
HAL Id: hal-01986353
https://laas.hal.science/hal-01986353

Submitted on 18 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A sampling-based path planner for dual-arm
manipulation

Mokthar Gharbi, Juan Cortés, Thierry Simeon

To cite this version:
Mokthar Gharbi, Juan Cortés, Thierry Simeon. A sampling-based path planner for dual-arm manip-
ulation. 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM),
Jul 2008, Xian, China. pp.383-388. �hal-01986353�

https://laas.hal.science/hal-01986353
https://hal.archives-ouvertes.fr


A sampling-based path planner for dual-arm manipulation

M. Gharbi, J. Cortés, T. Siméon

Abstract—This paper presents a method to compute
collision-free coordinated manipulation paths for multi-arm
robot systems. The method extends previous work [8] by
incorporating an explicit treatment of singular configurations,
which permit to find solution paths requiring the robot recon-
figuration. Such reconfiguration motions are neglected in most
of related work. The performance of the planner is analyzed
through experiments with academic examples. The generality
of the approach is demonstrated by its application to a model
of the complex DLR’s Justin robot.

I. INTRODUCTION

Multi-arm robot systems have been developed in diverse

fields such as industrial manufacturing [28], medical robotics

[1], and humanoid robotics [18]. Such systems must often

perform coordinated manipulation tasks, in which several

arms move simultaneously holding an object. Problems for

coordinated multi-arm manipulation have mostly been for-

mulated from the point of view of control [14], [20], [9],

[6], while the path planning issue has been rarely addressed.

The difficulty for planning coordinated manipulation paths

comes from the motion constraints induced by the multiple

grasping. Indeed, a virtual closed-chain mechanism is formed

when several manipulators grasp the same movable object.

These kinematic loop-closure constraints have an important

effect on the topology of the space that has to be explored

for finding paths (see Section II). Generally, path planning

methods have to be extended for treating such constraints.

Few approaches to closed-chain path planning have been

proposed. Exact methods are able to provide a complete

solution (i.e. they find a solution path if one exists, and report

failure otherwise), but their applicability is either limited by

their computational complexity [21], [5], [2], or because they

are devised for particular classes of mechanisms [26], [11].

The resolution-complete method described in [19] presents

more general skills, but it is still limited in practice to low-

mobility closed-chain mechanism. Practical approaches have

been developed using sampling-based path planning algo-

rithms [15], [27], [10], [8], [24]. Sampling-based planners are

able to solve complex problems in high-dimensional spaces

with very low computational cost. The drawback of these

planners with respect to the aforementioned methods is that

they hold a weak completeness guarantee, namely proba-

bilistic completeness [16]. Nevertheless, such a weakness is

generally not a handicap in practice.

This paper builds on previous work described in [8].

It presents the extension to connect self-motion manifolds
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with sets of lower dimension corresponding to singular

configurations. This extension permits to solve coordinated

manipulation problems requiring the reconfiguration of one

or several robots. To the best of our knowledge, this is the

first time this reconfiguration issue is clearly addressed in a

general sampling-based path planning framework.

Let us consider the academic example illustrated in Fig-

ure I. The system involves 2 planar 3R manipulators holding

a movable object. Two path planning problems are rep-

resented in the figure. Problem A can be solved without

reconfiguring any of the robots. In problem B however,

the presence of the obstacle in the bottom left part of the

workspace makes both arms need to go from “elbow down”

to “elbow up” configuration.

The proposed approach (Section IV) is based on a decom-

position of the (virtual) closed-chain mechanism into active

and passive parts, which yields a particular parametrization

of the configuration space described in Section III. The

method can be applied to general multi-arm system. Nev-

ertheless, for ease of explanation, notation and examples are

limited to dual-arm systems.

Section V presents an empirical performance analysis

using the academic problems illustrated in Figure I. Then,

Section VI describes the application of the technique for

planning coordinated manipulation paths with a model of the

DLR’s Justin robot [18]. The results obtained for this system

show the scalability of the approach to complex mechanisms

in a three-dimensional workspace.

