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Sampling-based Path Planning on Configuration-Space Costmaps
Léonard Jaillet, Juan Cortés and Thierry Siméon

Abstract—This paper addresses path planning considering a
cost function defined over the configuration space. The proposed
Transition-based RRT planner computes low-cost paths that fol-
low valleys and saddle points of the configuration-space costmap.
It combines the exploratory strength of RRTs with transition tests
used in stochastic optimization methods to accept or to reject new
potential states. The planner is analyzed and shown to compute
low-cost solutions with respect to a path quality criterion based
on the notion of mechanical work. A large set of experimental
results is provided to demonstrate the effectiveness of the method.
Current limitations and possible extensions are also discussed.

I. INTRODUCTION

Sampling-based path planning has proven to be an effective
framework suitable for a large class of problems in domains
such as robotics, manufacturing, computer animation and com-
putational biology (see [1], [2] for a survey). These techniques
handle complex problems in high-dimensional spaces but
usually operate in a binary world aiming to find out collision-
free solutions rather than the optimal path.

Specific path planning methods have been developed in
field robotics for outdoor navigation, where the goal is to find
optimal paths according to a cost function, usually computed
from a model of the terrain. Classical grid-based methods such
as A* or D* [3] can be used to compute resolution-optimal
paths over a costmap. However, compared to sampling-based
algorithms, these methods are limited to problems involving
low-dimensional spaces that can be discretized and searched
using grid search techniques.

Some recent works [4]–[8] have tried to bridge the gap
between sampling-based planners and grid-based costmap
planners. They mainly rely on the RRT algorithm [9], and
are generally focused on specific applications (e.g. real time
problems [7], [10] or statistical learning of feasible paths [8])
in the context of 2D robot navigation problems.

This paper presents a general algorithm, called Transition-
based RRT (T-RRT),1 for path planning on configuration-space
costmaps. The algorithm considers a user-given cost function
defined over the configuration space as an additional input to
the standard path planning problem, and it produces solution
paths that are not only feasible (e.g. collision-free), but also
have a good quality with respect to the input costmap. For
instance, the costmap may correspond in outdoor navigation
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Fig. 1. Transition-based RRT on a 2D costmap (the elevation corresponds to
the costs). The exploration favors the expansion in valleys and saddle points
connecting low-cost regions.

problems to the elevation map of the terrain, aiming at com-
puting motions that minimize climbing of high-slope regions.
Also, in robotic manipulation problems, the cost function
may be defined from distances to be maximized between
the robot and some objects, in order to find high-clearance
solution paths. Finally, in computational biology applications,
the costmap can be viewed as the energy landscape of the
conformational space to be considered for the simulation of
low-energy molecular motions.

The proposed algorithm combines the exploratory strength
of RRTs with the efficiency of stochastic optimization methods
(e.g. Monte Carlo optimization, simulated annealing) that use
transition tests to accept or reject new potential states. The
filtering of the transition test relies on the gradient of cost
function along the local motion to connect a given state to
the RRT tree, resulting in an expansion biased to follow
the valleys and the saddle points of the configuration-space
costmap (Figure 1). Solution paths computed by T-RRT fulfill
a quality property based on the notion of mechanical work,
also introduced in the paper as an effective criterion to evaluate
path quality for costmap planning.

The paper is organized as follows. After a brief presentation
of related work (Section II), we introduce and discuss the
notion of Minimal Work paths (Section III). These paths are
optimal according to a new criterion called mechanical work
that is used to evaluate path quality. Comparison with other
existing criteria shows the advantage of this criterion that may
be more suitable in many situations, since it yields better
paths following the low-cost valleys of the costmap. Additional
properties of Minimal Work are also presented for a deeper
understanding of this notion. Section IV describes the T-RRT



algorithm, including the methods for self-tuning of parameters
and for the expansion rate control. Section V shows how T-
RRT implicitly computes Minimal Work paths and discusses
its probabilistic completeness. An experimental validation of
the planner is conducted in Section VI. The overall efficacy
of T-RRT is shown on different problems and positively
compared with other existing techniques [4], [6]. This section
also analyzes the influence of the intrinsic parameters of the
algorithm on the overall performance, and results indicate that
no specific tuning is actually needed. Section VII presents
some extensions of T-RRT, and conclusions are outlined in
Section VIII.

II. RELATED WORK

Early potential field methods [12], as well as their com-
bination with strategies for escaping local minima, e.g. the
randomized planner of [13], rely on some numerical field
defined over the configuration space that may be viewed as
a specific kind of costmap. Note however that the artificial
potential field of these methods is only defined as a way
for planning collision-free paths, without considering path
optimality. Thus, these methods do not address the problem
considered here of computing low-cost, feasible paths from an
arbitrarily complex costmap given as input to the planner.

Recent sampling-based planners have proven to be very
effective at finding feasible solutions that can be locally
optimized in a post-processing stage. Local path optimization
methods such as the shortcut algorithm [14] are generally
used to improve path quality with respect to simple criteria,
like path length, clearance, or a combination of both [15].
These smoothing methods only aim to locally improve a
solution path, as opposed to the global exploration algorithm
proposed in the paper. Moreover, their extension to arbitrary
cost functions has not yet been addressed, and the resulting
efficacy of such extension remains to be further evaluated.

Only few papers consider sampling-based path planning
on arbitrary cost spaces. In [4], an adaptation of the RRT-
Connect planner is used to find low-cost paths for rough terrain
navigation. The idea is to keep new configurations only if their
cost is under a given threshold, first initialized to a low value,
and then iteratively increased during the search. One limitation
of this technique comes from the non-decreasing threshold,
which limits the efficiency of low-cost search to the vicinity
of the root nodes. To overcome this issue, the extension
proposed in [5] considers multiple RRTs trees grown from
randomly sampled root configurations. However, this solution
still expects an appropriate number of initial samples in order
to get enough low-cost seeds among the space. Moreover, it
requires a manual tuning of the parameter that controls the
cost threshold growth rate. This tuning is highly problem-
dependent.

