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Abstract— This paper proposes a planning framework to
deal with the problem of computing the motion of a robot
with dual arm/hand, during an object pick-and-place task. We
consider the situation where the start and goal configurations
of the object constrain the robot to grasp the object with
one hand, to give it to the other hand, before placing it in
its final configuration. To realize such a task, the proposed
framework treats the grasp computation, for one or two multi-
fingered hands, of an arbitrarily-shaped object, the exchange
configuration and finally the motion of the robot arms and
body. In order to improve the planner performance, a context-
independent grasp list is computed offline for each hand and for
the given object as well as computed offline roadmap that will be
adapted according to the environment composition. Simulation
results show the planner performance on a complex scenario.

I. INTRODUCTION

While humanoid torso robots offer better manipulation

capacities compared to single arm/hand robots, they also

introduce new issues. For instance, in the case of a two-

arm robot, if the object start and goal configurations are not

within the workspace of the same arm, it is necessary to

change the grasping hand to achieve the task. This grasp

change can be realized by first placing the object in the

shared workspace of the two arms then picking it with

the other arm and achieving the task. However, a more

efficient way to change the grasp is to plan a dual-hand

grasp of the object. Moreover, such two-hand regrasping

strategy results in a more human-like behavior and does not

require computing stable positions of the object in the shared

workspace.

Among the earlier work on this topic, [1] proposed a

practical planner for PUMA arms manipulating an object

using a predefined set of grasps. More recent work addressed

a similar problem for the case of dual-arm manipulation with

regrasping for a humanoid robot [2].

This paper describes a practical framework to resolve the

pick and place problems with a humanoid robot in scenarios

such as the one illustrated in Fig. 1. The DLR’s Justin

robot equipped with two Schunk Anthropomorphic Hands

has to pick the horse statuette from its right side and place

it at its left. The pick-and-place problem is then defined by

the initial and final configurations of the robot and of the

manipulated object. The idea developed in this work is to

use several offline computed data structures such as grasp

list and robot roadmap to reduce the online planning time.

First, a scored grasp list is generated for each hand, using

the method presented in Section IV-A. Also, a roadmap is

Fig. 1. Example of pick-and-place problem that needs regrasping in
constrained environment. The robot has to move the horse statuette from its
initial to its final configuration.

preprocessed using the coordination roadmap approach [3]

described in Section V-A, that does not account for the

manipulated object. To resolve a specific pick-and-place task

(online planning), a list of collision-free grasp configurations

are generated and sorted given some criterion as described

in Section V-C. These two lists are used to filter the large

number of double grasp candidates. A scored double grasp

list is then produced (Section IV-B). The top-ranked double

grasps are used to define the path planing queries and

determine the grasp exchange position (Section V-B).

II. RELATED WORK

This section briefly presents most closely related work on

grasp planning, motion planning and manipulation planning

that addresses the interdependency between the two first

planning stages.

A. Grasp Planning

Early work on grasp planning does not account for finger

nor arm kinematics and is often referred as contact-level

techniques [4], [5], with corresponding stability criteria [5],

[6]. More recent works integrate considerations on finger

and/or arm kinematics in order to favor directions when

searching for the set of possible grasps, based on a primitive

shape decomposition of the object (see [7], [8], [9]). Other

work give more focus on finger or arm inverse kinematics

issues ([10], [11]). Work in [11] investigates how to find



grasp configurations in cluttered environments, for a given

robot base position in the object range. From different object

approaches, a set of stable grasps is first computed and

a grasp scoring function is used to evaluate the grasps

that are more likely to succeed the inverse kinematics and

collision tests. Other recent works gives more focus on path

planning for the robot base (or body) and arm [12]. Those

last methods are clearly the most complete and generic as

they deal with the complete pick-regrasping-and-place task.

However, unlike works focusing on grasp planning, they

consider simple objects or assume a given set of grasps.

Our planner includes a generic grasp planner for multi-

fingered hands. and determines a set of single grasps that

can be used to find an exchange double grasp, even in a

cluttered environments and for a complex shaped object.

B. Motion Planning

Sampling-based planners are able today to solve complex

problems in high-dimensional spaces. In particular, the PRM

approach introduced in [13] and further developed in many

other works (see [14], [15] for a survey) has been shown

to perform well for a broad class of problems, even if its

performance degrades in the presence of narrow passages.

