N

N

A path planning approach to (dis)assembly sequencing
Duc Thanh Le, Juan Cortés, Thierry Simeon

» To cite this version:

Duc Thanh Le, Juan Cortés, Thierry Simeon. A path planning approach to (dis)assembly sequencing,.
2009 IEEE International Conference on Automation Science and Engineering (CASE 2009), Aug 20009,
Bangalore, India. pp.286-291. hal-01986320

HAL Id: hal-01986320
https://laas.hal.science/hal-01986320
Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://laas.hal.science/hal-01986320
https://hal.archives-ouvertes.fr

A Path Planning Approach to (Dis)Assembly Sequencing

Duc Thanh Le, Juan Cortés and Thierry Siméon

Abstract— z> The paper describes a new method for si-
multaneously (dis)assembly sequencing and path planning.
Indeed, both are parts of a same problem that can be
formulated in a general path planning framework. Based
on this formulation, the algorithm proposed in this paper
extends a popular sampling-based path planner, RRT, to
solve general (dis)assembly planning problems involving objects
with arbitrary shapes, and possibly requiring non-monotonic
(dis)assembly sequences. The method does not require complex
geometric computations, and is easy to implement. Experimen-
tal results show the efficiency of the method for solving a large
class of problems.

I. INTRODUCTION

Disassembly planning is a very active research field with
a number of direct applications such as end-of-life product
processing, maintenance operations, and product repair [1].
Moreover, integrated within CAD/CAM systems [2], disas-
sembly planning helps to design products that are easier to
manufacture, to maintain and to recycle.

Since a bijection between assembly and disassembly
sequences usually exists [3], the assembly-by-disassembly
strategy has been a common approach to assembly planning.
Thus, although a distinction between both problems can be
made [4], it is usual to talk indistinctly about assembly
and disassembly planning. This paper directly addresses the
latter problem. Nevertheless, like most of related works, the
proposed method can be used to infer the assembly sequence
from the model of the assembled object.

Disassembly planning can be tackled at different levels of
detail [4]. The highest level concerns disassembly sequenc-
ing, which is the problem of listing subsequent disassembly
actions that can separate individual parts of an assembly.
This problem is usually formulated as a discrete search and
optimization problem, and is solved using Al methods such
as AND/OR graphs [5] or genetic algorithm [6]. Geometric
reasoning approaches (e.g. [7], [3], [8]) can be applied at
this level in order to reduce the combinatorial complexity
of the disassembly sequencing problem. Disassembly path
planning, which addresses the parts motion considering
physical and manipulability constraints, rises at a more de-
tailed level of the disassembly planning problem. Due to the
high computational complexity of treating all part motions
simultaneously, the disassembly path planning problem has
usually been formulated for a single part. This simpler
instance is also called the assembly maintainability study [9].
Efficient path planning methods (e.g. [10], [11]), based on
the popular RRT algorithm [12], have been proposed to

All the authors are with the CNRS; LAAS; 7 avenue du colonel Roche, F-
31077 Toulouse, France; and with the Université de Toulouse; UPS, INSA,
INP, ISAE; LAAS; F-31077 Toulouse, France

solve very constrained single-part disassembly problems on
complex CAD models. Very recently, the RRT algorithm has
also been extended to disassembly path planning for objects
with articulated parts [13].

However, disassembly sequencing and path planning are
parts of a whole problem, and ideally, they have to be treated
simultaneously. The relationship between both sub-problems
is more obvious for non-monotonic disassembling (see Fig-
ure 3 for an example), in which parts have to be moved
to intermediate locations for permitting the disassembly of
other parts. Despite their potential interest, few methods have
been proposed for simultaneously disassembly sequencing
and path planning in a general framework, like the one
presented in this paper. Probably the most closely related
method was proposed by Sundaram er al. [14]. Based on
randomized path planning algorithms, this technique was
able to compute disassembly sequences considering all the
parts disassembly paths. The method samples motion direc-
tions of one or several parts using geometric information (i.e.
the normal direction to faces in contact). Although general,
this method strongly depends on geometric operations, and
thus, its performance for solving problems involving parts
with complex shapes is questionable. Besides, its ability
to treat non-monotonic disassembly problems was neither
experimentally proved nor discussed.

