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Transition-based RRT for Path Planning in Continuous Cost Spaces

Léonard Jaillet, Juan Cortés and Thierry Siméon

Abstract— This paper presents a new method called
Transition-based RRT (T-RRT) for path planning problems in
continuous cost spaces. It combines the exploration strength
of RRTs [1] that rapidly grow random trees toward unex-
plored regions of the space, with the efficiency of stochastic
optimization methods that use transition tests to accept or to
reject a new potential state. This planner also relies on the
notion of minimal work path that gives a quantitative way to
compare path costs. The method also integrates self tuning of
a parameter controlling its exploratory behavior. It yields to
solution paths that efficiently follow low cost valleys and the
saddle points of the cost space. Simulation results show that the
method can be applied to a large set of applications including
terrain costmap motions or planning low cost motions for free
flying or articulated robots.

I. INTRODUCTION

Sampling-based path planning techniques (see [2], [3]
for a survey) have been successfully applied to a large
range of problems such as robotics, manufacturing, graphics
animation or computational biology. These techniques handle
complex problems in high dimensional spaces but usually
operate in a binary representation of the search space made
up of free regions constrained by obstacles. Due to their
probabilistic nature, solution paths are generally low quality
and a postprocessing phase is commonly used to improve
them relatively to specific criteria, usually the length or the
distance to the obstacles. The problem of computing good
quality paths with respect to more general cost functions
arises in many applications but remains however an open
issue.

On the other side, techniques specially developed in the
context of field robotics have focused on path planning
methods on costmaps [4], where the assigned costs depend
on different parameters (eg. robot stability, visibility, prob-
ability of presence of an obstacle). Contrarily to sampling
based techniques, these methods are however limited to low
dimensional problems as they are based on graph search
algorithms (eg. A∗ [5] and its dynamic extension D∗ [6])
inside a grid discretization of the space. Few works [7], [8],
[9] have recently tried to bridge the gap between sampling
based planning and costmap planning. These methods using
variants of the RRT diffusion technique [10], focus however
on 2D terrain costmap problems.

This paper presents a new technique called Transition-
based RRT (T-RRT) for handling more general problems
involving continuous cost spaces. This method extends cost
planners to higher dimensional problems. More generally
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Fig. 1. Transition-based RRT on a 2D costmap (the elevation corresponds
to the costs). The exploration favors the expansion in valleys and saddle
points connecting low cost regions.

it is applicable to path planning for free-flying or articu-
lated robots in cluttered 3D workspaces, in problems also
requiring to integrate some additional cost criterion during
the search process in order to compute low cost solution
paths. The proposed planner relies on the notion of minimal
work path that gives a quantitative way to compare path
costs. The algorithm takes advantage of the exploration
strength of RRT-like methods that steers the search toward
yet unexplored regions of the space, combined with the
efficiency of stochastic optimization methods (eg. Monte
Carlo optimization, simulated annealing) that use transition
tests to accept or to reject a new potential state. This makes
the planner follow efficiently valleys and saddle points of the
cost space in order to compute low cost solution paths (cf.
Figure 1). Finally, the method also integrates self tuning of
a parameter controlling its exploratory behavior.

After a brief presentation of the related work (Section II),
we introduce (Section III) the minimal work path criterion
used to evaluate the path costs. Section IV presents the details
of the T-RRT algorithm that is demonstrated in the results
(Section V) on different classes of problems involving 2D
costmap planning or for computing low cost motions for
free-flying and articulated robots.

II. RELATED WORK

This section briefly surveys the most directly related work
to our approach. Only few papers deal with sampling-



based planning and cost spaces. In [7], an adaptation of
the RRT-Connect planner is used to find low cost paths
in rough terrain applications. The principle is to keep new
configurations only if their cost (called obstacleness) is under
a given threshold. This threshold is initialized to a low value,
and then iteratively increased during the search process.
One limitation of this technique is due to the nondecreasing
behavior of this threshold, which limits the efficiency of low
cost search to the vicinity of the root nodes. To overcome
this issue, the extension proposed in [8], is to grow multiple
RRTs rooted at randomly sampled configurations. However,
this solution still requires to tune correctly the number of
initial samples in order to get sufficient number of low cost
seeds among the space. Moreover, it requires a manual tuning
of the parameter controlling the cost growth rate that clearly
impacts on the algorithm efficiency.