Fig. 1. Academic example of path planning problems for coordinated
manipulation. The solution to problem B requires the reconfiguration (elbow
up/elbow down) of both manipulators.



II. PROBLEM FORMULATION

The path planning problem consists in finding a fea-

sible path between two given configurations of a mobile

system. Feasible paths have to satisfy intrinsic constraints

of the system (e.g. mechanical design constraints, kine-

matic constraints), as well as constraints that arise from

the environment (e.g. collision avoidance). Using the notion

of configuration space C [17], the problem is reduced to

explore the connectivity of the subset Cfeas of the feasible

configurations.

Coordinated manipulation requires to compute the motion

of several robots simultaneously holding an object. Such a

multiple grasping induces motion constraints that can be

modeled as kinematic loop-closure constraints (see details

in Section III). These constraints significantly increase the

difficulty of path planning, since they make Cfeas have a

complex topology. Indeed, configurations of a closed-chain

mechanism have to satisfy equations of the form f(q) = 0,
where q are the joint variables, and f is a system of non-

linear equations. Configurations satisfying loop-closure equa-

tions form several manifolds Mi, which can be connected

through sets of lower dimension Sk [3], [25]. The Mi are

called self-motion manifolds and the Sk are sets of singular

configurations. Figure 2 illustrates a fictive example with

three joint variables {θ1, θ2, θ3}. Let us consider a function

of the form f(θ1, θ2, θ3)=0, representing loop-closure con-

straints. This function maps to several surfaces embedded in

the joint-space Q. Such surfaces are the different self-motion

manifolds Mi. In this example, M1 and M2 intersect at a

singular set S. Qobst represent the obstacle regions in the

joint space.

Planning coordinated manipulation motions therefore re-

quires to find feasible collision-free paths that may lie

on different manifolds, whose connection needs to explore

lower-dimensional subsets of the configuration space.

Fig. 2. Illustration of the topology of the configuration space under
kinematic loop-closure constraints.

III. MODEL AND PARAMETRIZATION

A virtual closed-chain mechanism is formed when several

manipulators simultaneously hold an object. The grasps

of the movable object can be modeled either as a fixed

attachment (i.e. the object and the gripper form a rigid body)

or by a joint, if some degrees of freedom are allowed between

the gripper and the object. Hereafter, explanations will be

limited to the case of two manipulators holding an object

with firm grasps. Note however that the proposed approach

is general.

Figure 3 shows the model of two planar 3R manipulators

grasping an object. The composed system (together with the

ground link) can be considered as a single loop linkage. It

can also be modeled as a multi-loop linkage like a parallel

mechanism, with the movable object corresponding to the

platform and the manipulators to the legs of the mechanism.

In this work, we have chosen the latter option because

metrics for path planning are generally easier to device in

this case. The configuration q of the system is defined by

the location of the object and the configuration of each

manipulator: q = {qObj,qArm1,qArm2}. These parameters are

involved in the loop-closure equations, and therefore, the

values of some of them (the dependent parameters) depend

on the values of the others (the independent parameters). In

general, the number of independent parameters is 3 for planar

mechanisms and 6 for spatial mechanisms. Following the

nomenclature of related works [10], [8], we call active and

passive variables respectively the independent and dependent

parameters. The terms active and passive indicate their role

within the path planning approach described in next section.