This paper introduces a general formulation for simultane-
ously disassembly sequencing and path planning (Section II),
and proposes an algorithmic solution based upon it. The
proposed method builds on sampling-based path planning al-
gorithms, with are able to solve problems in high dimensions
(i.e. involving many mobile parts). In particular, it extends
the ML-RRT algorithm [13] (the principle is reminded in
Section III), which was originally proposed for disassembly
path planning of two objects with articulated parts. The idea
developed in this paper consists in iterating the ML-RRT
algorithm for extracting all the parts of a general assembly
(Section IV). The performance of the planner is demonstrated
on several academic examples (Section IV). Because the
method does not rely on any sophisticated geometric compu-
tations but only uses collision detection, it should scale well
for treating more complex CAD models, for which efficient
collision checking techniques are available.

II. PROBLEM FORMULATION

This section presents a unified formulation for disassembly
path planning and disassembly sequencing. Disassembly
planning can be formulated as a particular instance in
a general path planning framework, using the notion of
configuration-space [15], [16]. A configuration ¢ is a minimal

set of parameters defining the location of the mobile system
in the world, and the configuration-space C' is the set of all
the configurations. Given the initial assembled configuration
Qinit, the problem consists in finding a feasible path in C'
form g;n;; to a disassembled configuration q4;s. Note that
qqis may not be specified by a precise goal configuration,
like in the standard path planning problem, but it can be
implicitly defined by a condition based on distances between
parts. Path feasibility in this context mainly involves collision
avoidance. Nevertheless, constraints on the the number of
hands, the possible motion directions, and optimality criteria
can also be considered.

In the case of a system M involving n mobile objects
m; (i.e. the assembled parts), C' is the Cartesian product
of the configuration-spaces of all the objects: C' = [] Ci,,
i = 1...n. Motions of a single object m,, which we will
call active part, take place in a sub-manifold C'J‘-l =Cp, % qg) ,
where qg.’ is a point in a lower-dimensional manifold C,,, =
[1Cm,, Vi # a. This point qf represents a fixed location of
all the other objects, referred to as passive parts. Note that
for each value of qf , C§ corresponds to a foliation leaf of C.
Such a foliation of C' can be made for each object m, € M
being selected as an active part.

Starting from a configuration of the whole system g;
(initially, g; is the assembled configuration g;,;), one part
mg can be disassembled without moving other parts if it
exists a feasible path in Cf between ¢; = (q]‘hqﬁ7) and
a configuration gsyup.q (45> 47), which represents a
subassembly with m, extracted from the assembly.

Considering that parts are moved and disassembled one
by one (what is called a rwo-handed (dis)assembly sequence
in related literature), an assembly admits a monotonic dis-
assembly sequence if the path for disassembling each part
m, can be found in only one leaf C7 of its corresponding
foliation, being g; = gin4 for the first part or ¢; = Gsup,a—1
for the others parts. Here, gsyp,q—1 represents a subassembly
where all the previous parts in the sequence have been
already extracted. Therefore, the minimal number of leaves
C7 needed to be explored is equal to the number of parts
minus one (the last part does not need to move). For
non-monotonic disassembly problems, motions of parts to
intermediate configurations that do not correspond with a
subassembly are required. Thus, the number of leaves to be
explored increases, and it is necessary to find paths in C
connecting these different leaves. Disassembly sequencing
within this formulation can be expressed as the problem of
finding the order to select active parts m, that minimizes
the number of leaves C to be explored for finding all the
disassembly sub-paths.