A number of variants and extensions have been proposed to

alleviate this problem, e.g. biasing sampling around obsta-

cles [16], [17], [18] or towards the medial axis [19], using

free-space dilatation [20], [21], visibility-based filtering [22]

exploiting search space information [23], or delaying col-

lision detection [24], [25]. Our planner is based on recent

work [3], that proposes a roadmap coordination approach

for multi-arm systems.

C. Manipulation Planning

One of the challenging issues of manipulation planning is

to integrate the additional difficulty of planning the grasping

and re-grasping operations to the path planning problem.

This interdependency between path planning and grasp plan-

ning was first touched in early work on automatic robot

programming systems (e.g. the Handey system [26]). The

manipulation planning approach in [27] provided a unified

framework allowing to better tackle the interdependency

issues between both planning levels. This framework was

further developed in several other works yielding to practical

manipulation planners (e.g. [28], [29], [30], [31]). It was

extended in [1] to multi-arm manipulation with a practical

planner relying on several simplifications, but able to deal

with complex and realistic problems. More recently, the

BiSpace, algorithm [12] was proposed to plan how to go and

grasp an object. The idea is to first compute a set of grasp

configurations for the hand alone. Once one or more collision

free configurations for the hand are found, they become the

start nodes of several RRTs tree [32], that explore the hand

workspace, while another RRT is grown from the robot start

configuration, that explores the robot configuration space.

Our work also considers a particular instance of manipu-

lation planning problem and focuses on the combination of

efficient grasp and motion synthesis techniques to solve a

pick and place task requiring two-hand regrasping.

III. PROBLEM FORMULATION AND APPROACH

The studied system is composed of a robot equipped with

two arms, with a hand mounted on each arm, of an object and

of a set of static obstacles referred as the environment. The

problem inputs are the initial and final (goal) configurations

of the robot (qinit
robot and q

final
robot ) and of the object (qinit

object and

q
final
object). qinit

object and q
final
object correspond to stable placements

of the object on a support (e.g. a table). qinit
object is such that

the object is only reachable with one of the arm. Let us

refer to it as arm 1. q
final
object is such that the object is only

reachable with the other arm, referred as arm 2. The robot

will thus have to exchange the object between its two hands.

The exchange configuration is qexch
object for the object, qexch

robot

for the whole robot (base or torso plus arms). The robot will

grasp the object in qinit
object with configuration q

grasp
robot and will

place it in q
final
object with configuration q

place
robot .

The method proposed in this paper for planning pick-and-

place tasks with regrasping involves two different topics.

First one is the grasp planner (see Section IV). Picking and

regrasping the object, needs a grasp planner able to find

hands configurations that are stable and collision-free. The

grasps have also to satisfy the robot kinematic constraints.

Section IV-A explains how the hands configurations are com-

puted and ordered given some criterion whereas Section IV-B

shows how the double grasps are filtered and ordered. The

Second one is the path planning (see Section V) that will

produce collision-free motion of the robot to achieve the

pick-and-place task. For this, an offline roadmap is computed

(see Section V-A) to speed up the online planning phase

detailed in Section V-B.

IV. GRASP PLANNING

Grasp planning basically consists in finding a configura-

tion for the hand(s) or end effector(s) that will allow to pick

up the object. In the present context, we are interested in two

kinds of grasps: One-handed grasps (referred later as single

grasps) and two-handed grasps (referred later as double

grasps). We consider only precision grasps i.e. contacts are

made with fingertips only. This allows to reason with point

contact only, that is the most common case in literature. It

also gives more grasping possibilities as even small parts

can be grasped, at the cost of a weaker stability compared

to power grasps. We have implemented our algorithm for

the Schunk Anthropomorphic hand (SAHand, depicted on

Fig. 3). Our method is not specific to this hand but we will

use it for illustration purpose.

The first stage of our grasp planner consists in building

a grasp list to capture the variety of the possible grasps, to

find an exchange double grasp even in cluttered environment

for an object with a complex shape.

A. Single Grasp Planning

A single grasp is defined for a specific hand type and for

a specific object. It is defined by:



Fig. 2. The object mesh is uniformly sampled with a point set (top images).
The point set is then partitioned using a kd-tree (bottom images).

• A relative pose of the hand reference frame (e.g. palm

or wrist frame) with respect to the object frame. We

refer to this frame as grasp frame.

• A set of contact points (a point on the object surface

and the ID of the finger realizing the contact).

• A configuration of the hand (a set of finger joint

parameters).