In [6], the heuristically-guided RRT (hRRT) biases the
search using a quality measure based on the integral of the
cost along the path from the root node and an estimation of
the optimal cost to the goal. Such an approach, inspired from
graph search techniques, can also be found in the context
of real-time applications [7], [10] and statistical learning

of feasible paths [8]. However, with these techniques, the
estimated cost to goal is heuristic and tends to bias the
search straight toward the goal at the expense of lower-quality
solution paths. Moreover, the aforementioned methods have
only been demonstrated on simple low-dimensional examples
with discrete cost states (invalid, low cost, high cost). Their
scalability and performance for problems involving complex
cost spaces in higher dimensions are yet to be established.

The T-RRT algorithm introduced below is inspired by
Monte Carlo optimization techniques. Developed in order to
find global optima in very complex spaces [16], they introduce
randomness as a means to avoid local minima traps. Many
variants have been developed (e.g. random walk, simulated
annealing [17]). The basic exploration process typically relies
on successive transition tests, performed using the Metropolis
criterion (see Section IV-B). Note also that the Probabilistic
Conformational Roadmap [18] developed for exploring molec-
ular energy landscapes in computational biology applications
integrates a similar transition test in the PRM framework [19].

III. MINIMAL WORK PATHS

This section introduces the mechanical work criterion to
measure path quality in a space that is mapped by a given
cost function. Paths that are optimal according to this criterion
are called Minimal Work (MW) paths. The T-RRT algorithm
presented in the next section tends to produce such MW paths,
as shown by the theoretical analysis and the experimental re-
sults in Sections V and VI respectively. First, we introduce the
notion of MW paths and illustrate how this criterion generally
yields more natural solution paths (i.e. paths following well the
low-cost valleys of the costmap) compared to other existing
path quality measures.

A. Notation

Let us consider a system with a configuration space C,
possibly constrained by “binary” obstacle regions. Let us also
consider a cost function c : C→ R∗+ mapping this space, i.e.
a cost c(q) > 0 can be computed for each q ∈ C. This cost
function c is assumed to be continuous. A path P of length l is
represented by a unit-speed parametric function2 τ : [0, l]→ C

with τ(s) = qs ∈ P. Then, we define the parametric cost
function v : [0, l]→ R∗+ of a path as v(s) = c◦ τ(s) = c(qs).

B. Classical Path Quality Measures

Several criteria have been proposed to evaluate the quality
of a path from its parametric cost function, e.g. maximal
cost [5], average cost [5]–[7], or costs sum over discrete path
configurations [5], [8] (as a way to approximate the integral
of the cost along the path). The maximal cost criterion is
the most limited one since it only relies on a point value of
the parameterized cost function. The average cost can also be
misleading since it does not account for path length (a path
involving many detours inside a low-cost region will have an
average cost smaller than a path going straight through this

2This representation assumes that the parameterized curve representing the
path is regular, which simplifies the notation.



Fig. 2. Decomposition of a path into portions of monotonic cost variation. αi

and βi correspond respectively to local minima and maxima. The mechanical
work (right) is the sum of positive cost variations between consecutive extrema
plus a small value εl proportional to the path length.

region). Thus, the integral of the cost along a path appears to
be a more reliable criterion. It is mathematically defined as:

S(P) =
∫ l

0

v(s)ds.

A discrete approximation of the integral leads to:

S(P) ∼ l

n

n−1∑
k=0

v(sk), with sk =
(

k

n− 1

)
l.

In what follows, optimal paths according to the Integral of the
Cost criterion are called IC Paths. The next section introduces
an alternative way for measuring path quality based on the
notion of mechanical work.This alternative technique will then
be compared to IC paths in Subsection III-D.

C. Mechanical Work of a Path

The key idea is that positive variations of the parametric
cost function can be seen as forces acting against motion and
thus producing mechanical work. We propose to use this loss
of “energy” induced by the mechanical work for measuring the
quality of a path. In the case of negative variation of costs,
the system does not lose any energy. Then, a small penalty
proportional to the distance is added in order to favor shortest
paths of equal mechanical energy. Based on this principle, the
mechanical work of a path is defined as:

W (P) =
∫

P+

∂v

∂s
ds+ ε

∫
P

ds, (1)

where P+ represents the portions of path with positive slopes
(i.e. where the parametric cost function is strictly increasing),
and ε is assumed to be very low compared to cost values.

The continuous expression of W in Equation (1) can be
transformed into a discrete formulation expressed from the
local extrema values along the path:

W (P) =
∑

i

(v(βi)− v(αi)) + εl

=
∑

i

∆v+
i + εl,

(2)

Fig. 3. Minimal Work solution paths. The paths are computed using the A∗
algorithm within a 2D grid discretizing the space (a). The examples illustrate
respectively down-to-down (b), top-to-top (c), and top-to-down (d) queries.

where αi and βi are consecutive minima and maxima of the
costs along the paths and ∆v+

i = v(βi)−v(αi) are the positive
variations between two consecutive extrema (Figure 2). The
mechanical work of a path is simply obtained by summing up
the positive differences between extrema of its parameterized
cost function and adding εl in order to favor shortest paths
among the ones having equally positive cost variations. Paths
that minimize the mechanical work for a given query are called
Minimal Work (MW) paths.

Figure 3 shows examples of MW paths for several queries
on a 2D hilly costmap. The paths were computed using a
standard A∗ search performed on a grid discretizing the two-
dimensional landscape. As one can see, the shapes of the MW
paths appear to be suitable in the sense that they follow as
much as possible the low-cost regions of the space. In order
to better state the pertinence of the mechanical work criterion,
we first compare it with the IC criterion in the next subsection.
Then, we state some interesting properties of the MW criterion
in Subsection III-E.