III. BASiC ML-RRT ALGORITHM

The Manhattan-like RRT (ML-RRT) algorithm [13] was
originally proposed for disassembly path planning of two
objects with articulated parts. However, the main idea behind
this algorithm is more general. It consists of partitioning the
configuration parameters into an active subset and a passive
subset, and treating them in a decoupled manner. Active

parameters are directly handled by the planner, while passive
parameters are treated only when required to expand the tree.
Indeed, passive parts only move if they hinder the motion of
other mobile parts (active parts or other passive ones involved
in the motion).

Algorithm 1 shows the pseudo-code of the main function
in ML-RRT, Expand-ML-RRT, which is iterated for ex-
panding the search tree. The function SampleConf receives
as argument the list of active parts L* and only samples
the associated parameters. Thus, this function generates a
configuration g/, in a lower-dimensional manifold of the
configuration-space only involving the active parameters,
C*. Note that, if only one part is tried to be disassembled
at a time, L* = m, and C* = C(y,,. The function
BestNeighbor selects the node to be expanded ¢, cq, using
a distance metric in C*. Then, the Expand function per-
forms the expansion of the selected configuration by only
changing the active parameters. A greedy strategy is used
here. The returned configuration g, corresponds to the last
valid point in the straight-line segment from geq, toward
{42 a5 @unat- If the expansion is not negligible, a new
node and a new edge are added to the tree. The function
Expand also analyzes the collision pairs yielding the stop
of the expansion process. If active parts in L* collide with
potentially mobile passive parts in LP, the list of the involved
passive parts L? is returned. This information is used in the
second stage of the algorithm, which generates the motion
of passive parts. The function PerturbConf generates a
configuration ¢¥, . by randomly sampling the value of the
passive parameters associated with LP , in a ball around
their configuration in g,¢q-. Note that, if the previous call to
Expand has been successful, ¢,¢q- has been updated in order

Algorithm 1: Expand-ML-RRT

input : the model M; the search-space C';

the current tree 7; the partition {L%, L?};
output : the updated tree T;
begin

expanded «— FALSE;

qrand — SampleConf(C, L%);

Qnear < BestNeighbor(T, ¢y, L);
(qneu;y Lgol) — Expand(qneam qgand);
if not TooSimilar(gnear,Gnew) then
AddNewNode(T, ¢new);
AddNewEdge(T, ¢near, Gnew);

Qnear < Qnew;

| expanded — TRUE;
while LF , £ () do

col
a8 g }/?erturbConf(C’, Gnear, LY));
.(qnewa Liol) — Expand(gnear, qfand);
if not TOOSimilar(Qnear,Qnmu) then
AddNewNode(T, @new);
AddNewE dge(T, Qnear, Qnew);

qnea'r — qnew ,

expanded < TRUE;
L Lgol - Lgt/)l \Li)ol;

return expanded;

end

to contain the new configuration of the active parameters. An
attempt is then made to generate a new node by expanding
qnear toward {q%, . ..¢" .} Only the parts in LY move
duging this tree expansion. Like for active parameters, a list
L? , is returned by the function Expand when the expansion
is stopped by a collision involving passive parts. If this list
contains new passive parts (in relation to L), the progress
generating passive part motions may be useful to solve
problems where passive parts indirectly hinder the motion
of the active ones because they block other passive parts.
The ML-RRT algorithm can take into account different
difficulty/priority levels for the motion of different parts. A
Gaussian distribution that translates such difficulty/priority is
associated with each part. Then, the function PerturbConf
modifies or not the configuration parameters of a passive part
in L” | depending on this probability distribution. The vari-
ance of the Gaussian distribution can be adaptive, evolving
with the growth of the search tree. Thus, in the first iterations,
the algorithm will have low tendency to produce motions of
passive parts that have been defined to have low mobility, but
will incrementally move such parts if a disassembly solution
path is not found with these static parts. This feature of ML-
RRT is exploited in the extension presented in next section.