Let us consider that the parameters defining the object

location qObj are active variables. Then, if the arms are non-

redundant manipulators, their joint variables are the passive

variables. If the arms are redundant mechanisms, a number

of joint variables corresponding to the degree of redundancy

are also considered to be active variables. In summary, active

and passive variables are defined as follows:

qa = {qObj, q
a
Arm1, q

a
Arm2} , qp = {qpArm1, q

p
Arm2}

Obtaining qp from qa requires solving two inverse kine-

matics (IK) problems, one for each arm, which we refer

to as IKArm1 and IKArm2. Since these IK problems involve

non-redundant mechanisms, they have a finite number of

solutions (for regular configurations). We assume that closed-

form solutions are available for these IK problems, and

that different solution classes (e.g. forward/backward, elbow

Arm1 Arm2

qObj

Fig. 3. Two planar 3R manipulators grasping an object. The composed
system forms a closed kinematic chain.



up/elbow down, flip/no flip) can be characterized. We refer

to each particular solution of IKArm1 and IKArm2 as q
p
Arm1,i

and q
p
Arm2,j respectively. We also assume that singular con-

figurations of the manipulators, permitting to change the IK

solution class, are known and can be characterized. We call

Si,i′ a singularity set between two IK solution classes i and

i′ of one of the arms.

IV. APPROACH

A. Overview

The method proposed in this paper for computing dual-arm

coordinated manipulation motions is based on the extension

of PRM-based planners to closed-chain mechanisms [10],

[8]. The main contribution with respect to previous work

concerns an explicit treatment of singular configurations,

which permit to find solution paths requiring the robot

reconfiguration.

The main idea of our approach is to divide the roadmap

construction into two stages. In the first one, “parallel”

roadmaps are constructed on different layers of Cfeas.

Considering the parametrization described in the preceding

section, each layer corresponds to a single combination of

IK solution classes of the two manipulators. The number of

layers depends on the maximum number of regular solutions

of the IK problems. If nArm1 and nArm2 are the maximum

number of IK solutions, then the number of layers is

nArm1 × nArm2. We call Gi,j the roadmap constructed on each

layer, with i = 1 . . . nArm1 and j = 1 . . . nArm2. The second

stage consists in connecting all those generated roadmaps

Gi,j through singular configurations. Note that these two

stages (layer construction and connection) can be interleaved.

They are described in Subsections IV-B and IV-C.

Once the multi-layer roadmap is constructed, path plan-

ning queries may involve searching for sub-paths on the

different layers in order to find solutions requiring the

Gi′,j′

Gi′,j

Gi,j

Si,i′

Sj,j′

C1

i′,j′ C2

i′,j′ C3

i′,j′

Ci′,j

Ci,j

Fig. 4. PRMs constructed on three layers of C corresponding to different
self-motion manifolds. These “parallel” roadmaps can be connected through
singular nodes (in dark gray), here represented on perpendicular planes.
The graph on the right side represents the connectivity of the connected
components on different layers through singular configurations.

reconfiguration of one or both manipulators. The process is

explained in Subsection IV-D.

Figure 4 illustrates the approach. It shows PRMs con-

structed on three layers. Two singularity sets involving the

reconfiguration of each arm are represented in form of

perpendicular planes crossing the layers. The graph on the

right side of the figure encodes the connection of connected

components on different layers through singular configura-

tions.

B. Constructing PRM layers

Following the principle described in [10], [8], the PRM

layers Gi,j are constructed acting on the active variables

qa, and solving IK problems for obtaining the corresponding

values of the passive variables qp. Details on the generation

of nodes and edges are given below.

1) Nodes: The active variables qa, which involve the

movable object and the redundant joints of each arm, are

sampled using the extension of the RLG algorithm described

in [7]. Instead of using uniform random sampling, this algo-

rithm performs an iterative process using simple but general

geometric operations that guide the sampling toward regions

with a high probability of finding solutions for the passive

variables qp when solving the IK problems. A configuration

can be obtained on each layer Gi,j by combining the values

of the active parameters an the several solutions to the IK

problems: qi,j = {qa,qpi,j}, with q
p
i,j = {qpArm1,i, q

p
Arm2,j}.

Two strategies are then possible to insert nodes in the

multi-layer roadmap. The first one is to systematically gener-

ate a node on each layer if the corresponding configurations

is collision-free. The other is to (randomly) select one layer

and to generate a node only on it. Results obtained with the

two strategies are discussed in Section V.