D. Minimal Work vs. Integral of the Cost

This section compares the optimal solutions for the integral
of the cost S (IC paths) and for the mechanical work W
(MW paths) on representative cost spaces.

1) Constant Slope: Let us first consider the example of
a planar landscape with a constant slope. In this simple
case, IC solutions can be numerically characterized from
calculus of variations. As shown in Figure 4, the solutions
obtained for two different slopes show that IC paths (in
black) are not intuitive and moreover depend on the plane
inclination. In contrast, the MW path is in both cases the
trivial straight-line path (in blue). Indeed, the cost of MW
paths is always lower-bounded by the cost variation between
the initial and final configurations. In situations for which the
query configurations can be connected through a set of paths
having a monotonic cost variation (as for the specific case of
a constant slope landscape), the MW path will be the shortest



Fig. 4. The straight-line MW path (blue) and two different IC paths for two
different inclinations of the plane representing the cost function.

Fig. 5. High-cost barrier problem: (a) MW path, (b) IC path.

one among the set of minimal cost variation paths, yielding a
straight-line solution for the planar slope example.

2) High-Cost Barrier: This example corresponds to a flat
cost surface with a high-cost barrier that should be preferably
avoided (Figure 5). In this case, the MW path is the shortest
path getting around the barrier (Figure 5a) while the IC
solution is a direct path that crosses the barrier (Figure 5b).
This example highlights another possibly negative feature of
the integral of the cost criterion that may favor undesirable
paths with short high-cost portions.

3) Hilly Costmap: In this more complex example, solution
paths have to go through a saddle point to link the query
configurations located at two opposite corners of the hilly
landscape (Figure 6). The MW path makes necessary detours
to follow low-cost valleys of the space. In contrast, the
IC solution prefers shortest paths at the expense of local
high costs (circled in blue in Figure 6b). Looking at the
parameterized cost functions of the two kinds of optimal paths
(Figure 7), one can see that the cost profile of the IC path (red)
is globally much higher than the one of the MW path (green).
This observation is particularly true when the IC path goes
through the high-cost region avoided by the MW path.

Finally, Table I compares the costs of the two solutions
with respect to various path quality measures. It shows that
both the average and maximum costs are better for the MW
path than for the IC path. Indeed the IC path characteristics
are intermediate between the ones of the MW path and of a
simple straight-line path, not biased to avoid high-cost regions.

The results highlight some interesting features of the MW
criterion. Compared to IC paths, MW paths avoid steep varia-
tions of the cost function. This may be particularly important
in applications such as outdoor navigation (for avoiding high-
slope motions), or computational biology (for minimizing the

Fig. 6. Hilly costmap problem: (a) MW path, (b) IC path.

Fig. 7. Parameterized cost functions of the MW path (green) and the IC
path (red) shown in Figures 6a and 6b.

crossing of high-energy barriers). Besides, in the presented
cases, MW paths look more natural. In the next subsection, we
present some additional properties of MW paths for a deeper
understanding of the mechanical work criterion.

E. Minimal Work Path Properties

1) Negative Slopes Minimization: Section III-C states that
minimizing the mechanical work means minimizing the
amount of positive cost variations. A first property is that,
between two given configurations, it also leads to minimizing
negative cost variations. Indeed, the total amount of cost
variations along the path can be expressed as:

v(l)− v(0) =
∑

i

∆v+
i +

∑
j

∆v−j ,

where ∆v+
i and ∆v−j are the intervals of positive and negative

cost variation respectively. Using Equation (2), we obtain:

W (P) = v(l)− v(0) + εl +
∑

j

|∆v−j |. (3)

Because v(l) and v(0) are constants and εl is small relative
to cost values, Equation (3) states that minimizing W is
equivalent to minimizing the last term in the right part of the
equation, that is, the total amount of negative cost variations.

2) Cost Variations Minimization: Since the Minimal Work
path P minimizes both positive and negative cost variations, P

is indeed the path that minimizes any cost variation between
two given configurations. Let V (P) be a function that sums
positive and negative variations:

V (P) =
∑

i

∆v+
i +

∑
j

|∆v−j |.



Length Cave Cmax S W
MW path 186 17.9 23.6 3324 15.9
IC path 139 18.6 30.4 2592 32.5
Str. Line 127 22.6 39.6 2877 41.0

TABLE I
MW AND IC OPTIMAL PATHS OF FIGURE 6 COMPARED TO A REFERENCE

STRAIGHT-LINE SOLUTION.

Using Equations (2) and (3), we get:

V (P) = 2.W (P)− (v(l)− v(0) + 2εl). (4)

Thus, the ordering of the paths remains the same regardless
of the criterion (V or W ), which, indeed, means that they
are equivalent. However we will keep the formulation of
Minimal Work path since this notion facilitates the analysis
of the T-RRT algorithm.

3) Reversibility of Minimal Work Paths: Let −1P be the
reverse path of P. Since the parametric cost functions v and
−1v have opposed variations, i.e. ∆−1v+ = |∆v−|, we have:

W (−1P) =
∑

j

|∆v−j |+ εl,

and using Equation (3), we get:

W (−1P) = W (P) + v(0)− v(l). (5)

Consequently, the mechanical work of a path is equal to the
mechanical work of its inverse, except for a constant. This
property allows us to speak about the MW path between two
configurations without the need for orienting the path.

IV. TRANSITION-BASED RRT

A. Main Algorithm

The T-RRT algorithm combines the advantages of two
methods. First, it benefits from the exploratory strength of
RRT-like algorithms resulting from their expansion bias toward
large Voronoi regions of the space. Additionally, it integrates
features of stochastic optimization methods developed for
computing global minima in complex spaces: it uses transition
tests to accept or reject potential states.