IV. DISASSEMBLY ALGORITHM

The basic ML-RRT is able to rapidly compute the path for
extracting a part from an assembly, also producing motions
of other parts if necessary. The idea developed in this paper
consists in iterating the ML-RRT algorithm a number of
times for extracting all the parts.

The Iterative-ML-RRT (I-ML-RRT) algorithm is sketched
in Algorithm 2. At each iteration, one part is tried to be disas-
sembled. The part is selected by the function selectPart.
Part selection may follow a predefined disassembly order
to be tested, or maybe determined by a heuristic based on
the assembly structure. If such information is not avail-
able, the part is simply selected at random. The function
SetPartition sets the pose parameters of the selected part
as active parameters, while those of all the other parts are
passive. The variance of the Gaussian distribution associated
with the mobility of passive parts is initialized with a
high value, making these parts have low tendency to move
in the first iterations. Once the parameter partition is set,
the basic ML-RRT is applied to compute the disassembly
path. The ML-RRT expansion process is stopped in two
cases: if the currently treated part reaches a disassembled
configuration (detected by the function PartDisassembled
when the distance to all the other parts is greater than a given
threshold), or if a StopCondition determines that the part
extraction is not possible. In our implementation, the latter
stop condition acts when the number of nodes in the search
tree reaches a maximum user-set value MaxTreeSize.

The information encoded in the constructed search tree is
then treated. If the current active part has been disassembled,
the function SelectEndConf returns the last computed
configuration. Otherwise, it returns the configuration that
maximizes the distance to the other parts. Except if this

end configuration is too similar to the initial one (i.e.
parts have only slightly moved), the path connecting both
configurations is computed from the search tree, and it is
merged to the sub-paths obtained in previous iterations. In
order to avoid including unnecessary part motions in the
solution disassembly path, the threshold used in function
TooSimilar is initialized with a high value. This value is
then correlatively decreased if parts cannot be disassembled
after a consecutive number of I-ML-RRT iterations. Finally,
the initial configuration for the next iteration is updated to
the end configuration of the current one. The whole process
is iterated until all parts are disassembled, or the number of
iterations reaches a maximum value, Maxlter. In the latter
case, the algorithm returns failure.

The output of the I-ML-RRT algorithm is a path S con-
sisting of a sequence of elementary part motions yielding the
system disassembly. This path results from the concatenation
of the sub-paths s; obtained at each iteration. Each sub-
path s; involves motions of one part (the active part in the
corresponding iteration), and, in some cases, slight motions
of other parts that hinder its disassembly. In easy disassembly
problems, most of the computed sub-paths yield the entire
disassembly of one part. Nevertheless, in more difficult
problems, some of the computed sub-paths may only produce
partial disassembly motions that increase the clearance of
the active part. The number of such intermediate sub-paths
tends to increase with the difficulty of the problem. Note that,
although optimality criteria are not directly considered in this
work (this is a possible extension mentioned in Section VI),
the I-ML-RRT algorithm tends to minimize the the number
of elementary motions (i.e. the number of explored leaves
C7 defined in Section II) required for the disassembly.

Algorithm 2: Tterative-ML-RRT
input
output
begin

Niter < 0

repeat

Niter < Niter + 1;

m; < SelectPart(M);

(L%, LP) «— SetPartition(M,C,m;);

T < InitTree(qinit);

while not StopCondition(r, MaxTreeSize) do

if Expand-ML-RRT(M, C, 7, L* L?) then

L if PartDisassembled(L?, ¢new) then

: the model M; the search-space C'; the 100t Ginit;
: the disassembly pathway sequence S;

| break;
Qend < SelectEndConf(r);
if not TooSimilar(qinit,@end) then
s; < ExtractSubPath(T, ¢init, Gend);
S «— MergeSubPaths(s;);

L Ginit < Qend;

until Al1Disassembled(@end) OF Niter > Maxlter;
if Al1Disassembled(genq) then return S;
else return FAILURE;

end

(a) (b)

Fig. 1. Planar Puzzles: (a) Simple, (b) Double, (c) Triple.