2) Edges: Connections are tested between neighbor nodes

on each layer using a local planner. This local planner is

limited to act on the active variables. If we assume that

the manipulators are not subject to differential constraints,

a straightforward linear interpolation can be used as local

planner. Given a small discretization step, the passive vari-

ables are computed for each intermediate configuration along

the local path by solving the two IK problems and selecting

the corresponding solutions {qpArm1,i, q
p
Arm2,j}.

Note that most of the heuristics for node insertion and

connection proposed in the PRM literature can be adopted

to improve the performance of the planner. For instance,

Visib-PRM [23] and PDR [13] can be considered in order to

generate compact roadmaps.

C. Connecting PRM layers

Moving between PRM layers implies changing the IK

solution class of (at least) one of the arms. Accordingly to

the parametrization introduced in Section II, such a recon-

figuration requires to traverse a singular configuration of the

manipulator. Our approach does not consider simultaneous

reconfigurations of both arms. Note however that this is



not a limitation for the (probabilistic) completeness of the

method1.

Next we explain how to generate nodes in a sub-manifold

involving singular configurations of one arm. Let us take

for example Si,i′ , which connects layers Gi,j and Gi′,j .

All the configurations in this set have a fixed value of

one or several joint variables of Arm1. We have assumed

this (these) value(s) to be known. Singular configurations

of Arm1 can therefore be generated by keeping such joint

value(s) constant and randomly sampling the other ones. The

location of the movable object qObj grasped by Arm1 can

be then obtained by direct kinematics. Once qObj has been

computed, qaArm2 (in the case of a redundant manipulator) is

sampled using the RLG algorithm [8], and q
p
Arm2 is obtained

by solving the corresponding IK problem. Collision-free con-

figurations sampled in Si,i′ are then connected to neighbor

nodes in layers Gi,j and Gi′,j . Note that the aforementioned

PRM heuristics for node insertion and connection can also

be applied to the singular nodes.

A graph is constructed to represent, at a higher-level,

the connectivity of the multi-layer roadmap. Nodes of this

connectivity graph correspond to connected components on

each layer, and edges are singular configurations connecting

these components (see Figure 4 for an illustration).

D. Solving path planning queries

The initial and final points for a path planning query

can be fully specified by configurations qinit and qgoal, or

they can be partially given by only specifying the active

variables qainit and qagoal. In the former case, qinit and qgoal are

added to the corresponding PRM layers. In the latter case,

the IK problems are solved to obtain the multiple possible

configurations q
p
init and q

p
goal, and the resulting nodes are

inserted on all the layers where they are collision-free. Local

paths are then computed to connect (the multiple) qinit and

qgoal to neighbor nodes on the corresponding layers.

If qinit and qgoal can be connected to nodes in the same

connected component on one PRM layer, the path planing

query can be solved without crossing singularities. Other-

wise, the high-level connectivity graph is explored (using

an A∗ algorithm) to find the shortest path between any pair

of connected components containing qinit and qgoal. Thus,

the resulting path involves the minimum number of arm

reconfigurations required to solve the query.

E. Implementation details

Let us briefly mention some details about the implemen-

tation of the planner applied for tests described in next

sections. The implemented planner applies the Visib-PRM

approach [23], which yields compact roadmaps (i.e. with

a small number of nodes). The planner interleaves PRM

layer construction and connection stages. At each iteration,

the stage type is randomly selected. A tuning parameter is

used to favor the probability of selecting one of the stages.

Tests have been made using a value of this parameter that

1Probabilistic completeness proofs are not provided in this paper.

makes the construction stage be selected with a probability of

80%. For each test, the roadmap construction is started from

scratch, and the two-stage construction process is iterated

until the solution to the path planning query is found.