Algorithm 1 shows the pseudo-code of the T-RRT planner.
Similarly to the Extend version of the basic RRT algorithm
[20], a randomly sampled configuration qrand is used to
determine both the nearest tree node qnear to be extended
and the extension direction. The extension from qnear is
performed toward qrand with an increment step δ. In the
case of T-RRT, δ has to be small enough to avoid cost picks
to be missed by the linear interpolation between qnear and
qnew. This stage also integrates collision detections in the
presence of “binary obstacles.” Thus, if the new portion of
path leads to a collision, a null configuration is returned and
the extension fails, independently of the associated costs. This
extension process ensures the bias toward unexplored free
regions of the space. The goal of the second stage is to
filter irrelevant configurations regarding the search of low-
cost paths before inserting qnew in the tree. Such filtering
is performed by the TransitionTest function. It relies

Algorithm 1: Transition-based RRT

input : the configuration space C;
the cost function c : C→ R∗+;
the root qinit and the goal qgoal;

output : the tree T ;
begin
T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

qrand ← SampleConf(C) ;
qnear ← NearestNeighbor(qrand, T );
qnew ← Extend(T , qrand, qnear);
if qnew 6= NULL
and TransitionTest(c(qnear), c(qnew), dnear−new)
and MinExpandControl(T , qnear, qrand) then

AddNewNode(T , qnew);
AddNewEdge(T , qnear, qnew);

end

on the Metropolis criterion commonly used in stochastic opti-
mization methods. This test integrates a self-tuning technique
in order to automatically control its filtering strength, and
thus to ensure continuous growth of the tree. Finally,
the MinExpandControl function forces the planner to
maintain a minimal rate of expansion toward unexplored
regions of the space, and avoids possible blocking situa-
tions during the search. The following subsections detail the
TransitionTest and MinExpandControl functions.

B. Transition Test

The TransitionTest function is presented in Algo-
rithm 2. First, configurations with a higher cost than the
maximum cost threshold cmax are filtered. The probability of
acceptance of a new configuration is defined by comparing its
cost cj relatively to the cost ci of its parent in the tree. This
test is based on the Metropolis criterion initially introduced
in statistical physics and molecular modeling. The transition
probability pij is defined as:

pij =
{

exp(−∆cij

K·T ) if ∆cij > 0,
1 otherwise,

(6)

where:
• ∆cij = cj−ci

dij
, is the slope of the cost, i.e. the cost varia-

tion divided by the distances between the configurations.3

• K is a constant value used to normalize the expression.
It is based on the order of magnitude of the considered
costs. K is taken as the average cost of the query
configurations since they are the only cost values known
at the beginning of the search process.

• T is a parameter called temperature that is used to control
the difficulty level of transition tests, as further explained
below. Note that the term temperature is employed in
analogy with methods in statistical physics, but in our
case it does not have any physical meaning.

3Contrarily to classical Monte Carlo methods, the cost variation is normal-
ized by the distance to the previous state since this distance is not necessarily
constant.



Algorithm 2: TransitionTest(ci, cj ,dij)

begin
nFail = GetCurrentNFail();
if cj > cmax then return False;
if cj < ci then return True;
p = exp(

−(cj−ci)/dij

K·T );
if Rand(0, 1) < p then

T = T/α;
nFail = 0;
return True;

else
if nFail > nFailmax then

T = T · α;
nFail = 0;

else
nFail = nFail + 1;

return False;

end

Using this transition probability, downhill transitions are
automatically accepted whereas for uphill transitions, the
chance of acceptance decreases exponentially with the cost
increment.

1) Temperature Parameter: T is a key parameter of
the algorithm since it defines the level of difficulty of a
transition for a given cost increment. Low temperatures limit
the expansion to slightly positive slopes. In contrast, higher
temperatures enable the climbing of steeper slopes. Within
methods involving the Metropolis criterion, the temperature is
usually kept constant (e.g. Monte Carlo search) or decreases
gradually as the search progresses (e.g. simulated annealing).
In our algorithm, this parameter is dynamically tuned
according to the information acquired during the exploration.

2) Adaptive Tuning: The TransitionTest function per-
forms an adaptive tuning of the temperature during the search
process (second stage of Algorithm 2). At the initialization, T
is set to a very low value (e.g. 10−6) in order to only authorize
very easy positive slopes (and negative ones). Then, during
the exploration, the number nFail of consecutive times the
Metropolis criterion discards a configuration is recorded and
used for temperature tuning. When the T-RRT search reaches
a maximal number of rejections nFailmax, the temperature is
multiplied by a given factor α. Each time an uphill transition
test succeeds, the temperature is divided by the same factor
α. Thus, the temperature automatically adapts itself such that
an extension corresponding to a positive cost variation is
performed in average every nFailmax times. The influence of
parameters α and nFailmax is analyzed in the Results section.

C. Minimal Expansion Control

The adaptive temperature tuning introduced above ensures a
given success rate of positive slope transitions. A possible side
effect may appear when the tree expansion toward unexplored
regions remains slow, and the new nodes contribute only
to refine already explored regions. We discuss below this

Algorithm 3: MinExpandControl(T , qnear,qrand)

begin
if Distance (qnear, qrand) > δ then

UpdateNbNodeTree(T );
return True;

else
if NbRefineNodeTree(T )+1

NbNodeTree(T )+1
> ρ then return False;

else
UpdateNbRefineNodeTree(T );
UpdateNbNodeTree(T );
return True;

end

Fig. 8. Frontier nodes (in white regions) have a Voronoi region bounded by
the space limits. On the contrarily, the Voronoi region of non frontier nodes
is bounded by the Voronoi region of other nodes (in brown/gray regions).

issue and explain how the MinExpandControl function
overcomes this problem.