In [9], the heuristically-guided RRT (hRRT) bias the
search toward low cost paths using a quality measure based
on the cost of the path from the root node and an estimation
of the optimal cost to the goal. However such integration
of previous costs along a path tends to penalize nodes that
are far from the root. In order to balance this behavior, a
bias to the goal is performed. The method is developed for
2D applications and only demonstrated on simple examples
with discrete cost states (invalid, low cost, high cost).
It would probably not be generic enough to succeed in
problems involving continuous and higher dimensional cost
spaces.

The T-RRT algorithm is also inspired by Monte Carlo
optimization techniques. Developed in order to find global
optima in very complex function spaces [11], they introduce
randomness as a mean to avoid local minima traps. Many
variants have been developed (eg. random walk, simulated
annealing [12]). The basic exploration process relies com-
monly on successive transition tests, performed using the
Metropolis criterion (see section IV-B). Also note that the
Probabilistic Conformational Roadmaps [13] is developed
to explore molecular energy landscapes in computational
biology applications also integrate a similar transition test
in the path planning PRM framework [14].

III. MINIMAL WORK PATHS

In this section we propose a new criterion to better evaluate
path costs. This criterion based on the notion of mechanical
work, gives us a quantitative way to compare path qualities.

Let us consider a robot evolving in a configuration space
CS that may contain “binary” obstacles, and a continuous
cost function c : CS → R+ mapping this space, ie. a cost
c(q) = cq can be computed for each q ∈ CS. Consider also a
path P with a given cost profile corresponding to the various
configurations costs along P. A positive variation of cost can
be seen as a force acting against the motion that produces a
mechanical work with the displacement of the robot along
the path. The resulting loss of “energy” due to mechanical
work is actually the criterion that we propose to minimize.
For negative variation of costs, the robot does not loose any

Fig. 2. Optimal paths based on the minimal work criterion. The paths
are computed using the A∗ algorithm within a 2-dimensional grid (a)
discretizing the space. The examples illustrate respectively down-to-down
(b), top-to-top (c), and top-to-down (d) queries.

energy. In that case a small cost proportional to the distance
is just added in order to privilege shortest paths. Based on
this principle, the cost of a path called W (P) (in analogy
with the mechanical work) can be mathematically expressed
as follow:

W (P) =
∫

s+

∂c+

∂s
ds + ε

∫
s−

ds

Here, s+ represents the path portions with positive slopes,
ie. where the cost variations are strictly positive and s− the
portions where the variations are negative or null. ε is taken
very low compared to the cost values, in order to primarily
favor paths with a mechanical work as low as possible
and then take among them the paths with decreasing costs
portions as short as possible. Then, for a path representation
discretized in n + 1 configurations linked by n edges, we
have:

W (P) =
∑
i∈i+

(c(qi)− c(qi−1)) di + ε
∑
i∈i−

di

where i ∈ i+ when c(qi)-c(qi−1) > 0, i ∈ i− otherwise
and di is the distance between qi−1 and qi.

Figure 2 shows minimal work paths obtained for several
queries on a 2D costmap example. For such low dimen-
sional problems, these paths were simply computed using
a standard A∗ search performed on a grid discretizing the 2
dimensional landscape. The shapes of the optimal paths are
“visually” good, in the sense that they follow as much as
possible the low cost regions of the space.

However such grid based planner remains limited to low
dimensional problems. The next section introduces the T-
RRT algorithm for exploring possibly high dimensional free-
space while biasing the search toward low cost regions such



that solution paths remain close to minimal work paths. More
generally, the method can also be applied to problems with
“binary” obstacles for computing low cost paths according
to a given cost function defined over the configuration space
(see results provided Section V).

IV. TRANSITION-BASED RRT

A. General Approach

The main idea of the Transition-based RRT algorithm
(T-RRT) is to take advantage of the performance of two
methods. First, the exploration strength of RRT-like algo-
rithms resulting from their exploration bias toward large
Voronoi regions of the space. Second, the efficiency of
stochastic optimization methods developed for computing
global minima in complex spaces, and that use transition
tests to accept or reject potential states.

Algorithm 1 shows the pseudo-code of the T-RRT plan-
ner. Similarly to the Extend version of the classical RRT
algorithm [15], a configuration qrand is randomly sampled
yielding both to the nearest tree node qnear to be extended
and to the expansion direction performed from qnear toward
qrand, with a fixed increment step δ.

The increment δ is chosen small enough to approximate
well the cost variation between qnear and qnew, meaning
that linear interpolation does not miss cost picks between
the two configurations. Note that in the presence of “binary”
obstacles, this stage also integrates some collision detection
that rejects the colliding expansion nodes.