As our main concern is motion planning, it is not possible

to rely on the computation of an only grasp or to compute

grasps according to a heuristic that could introduce a bias on

the choice of the grasp. It is preferable to compute a grasp list

that aims to reflect the best the variety of all possible grasps

of the object. Our algorithm applies the following steps that

will be detailed further:

• Build a set of grasp frame samples.

• Compute a list of grasps from the set of grasp frames.

• Perform a stability filter step.

• Compute a quality score for each grasp.

1) Grasp frame sampling: For manipulation planning, it

is important to avoid biasing the possible approach of the

hand when we compute the grasp. Therefore, we choose to

sample the possible grasp frames uniformly. This is done

by the mean of a grid. We have chosen, for our hand, a

grasp frame that is centered on the intersection of the finger

workspaces so that it is roughly centered where the contacts

may occur. We set as an input the number of positions and

the number of orientations, each couple position-orientation

defining a frame. The positions are uniformly sampled in the

object axis-aligned bounding box with a step computed to fit

the desired number of position samples. The orientations are

computed with an incremental grid like the one in [33]. For

each grasp frame, a set of grasps will be computed.

2) Grasp list computation: As the proposed grasp plan-

ning method does not restrict the possible hand poses or

surface of contact on the object, it requires a lot of compu-

tation. Therefore, we have to introduce some data structures

to reduce the computation times. Except for collision test, the

most expensive computation is the finger inverse kinematics.

One has to be able to know the fastest possible if, for a

specified hand pose (relative to the object), a finger can

establish a contact on the object surface and, if it is the case,

where. The contacts can only occur in the intersection of the

finger workspace and the object surface. For each finger, it

is consequently crucial to find this intersection or at least an

approximation. We propose to approximate the object surface

with a point set. The set is obtained by a uniform sampling

of the object surface. The sampling step magnitude is chosen

from the fingertip radius. A kd-tree is built upon the point set

in order to have a hierarchical space partition of the points

(Fig. 2).

We then need to find the intersection of each finger

workspace with the object surface kd-tree. As spheres are

invariant in rotation, they are interesting to build an ap-

proximation of the finger workspace. Starting from a grid

approximation of the finger workspace (Fig. 3), we build

incrementally a set of spheres fitting inside the workspace.

First, points of the grid are marked as being boundary points

(on the workspace envelope) or inner points (strictly inside

the workspace volume). For each inner point, the smallest

distance to the boundary points is computed, referred as

dmin. The inner point having the biggest dmin is the center

of the first sphere S1, of radius dmin. For all the inner

points that are not inside S1, a new dmin is computed, that

is the minimum of the old dmin and the minimal distance

to S1. The point that has the biggest dmin is the center

of the second sphere S2, of radius dmin. This process is

repeated until we have reached the maximal desired sphere

number or the last computed sphere has a radius less than a

specified threshold. We keep the ordering of the construction

so that the sphere hierarchy starts from the biggest ones,

corresponding to workspace parts that are the farthest to the

finger joint bounds. These bounds were first slightly reduced

(Fig. 3) in order to eliminate configuration where the fingers

are close to completely stretched.

Once we have both the kd-tree and the sphere hierarchy,

it is very fast and easy to determine the intersection of the

two sets and so the contact points. The intersection is tested

from the biggest to the smallest sphere, guarantying that the

“best” parts of the workspace will be tested first, i.e. the one

farthest to singularities due to the joint bounds. For a given

grasp frame, the grasp is computed finger by finger, that

means that, if we have the contact and configurations of the

fingers 1 to i− 1, we search a contact point for finger i and

test collision only with the fingers 1 to i as the other finger

configurations are not yet known. We start from the thumb

as no stable grasp can be obtained without it. If a finger

can not establish a contact, it is left in a “rest” (stretched)

Fig. 3. The finger workspace discretized with a grid (forefinger workspace,
left image). The grid is converted to a volumetric approximation as a set of
spheres (right image).



configuration. if we have three contacts or more, we can

proceed to the stability test. Note that, at this stage, we have a

collision-free grasp i.e. no collision between the hand and the

object and do not yet consider collision with the environment

or the robot arms or body.

3) Stability filter and quality score: The stability test is

based on a point contact with friction model, that explains

why at least three contacts are required. From the contact

positions and normals, we compute a stability score. It is

based on a force closure test and stability criterion [34]. All

the grasps that do not verify force-closure are discarded. We

also compute and add a second score that is the distance

to the mass center of the object. The stability score is not

sufficient to discriminate good grasps so we build a more

general quality score.