1) Exploration versus Refinement: The behavior of the RRT
expansion can be explained by distinguishing two types of
nodes [21]. Frontier nodes are the external nodes of the tree
with a Voronoi region bounded by the space limits whereas
non frontier nodes are the internal ones, whose Voronoi region
is entirely bounded by the Voronoi region of the other nodes
(see Figure 8). Thus, the extension of a frontier node tends to
explore new regions of the space and the extension of a non
frontier node only refines the existing tree. The problem of
unbalanced refinement and exploration modes was addressed
in [21], [22] for standard RRTs. However, for T-RRT, the
interaction between these two kinds of extensions is more
subtle than for the basic RRT. Indeed, situations occur where
the temperature is stabilized by new non frontier nodes refining
the tree in easier regions of the space; however, the expansion
toward new regions requires the development of frontier nodes.
Figure 9a illustrates this issue with an example of a tree whose
expansion has been slowed down by the too frequent insertion
of non frontier nodes. Figure 9b shows the tree obtained using
the minimal expansion control detailed below.

2) Minimal Exploration Rate: The proposed solution is to
force the planner to explore new regions by controlling the
ratio between exploration and refinement steps. Note that as
long as the tree coverage remains limited compared to the
size of the space, non frontier nodes have a Voronoi region
much smaller than the one of frontier nodes. Hence, extension



Fig. 9. Impact of the minimal expansion control on the T-RRT algorithm.
Without control (a), the insertion of non frontier nodes tends to slow down
the exploration by decreasing the temperature. With control (b), the planner
is forced to keep exploring new regions of the space.

steps can be estimated as refinements or expansions depending
on the distance between qnear and qrand. For a large distance
value, qnear has greater chances to be a frontier node, whereas
a small distance value corresponds more probably to the case
of a non frontier node extension. The control of minimal
exploration rate is performed by the MinExpandControl
function presented in Algorithm 3. If the distance qnear−qrand

is greater than the expansion step δ, qnew is considered to
participate in the tree expansion, and it is inserted in the data
structure. Otherwise qnew is considered to be participating in
the tree refinement. The configuration is not inserted in the
tree if it makes the ratio of non frontier nodes be greater than
a given maximal value ρ. The influence of this parameter is
further discussed in the Results section.

V. THEORETICAL ANALYSIS OF T-RRT

A. T-RRT and Minimal Work Path

This section analyzes the relationship between T-RRT and
the notion of Minimal Work path introduced in Section III.
An important property is obtained first for the simplified case
of a discrete search process. Then, we discuss the extension
of this result to the general case of the T-RRT search.

1) Simplified Case: Consider a path search within a discrete
set of n equal length possible paths, each one defined by a
sequence of m edges and m + 1 nodes (Figure 10). Using
a T-RRT scheme, each expansion of a given path requires
the path to be selected and the associated transition test to
succeed. Thus, the probability Pk of a given path Pk to be
entirely developed in m iterations is equal to:

Pk =
∏

i∈[1,m]

epk
i =

∏
i∈[1,m]

(spk
i ) · (tpk

i )

where ep denotes the probability for a given node to be
extended, sp is the probability to be selected and tp the
probability of having an accepted transition. Also, we assume
that the paths have equal chances of being extended at each
step (i.e. the node selection process is not biased by Voronoi
regions), that is:

Pk =
1
nm

∏
i∈[1,m]

tpk
i .

Fig. 10. Case of n equal-length paths. With T-RRT, the branches with the
lowest mechanical work have the highest chances to reach the goal first.

If the transition probability depends only on the transition tests
(i.e the MinExpandControl is omitted), we get:

Pk =
1
nm

∏
j

e
−∆v

k+
j

K·Tj .

Moreover, assuming that the temperature remains constant
during the expansion, we have:

Pk =
1
nm
· e 1

K·T · e
−
∑

j

∆vk+
j

,

where the ∆vk+
j are summed over the positive variations of

cost along the path k. Finally, since εl is negligible in the
Mechanical Work expression, we get:

Pk =
1
nm
· e 1

K·T · e−W (Pk). (7)

Since
1
nm
· e 1

K·T is the same for all the paths, we obtain an
important property for this simplified version: the paths with
the lowest mechanical work have the highest probability of
reaching the goal first.

2) General Case: One first assumption made in the analysis
above is that each branch has an equal chance of being chosen
for the expansion. In practice, the various paths developed by
the T-RRT algorithm (from the root node to each leaf) are not
spatially independent. Each branch expansion tends to increase
its global Voronoi region, and thus, increases the chance for
its nodes to be selected at the next iteration. This process
reinforces the extension of the paths with the most favorable
mechanical work, and increases the convergence of the planner
toward lower cost solutions.

The simplified version assumed also that the temperature is
constant. This parameter affects each path in the same way.
Thus, we can argue that the property remains valid even when
T varies during the search.

Finally, whereas the above property is established for the
discrete case of equal-length solution paths, T-RRT search is
performed among an infinite number of variable-length paths.
Since shortest paths require less expansion steps to connect the
queries, it is not possible to guarantee that paths of lower cost
have always better chances to reach the goal first. However,
as one can see from Equation (7), the mechanical work of a
path affects exponentially its chances of success. This reveals
how strongly the T-RRT exploration is implicitly biased toward
solution paths of low mechanical work.



B. Probabilistic Completeness

The T-RRT algorithm is a probabilistically complete planner
[19]. This property is directly inherited from the probabilistic
completeness of the RRT planner (see Section 4 of [9]).
The only difference is that in the present case, the extension
steps can be rejected because of the transition tests, even
in the case of a convex, open, n-dimensional subset of an
n-dimensional configuration space. However, we argue that
the success probability of the transitions is always strictly
positive since the cost function takes finite values in this
subset, and thus, the cost variations are bounded. As a result,
the planner converges eventually toward an entire coverage of
the considered subset, and the transition tests affect only the
convergence rate of the algorithm.

VI. EXPERIMENTAL RESULTS

A large set of experiments has been conducted to evaluate
the performance of the planner. First, the general behavior
of the method is presented on various problems. Second, its
performance is compared to the one of existing methods,
highlighting the good quality of the T-RRT solutions. Finally,
we investigate the influence of some intrinsic parameters
on the overall efficacy of the method. All the algorithms
have been implemented within the path planning software
Move3D [23]. The performance results summarized in the
tables are values averaged over 10 runs.