V. RESULTS

The I-ML-RRT algorithm has been implemented within
the motion planning software Move3D [17], and tested with
a set of benchmark examples. The results reported in this sec-
tion aim to illustrate both the generality and the good overall
performance of the method. We start with the description
of the puzzle models used as examples of both monotonic
and non-monotonic disassembly problems. Then, we analyze
the intrinsic performance of the algorithm and show that it
compares favorably with other existing techniques.

All reported results correspond to averaged values based
on 50 successful runs' (i.e. no failure) of I-ML-RRT. The
tests were performed on a AMD Opteron 2.2 GHz processor
equipped with 2 Gb of memory.

A. Benchmark Models

Monotonic cases: The two first Planar and Pentomino
models (see Figures 1 and 2) correspond to the simpler
class of monotonic disassemblies in which each part can be
extracted using a single continuous path (i.e. the length of
the optimal disassembly sequence is equal to the number
of parts, minus -the static- one). Both models are inspired
from Sundaram’s benchmarks [14] (Figures 1-a and 2-a)
from which we created more complicate variants for the
aim of our tests. First, the number of parts of the Planar
benchmark was increased by duplicating the original Simple
model into the Double and T'riple variants (Figure 1-b,c),
respectively involving 12 and 18 parts. We also considered a
more difficult version or the three-dimensional Pentomino
puzzle in which the disassembly motions of the twelve
parts are constrained by the presence of a bounding box
(Figure 2-b).

Non-monotonic cases: The two other examples,
2D_Narrow and the three-dimensional variant 3D _Narrow
(respectively shown in Figures 3 and 4), correspond to
more complex problems, although less parts are involved.
First, the disassembly sequence of both problems is non-
monotonic, since one part has to be moved first to some
intermediate position for “unlocking” the disassembly (see
Figures 3-b and 4-c). Moreover, due to spatial constraints,
both disassembly sequences require rotational motions for
extracting the second part from the narrow corridor (see
Figure 3-d) or from the assembly box (see Figure 4-e).

I The algorithm was run with the M axIter parameter set to a sufficiently
large value (10.000), so that each run ended up when a solution was found.

7%

The Pentomino Puzzles: (a) without box, (b) with box.

(b)

Fig. 2.

B. Algorithm performance

Table I summarizes the averaged computing times ob-
tained on the test examples. The results show the high per-
formance of the method that is able to solve all disassembly
problems in times ranging from 0.1 sec. to 13 sec. The fact
that I-ML-RRT iterations may produce motions of the passive
parts when extracting a given part (as opposed to a standard
RRT that would act only on the active part) notably con-
tributes to the overall performance of the algorithm, specially
for the complicate case of non-monotonic problems. Note
that even if the Planar and Pentomino puzzles can be both
solved with only translational motions, the table also reports
computing times obtained when rotations are allowed. These
results indicate that the overhead of considering rotational
motions is rather limited (factor less than two). Further
results reported in Table II for the three Planar puzzle
variants indicate also that the computational efficiency is
linearly influenced by the number of parts.

TABLE I
ALGORITHM PERFORMANCE

Example 2D Simple | 2D Simple | Pentomino | Pentomino 2D 3D
Translation | Rotation | Translation | Rotation | Narrow | Narrow
Nb. of parts 6 6 12 12 3 3
DOFs 12 18 36 72 9 18
Aver. CD Tests 2723 3611 18818 33026 20067 25704
Aver. Time (s) 0.1 0.16 3.79 6.55 1.65 13.83
Std. deviation 0.05 0.14 1.05 1.14 1.29 9.94

C. Effect of the disassembly order strategy

As explained in Section IV, the current implementation of
the SelectPart function relies on a simple random strategy
for selecting at each iteration the active part tried to be
disassembled. Table II further investigates the efficiency of
this random choice in comparison to best and worst case
selections. The best case corresponds to the correct sequence
order given as input to the algorithm, while the worst case
corresponds to the inverse sequence. The reported results
indicate that the best/worst case selections only influence
the computational efficiency by a factor less than 2.5 and
that the random selection strategy stands in the middle of
the time range. The table also reports the averaged number
of iterations together with the number of extracted sub-paths
(i.e. the length of the computed disassembly sequence). As
one can see from the results, the computed solutions are close
to the optimal ones for the monotonic disassemblies, but

B

P HEIE

Fig. 3. 2D Narrow Puzzles: (a) Assembled configuration,
(b)(c)(d)(e) Four disassembly sub-paths.