Several aspects can be taken into account to compute a

grasp quality measure [35]. A tradeoff is often chosen with

a score that is a weighted sum of several measures. We

chose to combine the previous stability criterion with two

other criteria: A finger force ellipsoid major axis score and a

contact curvature score. The idea behind the first one is that

it is preferable to favor contact such that the contact normal

is in a direction close to the direction of the major axis of the

force ellipsoid, corresponding to the better force transmission

ratio. The curvature score is used to favor contacts where

the mean curvature of the object surface is low. In real

situation, it will reduce the impact of a misplaced contact

as the contact normal will be susceptible to smaller change

in a low curvature area than in a high curvature one.

B. Double Grasp Planning

A double grasp is a grasp involving both hands. It is

computed from two single grasp lists L1 and L2, obtained

for each hand. Each single grasp pair sg1 and sg2, belonging

to L1 and L2 respectively, is tested. All colliding pairs are

rejected. To avoid an excessive number of pairs to test, we

first filter L1 and L2 to remove all the grasps that lead to

a collision with the environment for the given initial and

final object poses. For instance, all the grasps that take the

object from “below” will be removed as they lead to a

collision between the object support (e.g. a table) and the

hand. For each double grasp, a score is then computed based

on two scores: the quality of each single grasp and a robot

configuration score.

• The minimum of sg1 and sg2 quality is used as a

stability score for the double grasp.

• A robot configuration score is computed for sg1 and

sg2. It is based on how “natural” is the way to grasp

the object in its start and goal configuration using sg1

and sg2. For the double grasp, we take the minimum of

the robot configuration scores of sg1 and sg2.

After normalizing these two scores separately for all the

computed double grasps, we sum them for each double grasp

to obtain its score.

R

H

L

T

Fig. 4. The decomposition of the humanoid system into elementary parts.
The two arms and the head are the “independent” parts and the torso is the
“common” one.

V. PATH PLANNING

A. Offline roadmap

Computing an offline roadmap is suitable to speed up the

pick-and-place task resolution. This roadmap is computed

using specially designed one for multi-arm systems [3].

During this generation, only self-collisions and collisions

against static objects are considered while ignoring the object

to move.

The multi-arm systems roadmap composition algo-

rithm [3] is a suitable method to efficiently plan multi-arm

systems motions in constrained workspaces. It is based on the

decomposition of the system into kinematically independent

parts, which are treated as individual robots in a multi-robot

roadmap composition approach.

Fig. 4 illustrates the different parts of Justin. Each arm is

independent from the other. If the value of an arm joint is

modified, the change does not affect the position of any other

part in the system. However, a change in one of the torso

joints modifies the pose of the arms and the head. In general

case, a part is said to be independent, if the change of its

configuration does not affect the pose of other system parts.

Thus, this system involves three independent parts PI : the

right and the left arms (PI
r and PI

l respectively), and the head

(PI
h); and a common one: the torso (PC

t ). Given the relatively

low mobility of the head, it can be considered together with

the torso in order to simplify the system decomposition.

This decomposition permits to split the roadmap con-

struction into two stages. The first stage is to compute two

collision-free roadmaps Rr and Rl for the two sub-systems

composed by the torso and the right and left arms respec-

tively. Such roadmaps construction considers self-collisions

of the sub-system and collisions with the obstacles in the

workspace. Any PRM-like method can be used to generate

these roadmaps. However, the use of methods generating

compact roadmaps such as Vis-PRM [22] or PDR [36]

is preferable in order to limit the size of the composite

roadmap, which is defined as the Cartesian product of all

the sub-system roadmaps, and whose size may become huge

if standard PRM methods are used.

The constructed roadmaps are then merged into a com-

posite one, called Super Graph (SG), extending the idea

initially proposed in [37] for the specific case of multiple



Fig. 5. On the left, an representation of elementary roadmaps computed
for the presented system (circle and square). The generated Super Graph

on the right.

car-like robots. Merging two nodes from Rr and Rl re-

spectively creates SG node. The SG nodes are connected

via a SG edges. Fig. 5 illustrates the principle of the

SG construction. Creation of nodes and edges are explained

below.

1) Super Graph Nodes: The SG nodes are created by

the composition of elementary nodes xr and xl in Rr and

Rl respectively. Due to change of common configuration

parameters in xr and xl, merging consists of creating two

SG nodes obtained by fusing configurations of the inde-

pendents parts. Each SG node is only partially checked

for self-collision, since nodes of the elementary roadmaps

are collision free with the environment. Each independent

part configuration added up to an elementary node has been

checked against the other independent parts, the common

parts, and the workspace obstacles. Only the collision-free

nodes are kept in SG.