A. General Performance

A variety of problems are proposed to illustrate the
generality of the method. The examples vary not only in
the geometrical complexity and the configuration space
dimensionality, but also in the nature of the cost function.
Two settings of T-RRT are considered: a greedy version of the
planner referred to as T-RRTg that takes nFailmax = 10, and a
tempered version, referred to as T-RRTt, with nFailmax = 100.
The latter leads to higher quality solution paths, but is
more computationally expensive. We used α = 2 in all the
examples. The results obtained with the Extend version of
the basic RRT planner are given as references. The tables
also present comparative results with two existing cost-based
methods that will be discussed in the next subsection.

The first set of experiments is performed on the two-
dimensional cost space of Figure 1. In this example, the
solution paths have to go through a saddle point to link the
query configurations located at two opposite corners of the
landscape. Figure 11 shows snapshots of the exploration tree
and the solution path found (Figure 11c), which is close to the
optimal one (Figure 11d). Table II presents the characteristics
of the paths obtained with each planner.4 It provides also
values for the MW and IC optimal paths (computed with an
A∗ search within a 128×128 grid discretizing the landscape).

The mechanical work of solutions obtained by the different
methods is reported in the W column. The numbers in

4In the case of RRT, since there is no obstacle in the scene, connection
attempts to the goal are only performed when d(qnew, qgoal) < 15δ to
avoid getting a trivial straight-line solution.

Fig. 11. Construction process of the Transition-based RRT planner (a-b).
The solution path (c), is close to the optimal one (d) computed from a space
discretization.

Length Cave Cmax S × 10−3 W Time
RRT 148 22.6 41.2 3.3 45.1 (36.9) 0.1
T-RRTg 182 18.2 25 3.9 28.0 (19.7) 0.9
T-RRTt 214 17.1 23.2 4.0 23.1 (16.9) 11.0
MW path 186 17.9 23.6 3.3 15.9 -
IC path 139 18.6 39.6 2.6 41.0 -
Thresh. 157-192 17.8-20.9 23.7-32.7 3.3-3.4 27-30 (21-24) 0.3-329

hRRT 155 20.9 33.3 3.2 41.4 (32.9) 0.6

TABLE II
COMPARATIVE RESULTS FOR THE COSTMAP PROBLEM.

parentheses integrate the effect of some local smoothing
of the solution path with a simple procedure based on the
shortcut algorithm [14]. As one can see from the table,
the mechanical work of the reference RRT path is almost
3 times higher than for the optimal MW solution, and
smoothing does not successfully get close to the optimal
value (36.9 vs. 15.9). In comparison, the mechanical work
of the path obtained with the tempered version of T-RRT
is only 45% higher than for the MW path, and it becomes
only 6% higher than the optimal value after smoothing.
Most importantly, the overall shape of the T-RRT solution
is very close to the optimal-MW path and follows the same
low-cost regions. Also, note that the relatively slight loss
of path quality of the greedy version is compensated by a
much smaller computing time (0.9s vs. 11.0s). Comparative
results obtained with other existing costmap planners (Thresh.
and hRRT rows in the table) are discussed in Subsection VI-B.

In the next experiment, a 6-dof manipulator arm is carrying
a stick in a 3D workspace with obstacles (Figure 12). Here, the
goal is to extract the stick from a hole, while keeping the stick
as far as possible from the obstacles. Thus, the cost function
considered here is the inverse of the distance between the stick
and the obstacles. Results are presented in Table III.

The costs of the T-RRT solution paths are considerably
lower than the ones of RRT. This shows the effectiveness of
the planner for finding low-MW paths in higher-dimensional



Fig. 12. Stick extraction problem. A 6-dof manipulator arm has to extract
a stick from a hole. The T-RRT solution path keeps the stick horizontal to
maximize its distance to the obstacles.

Length Cave Cmax S W Time
RRT 55.3 6.6 377 363 1196 1.5
T-RRTg 53.9 0.4 1.0 21.8 1.9 7.4
T-RRTt 51.5 0.3 0.9 17.4 1.1 32.8
Thresh. 53.2-54.9 0.6-3.2 1.6-40.1 32.0-172 4.2-196 1.6-2.7
hRRT 53.5 5.0 341 265 786 3.0

TABLE III
COMPARATIVE RESULTS FOR THE STICK EXTRACTION

PROBLEM.

spaces. Whereas the basic RRT planner produces erratic
paths, T-RRT solutions tend to keep the stick horizontal
during its extraction from the hole in order to remain as far
as possible from the obstacles. Once again, the slight loss
of path quality of the greedy version of the T-RRT (1.9 vs.
1.1) is compensated by a significant speed-up (7.4s vs. 32.8s).

The third scenario involves the same manipulator arm
carrying a sensor with a spherical extremity for the inspection
of the surface of a car part. The goal here is to keep the
sensor close to the surface of the car part during the motion,
in order to satisfy the requirements for the surface following
task (Figure 13, Table IV). Note that for such a scenario where
the robot is subject to task space constraints, specific path
planning schemes also exist (e.g. [24]).

As to be expected, the T-RRT computing time is higher
than the one of RRT because computing a collision-free path
with RRT and without any cost consideration is a much
easier problem than obtaining a solution that minimizes the
distance to the inspected surface. However, regarding paths
quality, the mechanical work of T-RRTg and T-RRTt are 3.6
times and 7.7 times lower than the one of RRT respectively.
The average and maximal costs reported in Table IV are
interesting indicators to get a better idea of the quality of
the results, since they correspond directly to the average and
maximal distances between the sensor and the part. For a
distance reference, the diameter of the black sphere at the
extremity of the sensor is 40mm. For T-RRTg , the maximal
cost corresponds approximately to twice this value, whereas
the average distance is close to the sensor radius. In the case
of T-RRT, solution paths follow the surface of the part so well
that the maximal distance never exceeds the size of the sphere
and the average one is about one tenth of this diameter.

