 6. The top 10 and top 25 grasp candidates for the first hand preshape
are shown in the top three subfigures and the bottom three subfigures,
respectively.

To grasp the elephant, the parts that were found to be the

best for grasping are, in decreasing ranking, its ears, trunk,

and legs. Moreover, valid grasps (i.e. penetration-free and

stable) were found for all three parts as shown in Fig. 7,

where the found contact points are drawn in yellow, while

the contact normals are drawn in green. Some of the grasps

(e.g. the top-right one in Fig. 7) may look like fingertip

grasps, but some contacts are actually located on the middle

or proximal phalanx surfaces. Furthermore, unlike the human

hands, the robotic hand consists of rigid parts, and hence the

possibilities of grasping with the whole palmar surface are

rather limited when the objects have complex shapes. For the

mug, the best parts for grasping are, in decreasing ranking,

its rim and its handle. Valid grasps were found all around

the mug’s rim and on its handle (Fig. 8). For the horse, the

valid grasps were found on its legs as shown in Fig. 9.

Fig. 7. 6 stable grasps for the elephant obtained with the first hand
preshape.

Fig. 8. 2 stable grasps for the mug obtained with the first hand preshape.

Fig. 9. 3 stable grasps for the horse obtained with the first hand preshape.

B. The Second Hand Preshape

The second hand preshape has a wider opening and its

palmar surface is flatter. Consequently, the best candidates

are the flatter parts of the objects (Fig. 10).

The surface matching does not favor anymore thin ele-

ments such as the legs of the animals or the mug’s handle.

However, grasping the flatter parts is not always possible due

to the restricted opening of the SAH hand’s thumb. As shown

in Fig. 11, many of the best candidates give good surface

matching but unstable grasps (i.e. with all non-thumb fingers

around these flatter parts, the hand can not be opened wide

enough to hold the objects in enveloping grasps, although this

flatter hand preshape could be useful for finding dual-handed



Fig. 10. The top 10 and top 25 grasp candidates for the second hand
preshape are shown in the top three subfigures and the bottom three
subfigures, respectively.

grasps). For instance, no valid grasp was found for the mug

and the hand preshape, and only one valid grasp was found

for the elephant (on its longer front leg). However, multiple

valid grasps were found for the horse (Fig. 12) because it is

not as wide as the mug and the elephant.

Fig. 11. With the second hand preshape, some of the best candidates did
not lead to stable grasps and were discarded, because the hand can not be
opened wide enough.

Fig. 12. 3 stable grasps for the horse obtained with the second hand
preshape.

VII. CONCLUSIONS AND FUTURE WORKS

We have presented a new method for planning enveloping

grasps with a robotic multi-fingered hand. Our method relies

on a matching algorithm for continuous surfaces to find

the best alignments between the surface of the hand in a

given pregrasp configuration and the surface of the object.

Experiments on several objects with complex shapes have

shown that the method indeed finds good alignments.

There are several ways to improve the proposed method.

The finger adjustment phase could be improved to find more

solutions, and it would be desirable to reason with multiple

hand surface patches instead of a single one so that the

distinct role of the thumb, with respect to the opposite

fingers, can be taken into account.
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