(e)

(a)

(d) ©
Fig. 4. 3D Narrow Puzzles: (a) Assembled configuration, (b)(c)(d)(e) Four
disassembly sub-paths (the box is not displayed for clarity reasons).

remain suboptimal for the two last non-monotonic examples.
While some post-processing of the solution paths could
certainly filter unnecessary motions in such cases, improving
the optimality of the disassembly sequence clearly remains
an issue to be further investigated.

TABLE 11
EFFECT OF THE SEQUENCE INITIALIZATION

Example Nb of Average | Average Nb | Average Std

Elemental Nb of of Extracted | Time (s) | Deviation
Motions | Iterations Subpaths

2D Simple | Good-Bad 6 6-180.95 6-6.95 0.08-0.14 | 0.04-0.12

Tran Random 6 70.6 6.59 0.1 0.05
2D Double | Good-Bad 12 12-212.55 12-12.56 0.66-0.88 | 0.06-0.37

Tran Random 12 180.1 12.51 0.72 0.2
2D Triple | Good-Bad 18 18-318.89 18-21.61 3.45-4.52 | 0.38-0.34

Tran Random 18 217.26 18.72 3.84 0.71
3D Good-Bad 12 12-68.7 12-15.96 4.52-7.73 | 0.92-1.36

Pentomino [Random 12 58.7 15.73 6.55 114
2D Good-Bad 4 4-370.67 4-158.61 0.71-1.84 | 0.29-1.29

Narrow Random 4 36.62 10.95 1.65 1.29
3D Good-Bad 4 4-455.54 4-90.47 10.1-21.96 | 4.51-4.56

Narrow Random 4 177.19 19.16 13.83 9.94

D. Influence of the MaxTreeSize parameter

In the I-ML-RRT algorithm, the M azTreeSize parameter
(see Section IV) is used to control the maximal RRT’s
size allowed when searching for a given part disassembly
motion. When this limit is exceeded, a new part is selected
and tried in turn for extraction. The maximal size of the
search trees may therefore be seen as an important parameter,
possibly influencing the overall efficiency of the method. The
analysis on the influence of this parameter, whose results are
summarized in Figure 5, indicates that it actually has a very

30 T

——2D Simple

2D Double
—+—2D Triple

P
——2D Narrow
--'3D Narrow

20+

Average Time(s)

0 100 200 300 400 500 600 700 800 900 1000
MaxTreeSize (nodes)

Fig. 5. Impact of MaxTreeSize in the global performance of I-ML-RRT.

limited impact, and thus, it can be easily tuned. The curves
of Figure 5 display for each test example the evolution of the
computing time as a function of MaxzTreeSize for values
ranging from 10 to 1000. As one can see, the performance
is only affected for very small values (in the range [10,100])
resulting in search trees that are insufficiently rich for finding
the whole feasible motion of a given part in a single iteration.
The performance rapidly increases once the size becomes
sufficient and then remains constant within most of the range
(i.e. tree sizes greater than 100). Thus, the MaxTreeSize
parameter has to be preferably set with a large value and does
not need any specific tuning since it does not really impact
the overall performance. All tests reported in this section
were performed with MaxTreeSize set to 200.

E. Performance comparison

In this section, we compare the performance of our algo-
rithm with two other techniques [14],[8] previously proposed
for disassembly planning.