Finally, the last scenario corresponds to a molecular model

Fig. 13. Car part inspection problem. The figure shows the path for a 6-dof
arm manipulating a sensor (black sphere) that needs to remain close to the
surface during the inspection task.

Length Cave Cmax S × 10−3 W Time
RRT 3785 457 875 1730 1434 0.98
T-RRTg 3515 24.4 87.5 85.8 400 16.4
T-RRTt 3396 4.3 28.1 14.6 187 206
Thresh. 2848-3942 36-186 79-436 116-529 447-635 4.3-19
hRRT 3127 253 452 792 943 18.0

TABLE IV
COMPARATIVE RESULTS FOR THE CAR PART INSPECTION PROBLEM.

shown in Figure 14. The task is to compute the pathway
extracting the ligand (small molecule in red/dark) from the
active site located inside a protein. This problem can be seen
as a mechanical disassembly path planning problem for the
free-flying ligand [25]. Energetic constraints are translated into
geometric ones by considering a steric model of the molecule,
and a collision detection algorithm [26] is applied as a geo-
metric filter that rejects conformations with prohibitively high
van der Waals (VdW) energy. The cost function considered for
this problem is the inverse of the distance between the ligand
and the protein. The interest of this molecular model is to
provide a simple way to quantify the quality of the computed
solution path. The ligand free space can be simply dilated by
shrinking the atoms radii. The results reported in Table V are
obtained by applying both RRT and T-RRT algorithms on the
shrunk model shown in Figure 14b (25% of VdW radii).

The T-RRT solution paths have a much lower cost compared
to the one computed by RRT. The higher clearance of the
T-RRTs solutions are also quantified by the maximal VdW
ratio indicated in the last row of the table. This maximal ratio
was obtained by testing solution paths by increasing the VdW
radii until a collision was detected between the ligand and the
protein. While no growing is possible for the RRT solution, the
T-RRT paths (computed with a 25% ratio) remain valid up to
65% and 69% growing, depending of the variant. These values
are close to the maximal radius that allows the ligand to exit
(80%). The high clearance of T-RRT paths reflects their good
quality with respect to the considered distance-based cost.

B. T-RRT vs. Existing Methods

T-RRT has been compared with two existing cost-based
planners: the maximal Threshold technique proposed by
Ettlin and Bleuler [4] and the heuristically-guided RRT (hRRT)
of Urmson and Simmons [6]. Results obtained for the set of
experiments with these planners are reported in the two last



Fig. 14. Two representations of the same ligand-protein “disassembly”
problem, with different van der Waals radii: (a) maximal radius and (b) shrunk
radius. The goal is to compute paths that maximize the clearance and thus
remain valid for large van der Waals radii.

Length Cave Cmax S W Time V dWm

RRT 59 14 2236 826 471 0.7 25
T-RRTg 62 0.4 1.0 22 1.25 8.39 65
T-RRTt 64 0.3 0.9 22 1.0 426 69
Thresh. 58-62 .4-.7 1.1-3.7 25-42 1.4-4.3 4.8-73.5 34-62
hRRT 59 8.3 733 490 353 15.2 26

TABLE V
COMPARATIVE RESULTS FOR THE LIGAND-PROTEIN PROBLEM.

rows of Tables II to V. In the case of the threshold method,
results are highly sensitive to the threshold growing speed, and
thus, reported data correspond to the extremal values obtained
when varying this parameter in the range (1-100).

Regarding the mechanical work criterion, results show that
T-RRTt provides significantly better solutions than existing
methods in all tests. Remarkably, T-RRT solutions are also
better with respect to the IC criterion in the three more difficult
problems involving a six-dimensional cost space.

The bad overall performance of the hRRT method is due
to the strong bias introduced by the heuristic that steers the
exploration toward the goal, resulting in a poor exploratory
ability, making it unable to circumvent high-cost regions
and find higher quality paths. Comparatively, the threshold
technique can provide solution paths whose quality is close to
the one of T-RRTg , but its performance is highly sensitive
to the parameter that regulates the variation speed of the
threshold. Depending on the value of this parameter, the
running time increases up to 1000 times for the costmap
problem, the mechanical work increases up to 47-fold for the
stick extraction problem, and both the running time and the
mechanical work are notably affected by the threshold speed
value for the car part inspection problem. Furthermore, this
sensitive parameter is problem-dependent and has to be tuned
for each application, whereas T-RRT parameters remain robust
to problem changes, as shown in the next subsection.

C. Influence of Intrinsic Parameters

We analyze now the influence of the main parameters of
the T-RRT algorithm. Experiments are performed on three
problems that correspond to three different types of cost
functions: the hilly costmap (Figure 11), the stick extraction
problem (Figure 12), and the car part inspection problem
(Figure 13). The results are presented in Tables VI and VII.

Hilly costmap
Time W

nFailmax nFailmax
α 10 100 1000 10 100 1000
2 0.9 11.0 121 28.0 23.1 23.4
10 0.7 7.1 93.4 32.1 26.6 24.4
50 0.7 7.0 85.5 32.0 28.7 24.8

Stick extraction
Time W

nFailmax nFailmax
α 10 100 1000 10 100 1000
2 7.4 32.8 226 1.9 1.1 1.1
10 8.2 31.0 218 5.5 2.9 2.4
50 7.0 29.8 226 3.5 3.3 1.2

Car part inspection
Time W

nFailmax nFailmax
α 10 100 1000 10 100 1000
2 16.4 206 2012 400 187 166
10 14.3 171 1697 439 188 165
50 15.9 167 1583 507 212 203

TABLE VI
INFLUENCE OF THE α AND nFailmax PARAMETERS.