Algorithm 1: Transition-based RRT

input : the configuration space CS;
the cost function c : CS → R+

∗ ;
the root qinit and the goal qgoal;

output : the tree T ;
begin
T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

qrand ← SampleConf(CS) ;
qnear ← BestNeighbor(qrand, T );
if not Extend(T , qrand, qnear, qnew) Continue;
if TransitionTest(c(qnear), c(qnew), dnear−new)
and MinExpandControl(T ,qnear ,qrand) then

AddNewNode(T ,qnew);
AddNewEdge(T ,qnear , qnew);

end

While this first stage ensures the bias toward unexplored
free regions of the space, the goal of the second stage
is to filter irrelevant configurations regarding the search
of low cost paths before inserting qnew in the tree. As
explained in section IV-B, such filtering is performed by
the TransitionTest function based on the Metropolis
criterion commonly used in stochastic optimization methods.

Additionally, we propose an original way to automat-
ically control the filtering power strength of this test
in order to ensure the growth of the tree. Finally, the

MinExpandControl function forces the planner to main-
tain a minimal exploration rate and thus avoid possible block-
ing situations during the search. The following subsections
details the TransitionTest and MinExpandControl
functions.

B. Transition Test
The TransitionTest function is presented on Algorithm 2.

First, configurations whose cost is higher than the maximal
threshold cost cmax are filtered. We then define a probability
of acceptance of a new configuration by comparing its
cost cj relatively to the cost ci of its parent configuration.
This transition test is based on the Metropolis criterion.
The transition probability pij (referred as the Bolzmann
probability when applied to statistical physics or molecular
modeling) is defined as follow:

pij =

{
exp(−∆c∗ij

K∗T ) if ∆c∗ij > 0
1 otherwise.

with:
• ∆c∗ij = cj−ci

dij
, the slope of the cost, ie. the cost variation

divided by the distances between the configurations.
Thus, downhill transitions are automatically accepted
whereas for uphill transitions, those with the steepest
slopes have the lowest chances to be accepted.

• K is a constant value used to normalize the cost
variations, simply determined by the average cost of
query configurations K = cinit+cgoal

2 .
• T is a “temperature” parameter that controls the diffi-

culty level of transition tests.
1) Temperature Parameter: T is an important parameter

of the algorithm since low temperatures limit the expansion
to low positive slopes. On the contrary, higher temperatures
permit expansion on higher slopes. Among the various
applications of the Metropolis criterion, the temperature can
be kept constant (eg. Monte Carlo search) or decreased
gradually as the search progresses (eg. simulated annealing).

2) Adaptive Tuning: The TransitionTest function performs
an adaptive tuning of the temperature during the search
process (second stage of Algorithm 2). At the initialization
of the algorithm, T is first set to a very low value (eg.
10−6) in order to only authorize very low positive slopes
(and negative ones). Then, during the exploration, the number
nFail of consecutive times the Metropolis criterion discards
a configuration is memorized and used for temperature
tuning. When the T-RRT search reaches a maximal number
of rejections nFailmax, then the temperature is multiplied
by a given factor α. On the contrary, each time the tree
successes to climb a slope, the temperature is divided by
the same factor α. Proceeding in this way, the temperature
automatically adapts itself such that in average a new node
climbing a slope is inserted every nFailmax times. For all
our experiments, we have taken α = 2 and nFailmax = 100.

C. Minimal Expansion Control
The adaptive temperature tuning introduced above for

the transition tests ensures a given rate of slope climbing



Algorithm 2: TransitionTest(ci, cj ,dij)

begin
if cj > cmax then return False;
if cj < ci then return True;
p = exp(

−(cj−ci)/dij

K∗T
);

if Rand(0, 1) < p then
T = T/α;
nFail = 0;
return True;

else
if nFail > nFailmax then

T = T ∗ α;
nFail = 0;

else
nFail = nFail + 1;

return False;

end

successes. However in some cases, a possible side effect
can be a too slow expansion of the tree versus an excessive
refinement of explored regions. We further discuss below this
issue and explain how the MinExpandControl function
overcomes this problem.

Fig. 3. Frontier nodes (white regions) have a Voronoi region bounded
by the space limits contrarily to non frontier nodes with a Voronoi region
bounded by the Voronoi region of other nodes (brown/gray regions) . The
distinction of these 2 types of nodes is specially useful in the case of cost
spaces.