V. RESULTS ON AN ACADEMIC EXAMPLE

This section presents an empirical performance analysis of

the proposed method on an academic example. The mobile

system, represented in Figure I, involves two 3R planar

manipulators simultaneously holding an object. In this case,

the manipulators are non-redundant. Therefore, the active

variables are those defining the object location: qa = qObj.

The maximum number of solutions to the IK problems

IKArm1 and IKArm2 is 2. Thus, the number of PRM layers

will be 4. For both arms, the 2 IK solution classes meet at

a singularity set characterized by a joint value of the second

rotation (the elbow) equal to zero.

The main goal of the tests was to compare the performance

of the proposed algorithm when the path planning problem

requires the manipulator(s) reconfiguration and when it does

not. For this, the planner was applied to the two problems

illustrated in Figure I. For problem A, which does not require

the reconfiguration of any manipulator, the solution path can

be found by constructing a roadmap on a single layer (i.e.

only using one IK solution class of each arm). Numerical

results2 in the first row of Table I correspond to this test.

However, since the need of reconfiguring manipulators for

solving a path planning query is not known a priori, the

algorithm generally needs to explore all the layers. The

second row in the table shows results when the planner was

applied to the same example and simultaneously constructed

the 4 PRM layers. As we expected, the number of nodes and

the computing time are approximately multiplied by 4. The

solution of problem B requires the reconfiguration of both

manipulators (see Figure 5). Thus, a solution path cannot be

obtained by running a PRM algorithm on a single layer. The

fifth row in the table corresponds to the performance of the

planner for solving the problem by constructing the 4 PRM

layers in parallel. The number of nodes is very similar to

that in the previous case. Note however that, although the

problem seems to be more difficult, the computing time is

lower. The reason is that the presence of the obstacle in the

bottom left part of the workspace reduces the volume of the

2All numerical results in the paper have been averaged over 20 runs of
the planner. Computing time corresponds to an Intel Core2-Duo processor
at 2.13 GHz.

TABLE I

NUMERICAL RESULTS : ACADEMIC PROBLEMS

Problem Strategy nnodes T

A single layer 11 0.93 s

A parallel 42 4.28 s

A one-by-one 34 2.49 s

B single layer – –

B parallel 39 1.96 s

B one-by-one 35 2.17 s



Fig. 5. Solution to problem B. The images show three parts of the solution
path. The first part (left) corresponds to the sub-path between the initial
configuration and the first singularity, which permits the reconfiguration of
the left arm. The second one (middle) shows the sub-path to the second
singularity (reconfiguration of right arm). The third sub-path (right) reaches
the final configuration.

Cfeas, which, in this case, reduces the cost of computing

local paths. These results show that, in the worst case, the

computational cost increases linearly with the number of

PRM layers.

Tests were also ran to analyze the performance of two

strategies of the method: one simultaneously generating

nodes on all the layers for each sampled value of qa, and

the other generating only one node on one of the layers by

randomly choosing the IK solution classes {i, j}. The afore-
mentioned results correspond to the first strategy. The third

and sixth rows of Table I show results for the second strategy.

For problem A, numerical results show a better performance

of the one-by-one PRM layer construction strategy. However,

the number of nodes and the computing time obtained with

both strategies are very similar for problem B. The reason

of this different behavior is that, in the case of problem A,

all the layers do not need to be explored for finding the

solution path, whereas solving problem B requires to explore

a wide portion of the configuration space, on the 4 layers, to

find a path involving two reconfigurations. Finally, note that

results obtained with the one-by-one PRM layer construction

strategy for solving both problems are very similar. This

shows that the need of reconfiguring robots for solving a path

planning query does not affect the computational efficiency

of the method.

VI. APPLICATION TO THE DLR JUSTIN ROBOT

Justin [18] (see Figure VI) is a humanoid robot com-

posed of two 7 DoF DLR-Lightweight-Robot-III arms [12]

mounted on a 3 DoF torso. The robot also include four-

fingered DLRHand-II hands [4]. In the example of dual-

arm coordinated manipulation presented below, the joints of

the torso and the hands have been fixed. Thus, the active

variables for path planning are those defining the object

location and the value of the redundant joint of each arm.