Bold values are the default settings used in previous tests.

1) Temperature Variation Control: nFailmax and α are the
two parameters that control the derivative of the temperature,
and hence the selectivity of the transition test (as explained in
Section IV-B).

Table VI shows that nFailmax is an important parameter that
determines the appropriate balance between time performance
and solution path quality. In the costmap problem, when
nFailmax is increased by a factor of 10, the running time
also increases 9 to 13-fold. Its influence on the runtime
performance is less direct on the two manipulator problems
(due to the additional cost of collision checking), even though
the tendency is the same. Finally, note that higher values of
nFailmax improve path quality, but only up to a point: the
quality increases when nFailmax varies from 10 to 100, but
remains approximately constant from 100 to 1000.

Regarding the α parameter, results show that it affects only
slightly the behavior of the algorithm even if higher values
tend to increase the time performance while decreasing the
path quality. Overall, values nFailmax = 100 and α = 2
provide the best results for the three examples and are used
as default setting for all tests.

2) Expansion vs. Refinement Control: Table VII presents
results for various values of the ρ parameter used in the
MinExpandControl function to set the maximal ratio of
refinement nodes.

In the first line of the table, ρ = 1 means that the
MinExpandControl function is inactive. The results for the
2D hilly costmap highlight the importance of this function, the
computing time being much higher when ρ = 1. This example
illustrates the case where the refinement process slows down
the exploration by decreasing the temperature. This effect is
less visible in the two other examples where refinement steps
are less likely to happen because of the large size of the space.
Results for the other settings (i.e. ρ 6= 1) are quite similar,
meaning that ρ does not require to be tuned precisely. In all



Hilly costmap Stick extraction Car part inspection
ρ Time W Time W Time W
1 420 19.6 30.3 1.1 201 192
1/2 16.7 23.7 33.4 1.2 198 202
1/10 11.0 23.1 32.8 1.1 206 187
1/100 9.7 23.8 32.0 1.2 269 263

TABLE VII
INFLUENCE OF THE ρ PARAMETER.

Fig. 15. A tricky problem for T-RRT. A large low-cost region has to be
explored before deciding to cross the high-cost barrier: useless in (a) or leading
to a better solution (b).

experiments, the default setting ρ = 1/10 appears to be a good
compromise between computing time and path quality.

VII. EXTENSIONS

A. Bi-directional T-RRT

Similarly to the bi-directional version of the RRT planner
[9], a bi-directional T-RRT can be envisaged. However, a
naive approach using the same transition test for both trees
would lead to poor quality solutions. It would tend to create
paths with consecutive downhill and uphill cost variations,
corresponding to branches expanded from the init-tree and
goal-tree respectively, and may fail to find a more flat so-
lution path of lower-MW cost. A better alternative, using the
property of Subsection III-E2, which states that the MW paths
minimize any cost variations, is to modify transition tests
in order to filter both positive and negative cost variations
when expanding the two trees. This can be achieved easily by
replacing the transition probability pij of Equation (6) by the
expression pij = exp(− |∆c∗ij |

K.T ). Preliminary results show that
this approach performs well in problems where positive and
negative cost variations for the best cost paths are globally of
the same amplitude. However, in problems where the profile
of the cost between query nodes is asymmetric, it turns out to
reject too many configurations during the transition test, which
degrades the performance. In that case, a method based on a
more sophisticated transition test should be designed.

B. Toward a Greedy Anytime T-RRT

In this section, we discuss a possible extension of T-RRT
for performance improvement in tricky situations such as the
one illustrated in Figure 15. In this example, the large low-cost
region has to be fully explored before determining the need
to cross the higher cost barrier (a) or discovering the low-cost
passage that yields a better solution (b). In both cases, the

Fig. 16. (a) Initial tree built using a greedy T-RRT version. (b) The addition
of cycles (in red) leads to higher quality paths.

greedy T-RRTg version may rapidly cross the barrier, and thus
speed-up the computation compared to the tempered T-RRTt.
However, it may miss the preferred detour path in problem (b),
for which a longer exploration is needed to find the passage.
To keep the performance of an aggressive exploration while
avoiding this issue, we propose to combine the greedy version
of the planner with a cycle addition mechanism. The idea is
to create cycles in the tree when good paths initially missed
during the search are discovered afterwards. The idea has been
tested using the technique of [27] for cycle addition, leading
to early results. Figure 16 shows an initial tree built using a
greedy version of T-RRT that goes through a medium cost
region (circled in blue on Figure 16a) that could have been
avoided. The addition of cycles provides alternative paths and
yields higher quality solutions (Figure 16b).

VIII. CONCLUSION AND FUTURE WORK

We have presented a sampling-based algorithm to compute
paths in problems involving high-dimensional cost spaces.
The proposed method combines the exploratory strength of
RRTs, with the efficiency of stochastic optimization methods.
It integrates an adaptive mechanism that helps to ensure a good
performance for a large set of problems.

The notion of Minimal Work path has been proposed to
quantify the quality of solution paths. By design, the proposed
T-RRT algorithm computes paths that tend to satisfy such a
quality property. A large set of experiments were performed
to show the efficacy of the T-RRT planner.

Experimental results have shown that the planner is general
enough to be applied, at least, to 6-dimensional spaces con-
strained by obstacles. Future work concerns the application
of T-RRT to new classes of problems such as the integration
of human-robot interaction constraints within path planning or
the exploration of energy landscapes in computational biology
problems. Extensions discussed in the previous section also
need to be further explored for performance improvement.
Furthermore, another direction is to incorporate in the planner
other methods inspired by Monte Carlo optimization tech-
niques, such as stochastic tunneling [28] or parallel tempering
[29]. Finally, it would be interesting to test our approach on
benchmark problems of the stochastic optimization commu-
nity, since T-RRT could be used as a generic optimization
tool and, in principle, applied to any metric cost space.
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