The method of Sundaram et al. [14] is the most closely
related to ours, since it also builds on a sampling-based
path planning approach. Table III relates computing times
reported in [14] for the Planar(Simple) and Pentomino
benchmarks (see Figures 1-a and 2) to the averaged times
obtained with the I-ML-RRT algorithm. The reported times
indicate a huge gain factor (more than 4000) in favor to I-
ML-RRT. Such direct time comparison is of course biased
by the higher speed of our AMD Opteron 2.2 Ghz processor
compared to the older processor used in [14]. Considering
a CPU speed factor of about 10 times, the algorithmic
performance of I-ML-RRT remains superior by at least two
orders of magnitude.

We also ran the algorithm on the difficult puzzle bench-
mark used in a recent publication by Fogel et al. [8] . This
Diagonal Star puzzle (see Figure 6) consists of six identical
parts that create together a highly constrained assembly.
Here, the difficulty of this benchmark is that it requires
coordinated motions between groups of parts that need
to gradually move together for disassembling the puzzle.
Table IV provides some comparative results between [-ML-
RRT and the exact algorithm proposed in [8] for the specific
class of disassemblies solvable with infinite translational mo-

Fig. 6. The Diagonal Star Puzzle: (a) Assembled configuration,
(b) Coupled disassembly motions.

TABLE III
PERFORMANCE COMPARISON WITH SUNDARAM’S APPROACH
Model Average Time(s)
Iterative-MLRRT | Sundaram et al.
2D Simple 0.1 474
Pentomino 3.79 21794

TABLE IV
PERFORMANCE COMPARISON WITH FOGEL’S APPROACH

Model
Diagonal Star (6 parts)

Iterative-MLRRT Fogel’s algorithm
Scaling factor Nb convex sub-parts per part
98% | 95% | 90% 3 [5 [8
49.25 [36.83] 13.03 | 4.89 | 13.62 [4159

Average Time (s)

tions. As explained in Fogel’s paper, the algorithm requires
each part to be decomposed into convex sub-parts and the
computing time strongly increases with the total number of
sub-parts. On the other hand, the I-ML-RRT algorithm does
not rely on exact computations of contact motions and thus
requires some clearance between the parts. For this reason,
we worked on slighly easier versions obtained by schrinking
each part of the puzzle. Table IV compares the “shrinking
factor” dependency of I-ML-RRT computing times with the
“part complexity”” dependency of times reported in [8]. Inter-
estingly, although I-ML-RRT was not specifically developed
for problems in which subassemblies of several parts have
to slide together to disassemble each other, it is able to solve
the DiagonalStar puzzle almost as efficiently as the exact
algorithm designed for this class of problems.

VI. Di1sCcUSSION, CONCLUSION AND PERSPECTIVES

We have presented a general approach to disassembly
planning, which treats sequencing and path planning prob-
lems simultaneously. The algorithmic solution we have de-
veloped is based on an extension of RRT, which is a simple
and efficient path planning algorithm. Nevertheless, the pro-
posed formulation can be seen as a general framework that
should enable the development of other classes of algorithms.

The method has been presented considering that parts
move one by one. However, active and passive parameter
subsets in I-ML-RRT may involve an arbitrary number of
parts. Thus, the algorithm could be directly applied for treat-
ing problems involving any number of parts simultaneously
moving in different directions (i.e. disassembly problems
with any number of hands). Furthermore, it will be easy
to modify the method for treating more efficiently problems
requiring ensemble motions of groups of parts.

The presented algorithm does not need geometric oper-
ations such as computing normals to faces for determining

blocking directions. It only requires a collision checker. Con-
sequently, I-ML-RRT can solve problems involving complex
part models with any shape (convex or concave), which
may be the bottleneck for other methods. However, in
particular cases (e.g. polyhedral objects), there is place for
improvement by integrating some geometric operations that
will provide good heuristics for selecting parts to move
and suitable motion directions. Indeed, a possible trend for
future work would be to combine I-ML-RRT with automated
geometric reasoning methods for assembly partitioning and
disassembly sequencing (e.g. [7], [3], [8]).