1) Exploration versus Refinement: The behavior of the
RRT expansion can be explained by distinguishing two
types of nodes [16]: frontier nodes (with a Voronoi region
bounded by the space limits) and non frontier nodes (with
Voronoi region entirely bounded by the Voronoi region of
the other nodes). Whereas the extension of a frontier node
tends to explore new regions of the space, the extension
of non frontier nodes only leads to the refinement of the
existing tree (see Figure 3). In the case of the T-RRT
method, it happens that whereas the temperature needs
to grow in order to develop frontier nodes and make the
tree explore new regions, it is stabilized by the insertion
of non frontier nodes refining the tree in easier regions
of the space. The problem of unbalanced refinements and
explorations modes was already addressed in [16], [17]
for standard RRTs. However the problem with T-RRT is
different since the insertion of refinement nodes directly

impacts on the temperature and thus on the probability to
create new exploration nodes. Figure 4 illustrates this issue
with an example of tree (left) whose expansion has been
stopped by the too frequent insertion of non frontier nodes.
It also shows the solution to the problem obtained using the
minimal expansion control that is detailed below (right).

Fig. 4. Impact of the minimal expansion control on the T-RRT algorithm.
Without control (left), the insertion of refinement nodes tends to slow down
the exploration by decreasing the temperature. By performing this control,
the planner is forced to keep exploring new regions of the space.

2) Minimal Exploration Rate: The proposed solution is to
force the planner to keep exploring new regions of the space
by controlling the ratio between exploration and refinement
steps. It is important to note that non frontier nodes have a
Voronoi region usually much smaller than the one of frontier
nodes (bounded by the Voronoi regions of other nodes).
Based on this property, extension steps can be estimated as
refinements or expansions in function of the distance between
qnear and qrand (the rationale is that a small distance
corresponds to configurations having a higher probability to
be non frontier nodes). In practice, qnew is considered as
participating to the tree expansion if this distance is higher
than the expansion step δ. On the contrary, qnew is supposed
to participate to the tree refinement when the distance
is lower than δ. The control of minimal exploration rate
is performed by the MinExpandControl function that
rejects configurations accepted by the transition-based test
if they make the ratio between exploration and refinement
mode lower than a given minimal value (set to 1 in our
implementation).

V. EXPERIMENTAL RESULTS

The basic Extend-RRT algorithm and its T-RRT variant
have been implemented into the path planning software
Move3D [18]. The experiments reported below were
performed on a 1GHz AMD Opteron 148 processor. All
performance results summarized in the tables correspond to
average values computed over 10 runs.

The first set of experiments evaluates T-RRT in the case of
a 2-dimensional cost space (Figure 5). In this example, the
solution paths have to get through a saddle point to link the
query configurations located at two opposite corners of the
environment. The figure shows snapshots of the exploration
tree during the search process and the solution path found



TABLE I
2D COST SPACE, COMPARATIVE RESULTS FOR RRT, T-RRT (nFailmax

= 100, 10) AND THE OPTIMAL PATH P∗ .

length cmin cmax cave W

RRT 148 8 36 21 32.7
T-RRT 214 8 23 17 19.5
T-RRT10 182 8 25 18 21.9
P∗ 178 10 23 17 13.3

(bottom-left) which is close to the optimal one (bottom-
right). Path qualities using T-RRT are compared in Table
I to those using a basic RRT algorithm and to the optimal
path P ∗ computed with an A∗ search within a 128 × 128
grid discretizing the space.

Fig. 5. Expansion process of the Transition-based RRT finding a low cost
solution path (bottom-left), close to the optimal one (bottom-right) computed
from a space discretization.

Solution paths for the classic RRT algorithm (almost
straight line paths) are 2.5 times more costly than the
optimal solution path (32.7 vs. 13.3). In comparison T-RRT
path costs are only 45% higher than the optimal one. Most
importantly, the overall shape of solution paths is very close
to the optimal one and follows the same low cost regions.
Therefore, a simple post processing (local optimization)
would certainly be sufficient to tend toward the optimal
solution path. Concerning the influence of the nFailmax

parameter, note that a smaller value (nFailmax = 10
instead of 100) yields to very similar solution paths with
slightly higher costs, but balanced by a large improvement
of computing time performance (1.4s vs. 28.6s).