2) Super Graph Edges: Once a node X is created and

inserted into SG, its connection to the other SG nodes Y is

computed. In order to preserve the efficiency of the roadmap

construction, a filter, based on the information given by the

elementary nodes, only considers connections between two

SG nodes X and Y if their composing nodes, xr and yr, and

xl and yl are connected in Rr and Rl respectively. Another

possible strategy for saving computing time is to construct a

roadmap tree instead of a graph. In this case, connection tests

(using a local planner) are only performed between SG nodes

belonging to different connected component of SG. Like

for the SG nodes, validating SG edges only requires to

test collisions between pairs of parts and with workspace

obstacles that have not been checked when computing the

edges of the elementary roadmaps. A SG edge is added to

the SG if it is collision-free.

B. Online planning

We explain below how robot motions are computed online

in order to realize the pick, regrasp and place task, given the

precomputed single / double grasps and roadmap. The task

can be decomposed into four consecutive steps:

• Grasp the object (from qinit
robot to q

grasp
robot )

• Carry it to the exchange position (from q
grasp
robot to qexch

robot)

• Place it (from qexch
robot to q

place
robot)

• Goto rest configuration (from q
place
robot to q

final
robot )

with qinit
robot and q

final
robot given as input and the three other

configurations (q
grasp
robot , qexch

robot and q
place
robot) are generated by

the planner.

Once the grasp configurations have been generated (see

Section V-C), the path planner executes the four previously

presented queries sequentially. To obtain collision-free paths,

the previously computed roadmap has to take into account

the manipulated object. In fact, by adding an object in the

robot working space, the collision-free configuration space

of the robot changes. The configuration space also changes

when the robot carries the object. Revalidating online the

entire roadmap would be too costly. We use instead a lazy

node and edge revalidation as in [24], [25], [38].

First the query is executed in the precomputed roadmap

disregarding the collisions of the existing nodes and edges

in the graph. Once a path is found, each local path com-

posing it is checked for collision against the manipulated

object that is not considered in the preprocessed roadmap.

If a collision is detected for some local paths, replanning

strategy is performed as follows. First, the collision-free

configurations bounding the collision portion are determined.

An alternative path between the disconnected configurations

is then searched in the precomputed graph. If no solution

is found, local reconnections are computed using RRT like

planners [32], [39]. The path is iteratively modified until

all its local paths are collision-free. Our implementation

uses the same data structure for storing PRM roadmaps

and RRT diffusion trees. Then, it is easy to enrich a graph

computed using PRMs with RRTs to efficiently reconnect

the disconnected components in the graph.

C. Grasp Configuration

The grasp and place configurations of the robot are simply

derived from the object initial and final placement qinit
object and

q
final
object provided as input. However, the exchange configura-

tion qexch
object of the object is unknown. The object position

is determined by minimizing wrist motions to perform the

task. Fig. 6 shows the elementary distances to be minimized.

The distance minimization is done on a 3D grid. The

object exchange position is the collision-free grid node that

minimizes (ig + ge + ef + ie + ep + pf). Once a position

Fig. 6. Top view of a pick-and-place task showing the elementary distances
to be minimized over a 3D grid in order compute the double grasp position
(the center red circle)



is selected, the object is tested against the static obstacles in

predetermined orientations to ensure a collision-free object

exchange. Unlike object exchange position, the orientation is

determined by the selected double grasp directions and the

object position wrt. the robot torso.

The grasp, place and exchange configurations are gener-

ated in nearly the same way. All robot joints are sampled

except the arm(s) grasping the object (one arm for grasp and

place configurations and both for exchange configuration),

that are computed using the inverse kinematics characterized

by the grasps and the object position. After, a collision test

is performed on the generated configuration. For exchange

configuration, the object configuration is sampled following a

Gaussian distribution centered on the theoretical best qexch
object

previously computed.

The robot grasp configuration score used in the double

grasp scoring formula, takes into account grasping and free

arm configurations. The grasping arm score is determined

with cosine of the angle between the selected grasp and

the object robot-base directions. This will give a bad score

for grasps that directions is far from the object robot-base

axis. The free arm score is added to favor “natural” robot

configurations. This score is composed by the joint distance

between the sampled arm configuration and a user defined

rest configuration of the arm. It is also composed by the

height difference between the sampled and rest configura-

tions, and the distance between the arm wrist and the plan

composed by the robot torso and the shoulders.