Another future extension would be to consider optimality
criteria, in particular, for minimizing the number of elemen-
tary motions. Although this criterion is already indirectly
considered by the algorithmic design of I-ML-RRT (which
does not keep part motions below a given distance threshold),
it reminds an important issue that merits a more direct treat-
ment. Besides, some costs associated with the disassembly
could be considered within the path planning process. One
possible way could be to integrate ideas of T-RRT [18].

REFERENCES

[1] A. Lambert and S. Gupta, Disassembly modeling for Assembly, Main-
tenance, Reuse and Recycling. Florida: CRC Press, 2005.

[2] E. Arai and K. Iwata, “CAD system with product
assembly/disassembly planning function,” Robotics and Computer-
Integrated Manufacturing, vol. 10, pp. 41-48, 1993.

[3] D. Halperin, J. Latombe, and R. Wilson, “A general framework
for assembly planning: The motion space approach,” Algorithmica,
vol. 26, pp. 577-601, 2000.

[4] A. Lambert, “Disassembly sequencing: A survey,” Int. Journal of
Production Research, vol. 41, pp. 3721-3759, 2003.

, “Optimum disassembly sequence generation,” Proc. SPIE Conf.

on Environmentally Consious Manufactoring, pp. 56—67, 2000.

[6] E. Kongar and S. Gupta, “Genetic algorithm for disassembly process
planning,” Proc. SPIE Int. Conf. on Environmentally Conscious Man-
ufactoring 11, pp. 54-62, 2001.

[7]1 R. Wilson, L. Kavraki, T. Lozano-Perez, and J. Latombe, “Two-handed
assembly sequencing,” Int. Journal of Robot. Research, vol. 14-4, pp.
335-350, 1995.

[8] E. Fogel and D. Halperin, “Polyhedral assembly partitioning with
infinite translations or the importance of being exact,” Proc.Workshop
on the Algorithmic Foundations of Robotics, 2008, in press.

[9] H. Chang and T.-Y. Li, “Assembly maintainability study with motion
planning,” Proc. IEEE Int. Conf. Robot. Automat., pp. 1012-1019,
199s.

[10] E. Ferré and J. Laumond, “An iterative diffusion algorithm for part
disassembly,” Proc. IEEE Int. Conf. Robot. Automat., pp. 3194-3150,
2004.

[11] 1. Aguinaga, D. Borro, and L. Matey, “Parallel RRT-based path
planning for selective disassembly planning,” Int. J. Adv. Manuf.
Techno., vol. 36, pp. 1221-1233, 2008.

[12] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees :
Progress and prospects,” in Algorithmic and Computational Robotics:
New Directions, B. Donald, K. Lynch, and D. Rus, Eds. Boston:
A.K. Peters, 2001, pp. 293-308.

[13] J. Cortés, L. Jaillet, and T. Siméon, “Disassembly path planning for
complex articulated objects,” IEEE Trans. Robot., vol. 24, pp. 475—
481, 2008.

[14] S. Sundaram, I. Remmler, and N. Amato, “Disassembly sequencing
using a motion planning approach,” Proc. IEEE Int. Conf. Robot.
Automat., pp. 1475-1480, 2001.

[15] J. Latombe, Robot Motion Planning.
Publishers, 1991.

[16] S. LaValle, Planning Algorithms.
Press, 2006.

[17] T. Siméon, J.-P. Laumond, and F. Lamiraux, “Move3D: A generic
platform for path planning,” Proc. IEEE Int. Symp. Assembly and Task
Planning, pp. 25-30, 2001.

[18] L. Jaillet, J. Cortés, and T. Siméon, “Transition-based RRT for path
planning in continuous cost spaces,” Proc. IEEE/RSJ Int. Conf. Intel.
Rob. Sys., pp. 22-26, 2008.

[5]

Boston: Kluwer Academic

New York: Cambridge University