Next experiments illustrate the generality of the algorithm,
which is not limited to 2D costmap planning, but also
able to integrate cost functions for planning motions of
more complex robot systems. First example involves a 6-dof
manipulator arm carrying a rod in 3D environment cluttered
with obstacles (see Figure 6). The goal of the planner is

to extract the rod from a hole, keeping it as far as possible
from the obstacles. Thus the cost function considered for this
case corresponds to the inverse of the distance of the rod to
the obstacles. Results are presented on Table II. The cost of
solution paths found with T-RRT are considerably lower than
the ones found with RRT (with respective computing times
of 19.2s and 3.3s). This difference of quality is much higher
here since there is no limitation on the cost function (contact
configurations have an infinite cost) contrarily to the costmap
example of Figure 5. The last row of Table II illustrates
an interesting feature of T-RRT. The standard deviation σW

computed over the solution path costs shows the regularity of
the paths costs obtained with the T-RRT method. Contrarily
to the erratic motions of the classical RRT, T-RRT paths
tends to keep the rod horizontal during its extraction from
the hole in order to stay at a fixed maximal distance from
the obstacles.

Fig. 6. 6-dof manipulator arm extracting a rod from a hole thanks to the
T-RRT planner. The solution path tends to keep the rod horizontal during
the motion in order to stay as far as possible from the obstacles.

TABLE II
6-DOF MANIPULATOR ARM WITH BINARY OBSTACLES, COMPARATIVE

RESULTS FOR RRT AND T-RRT.

length cmin cmax cave W σW

RRT 45 0.1 17150 88 3279 3151
T-RRT 49 0.1 40.4 1 15.2 5.22

Last experiment was performed on the molecular model
shown Figure 7. The task is to compute the pathway ex-
tracting the ligand (small molecule in red/dark) from the
active site located inside a protein. This problem can be
seen as a mechanical disassembly path planning problem
for the free-flying ligand [20]. Energetic constraints are
translated into geometric ones by considering a steric model
of the molecules and applying a collision detection [19] as a
geometric filter that rejects conformations with prohibitively
high van der Waals (VdW) energy. Like for the manipulator
example, the cost function considered in this case is defined
as the inverse of distance between the ligand and the protein.
The interest of this molecular model is to provide a simple
way to quantify the quality of the solution path. Hence, a
dilatation of the ligand free space can be simply obtained by
shrinking the atoms radii. The results reported in Table III



TABLE III
LIGAND-PROTEIN EXAMPLE WITH AN INITIAL VDW RATIO OF 25%,

COMPARATIVE RESULTS BETWEEN RRT AND T-RRT.

length cmin cmax cave W V dWmax

RRT 59 0.1 2236 14 471 0.25
T-RRT 70 0.1 1.0 0.3 0.3 0.66

were obtained by applying both RRT and T-RRT algorithms
on the shrunk model shown in the right image in Figure 7
(25% of VdW radii). T-RRT solution path has a much lower
cost compared to the one computed by RRT. The higher
clearance of the T-RRT solution is also quantified by the
maximal VdW ratio indicated in the last row of the table.
This maximal ratio was simply obtained by testing solution
paths with VdW radii increasingly grown until a collision
was detected between the ligand and the protein. While no
growing was possible for the RRT solution, the T-RRT path
(computed with a 25% ratio) remains valid up to 66%, which
is relatively close to the maximal value allowing the ligand
to exit (80%). This high clearance of the T-RRT computed
path shows its good quality with respect to the distance-based
cost considered for this example.

Fig. 7. Two representations of the same ligand protein problem, with
different van der Waals radii: maximal radius (left) and shrunk radius (right).

VI. CONCLUSIONS AND FUTURE WORKS

We have presented the Transition-based RRT algorithm (T-
RRT) that takes advantage of both the exploration strength
of the RRT and the efficiency of stochastic optimization
methods. It integrates a self tuning of the temperature
parameter to adapt the difficulty of the transition tests in
function of failures and successes during the search process.
An explicit definition of the optimality criterion allows us
to compare solution path with the optimal ones and helps
us to quantify the experimental results. The algorithm is
general enough to be applied to high-dimensional spaces also
constrained by obstacles or to classical costmaps in rough
terrain applications.

The first simulation results reported in the paper show
the effectiveness of the method for solving both classes of

problems. However there remain several possible improve-
ments, in particular to consider higher dimensional problems
or to increase the optimality with some postprocessing of the
T-RRT computed path. We also plan to investigate possible
applications of the technique: the integration of human-robot
interaction constraints into computed motions and also the
exploration of energy landscapes in computational biology
problems.
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