VI. RESULTS

To evaluate the performance of the planner, we propose

to plan a pick-and-place task with the robot Justin [40]

equipped with two SAHands, depicted on Fig. 1. Justin is a

humanoid torso composed of two 7 DoF DLR-Lightweight-

Robot-III arms mounted on a 3 DoF torso and a head with

a 2 DoF neck. The SAHands hands are composed by four

3 DoF fingers and a movable thumb base. Disregarding

the neck joints, which are considered to be fixed in our

experiments, Justin involves 43 DoF. The object to work

with is a highly non-convex body with several parts (a horse

Fig. 7. Example of computed exchange positions for different initial (red)
and final (green) object poses, taking into account the cost to minimize and
obstacle collision avoidance.

statuette, whose 3D model (widely used in CG community)

has been simplified to 672 vertices and 1334 triangles).

In this task, Justin has to pick the object at his right

and place it behind the desk lamp at his left. The legged

lamp and the vase constraint the robot motions and the

exchange configuration. As the single grasp generation is

a deterministic and workspace independent operation, same

single grasps lists (one for each hand) are used for tests.

Right grasp list contains 17 valid grasps and 22 for left list

each one computed in about 1 minute 1. In the presented

scenario, given the single grasp lists and for each test, the

planner generates 4 (right) and 7 (left) collision-free single

grasps configurations in 4.2 seconds, and 4 double-grasp

configurations in 2.6 seconds. Fig. 7 shows two examples

of computed double grasps, used for regrasping. They are

computed for the same object but for different initial and

final object poses (shown as red and green spheres). As it

can be seen, the computed exchange configuration brings the

object near the robot torso, leading to a motion that looks

more “natural” than a simple straight line linking initial and

final poses.

Table I reports the numerical results obtained for the

presented pick-and-place planner detailed following the task

decomposition presented in Section V-B (Grasp, Carry, Place

and go to Rest). The offline roadmap is computed in about

5 minutes and contains near 1700 nodes. The nodes are

produced by merging two elementary roadmaps generated

using Vis-PRM [22] algorithm, each one containing 50

nodes. Using this offline roadmap, our planner solves the

entire task in 11.6 seconds. Comparatively, by putting a

single query planner [32] instead of the presented, one needs

35 seconds to solve the same pick-and-place problem. Theses

two last results does not include the time needed to compute

single and double grasps configurations.

Table I also shows that the time consumed in path

validation for Carry and Place phases are more important

than for the two other planning phases. This is due to the

biggest change of the robot configuration space, introduced

by grasping the object than just adding it as static obstacle.

However, the time needed to plan (without revalidation)

Grasp and Rest phases are higher because of the highly

constrained grasp and place configurations.

VII. CONCLUSION AND FUTURE WORK

We have presented a planner that can automatically com-

pute the motion of a dual-arm/hand robot during a pick-and-

place task requiring an object exchange between the hands.

The planner computes as well all the necessary intermediate

configurations. The integration of several offline computed

and reusable data structures such as grasp lists and arm

roadmaps, allows the planner to significantly reduce its

computation times compared to the use of simple single-

query techniques. Simulation results show the efficiency of

the planner for solving a difficult manipulation task involving

1All numerical results in the paper have been averaged over 20 runs of
the planner. Computing time corresponds to a Dual-Core AMD Opteron
processor 2222 at 3.0 GHz



TABLE I

NUMERICAL RESULTS

Problem Online Planning Path validation Total

Grasp
nnodes 65 3 68

T (sec) 2.7 0.3 3

Carry
nnodes 53 18 71

T (sec) 2.6 1.5 4.1

Place
nnodes 32 12 44

T (sec) 1.2 1.1 2.3

Rest
nnodes 49 3 51

T (sec) 1.9 0.3 2.1

a humanoid robot equipped with two redundant arms and two

multi-fingered hand, a complex-shaped object and a cluttered

environment.

In some situations, no solution may be found by the

planner because the initial pose of the object constrains too

much the choice of the single grasp used to pick the object

up, that in turn constrains the choice of the exchange double

grasp, constraining in turn the choice of the single grasp used

to place the object in its final configuration. To treat such a

case, one or more intermediate placements are mandatory. A

more complex version of our planner could try to integrate

such notions.
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