Accordingly to the inverse geometric model provided by the

DLR, the redundant joint corresponds to the third rotation.

For a given value of this redundant joint, the maximum

number of IK solutions involving the other 6 rotations is 8.

Therefore, the number of PRM layers will be 64. There are

4 singularity sets permitting to switch between IK solution

classes of each arm. They are characterized by particular

values (0 or 90 degrees) of one or two joints.

Fig. 6. Dual-arm manipulation planning problem for Justin requiring two
reconfigurations. Singular configurations are represented in frames 2 and 4
of the solution path sequence.

In the path planning problem illustrated by Figure VI,

Justin has to move up a bar held by its two hands. The

two vertical obstacles hinder the redundant joint of the

manipulators play its role. Hence, the two arms need to go

through singularities to reach the goal configuration. The

small images on the right part of the figure show frames

of the solution path. Frames 2 and 4 correspond to the two

singularities enabling the reconfigurations.

Table II shows numerical results on the performance of the

planner for solving the query illustrated by Figure VI without

prior roadmap construction. These results show a similar

performance between the parallel and one-by-one PRM

layer construction strategies. However, the graph obtained

by the one-by-one strategy is lighter (in terms of number

of nodes) than the graph obtained from the parallel strategy.

TABLE II

NUMERICAL RESULTS : JUSTIN

Problem Strategy nnodes T

Justin parallel 1220 155 s

Justin one-by-one 844 139 s
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Fig. 7. Time for solving queries vs. time spent to construct the roadmap.

Nevertheless, when the goal is to construct a rich roadmap

for multiple queries, the parallel construction strategy is more

appropriate.

Figure VI shows the relationship between the roadmap

construction time and the time needed to solve queries. The

query time rapidly decreases when the size of the precom-

puted roadmap increases. Queries are solved instantaneously

after 4 minutes of roadmaps construction.

VII. CONCLUSION AND FUTURE WORK

We have presented a method for planning dual-arm co-

ordinated manipulation paths based on an extension of the

PRM algorithm to closed-chain mechanisms. The approach

is general, and can be directly applied to complex multi-arm

systems. Results obtained with a model the DLR’s Justin

robot show the computational efficiency of the method.

The principle could be applied to other types of path

planning algorithms. We are currently investigating the ex-

tension of RRT-like algorithms for rapidly solving single path

planning queries. Other future work concerns the integration

of the proposed method within a global approach to manipu-

lation task planning [15], [22], including transit motions for

regrasping operations.
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[23] T. Siméon, J.-P. Laumond., and C. Nissoux, “Visibility based proba-

bilistic roadmaps for motion planning,” Advanced Robotics Journal,
vol. 14, no. 6, 2000.

[24] X. Tang, S. L. Thomas, and N. M. Amato, “Planning with reachable
distances: Fast enforcement of closure constraints,” in IEEE Int. Conf.

Robot. & Autom., 2007, pp. 2694–2699.
[25] F. Thomas, “The self-motion manifold of the n-bar mechanism,”

Angeles J. et al. (Eds.) Computational Kinematics, pp. 95–107, 1993.
[26] J. Trinkle and R. Milgram, “Complete path planning for closed kine-

matic chains with spherical joints,” International Journal of Robotics

Research, vol. 21(9), pp. 773–789, 2002.
[27] J. Yakey, S. LaValle, and L. Kavraki, “Randomized path planning

for linkages with closed kinematic chains,” IEEE Transactions on

Robotics and Automation, vol. 17(6), pp. 951–958, 2001.
[28] Y. Yamada, S. Nagamatsu, and Y. Sato, “Development of multi-arm

robots for automobile assembly,” in IEEE Int. Conf. Robot. & Autom.,
vol. 3, May 1995, pp. 2224–2229.


