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Abstract— Sampling based planners have become increasingly
efficient in solving the problems of classical motion planning
and its applications. In particular, techniques based on the
Rapidly-exploring Random Trees (RRTs) have generated highly
successful single-query planners. Recently, a variant of this
planner called dynamic-domain RRT was introduced in [28]. It
relies on a new sampling scheme that improves the performance
of the RRT approach on many motion planning problems. One
of the drawbacks of this method is that it introduces a new
parameter that requires careful tuning.

In this paper we analyze the influence of this parameter
and propose a new variant of the dynamic-domain RRT,
which iteratively adapts the sampling domain for the Voronoi
region of each node during the search process. This allows
automatic tuning of the parameter and significantly increases
the robustness of the algorithm. The resulting variant of the
algorithm has been tested on several path planning problems.

Index Terms— Motion Planning, Voronoi Bias, RRTs.

I. I NTRODUCTION

Sampling-based approaches in motion planning have
solved many difficult problems in recent years. They gen-
erally can be divided into two sets of approaches: multiple-
query and single-query methods. The philosophy behind the
multiple-query methods is that substantial precomputational
time may be taken so that multiple queries for the same envi-
ronment can be answered quickly. The Probabilistic Roadmap
(PRM) planners [1], [4], [11], [16], [24] are examples of
such method. There are many extensions and adaptations of
PRM framework to different instances of motion planning
problems, such as solving problems with narrow corridors
[9], [12], planning for closed chains [6], [10], [27], multiple
robots [26], and nonholonomic robots [23].

Multiple-query methods may take considerable precom-
putational time, thus different approaches were developed
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Fig. 1. For the RRT algorithm, the Voronoi region of the frontier nodes
is growing together with the size of the configuration space. Therefore,
depending on the boundaries of the space, the bias toward unexplored regions
can be small (a), strong (b) or biased toward only some of the parts of the
space (c and d).

for solving single-query problems [3], [13], [19], [21], [22].
In particular, techniques based on the Rapidly-exploring
Random Trees (RRTs) have been highly successful in many
applications of motion planning [19], [20], [20]. They have
been used to handle complicated geometries [5], [7], manip-
ulation problems and motions of closed articulated chains
[6], [14], [15], kinodynamic and nonholonomic planning [8],
[17], [18], [20]. Even though RRTs work well on many
problems, there are cases when they perform poorly. This
happens when expensive operations are executed in each
iteration of the RRT planner, while a little progress is done
in expansion of the tree.

Recently, a new planner called dynamic-domain RRT has



been developed [28], that significantly outperforms other
existing RRT-based planners on many motion planning prob-
lems. The sampling scheme of the planner takes into account
the obstacles of the configuration space into its Voronoi bias.
This helps to significantly reduce the number of iterations
needed in order to find a solution path. As a result, problems
with complicated geometries can be solved by orders of
magnitude faster.

Originally, dynamic-domain RRTs were proposed to have
an additional parameter, which corresponds to the size of the
sampling domain. The performance of the algorithm relies
on careful tuning of this parameter for each particular motion
planning problem, which makes the method more difficult to
use comparing to the original RRTs. In this paper we propose
an improved version of the dynamic-domain RRT which
automatically tunes the input parameter therefore yielding a
more robust performance. We evaluate the proposed method
on various classical motion planning problems.

In the next section we review the basic RRT method. In
Section III we consider the original dynamic-domain RRTs.
We investigate the influence of the radius parameter of the
dynamic domain on the exploration properties of the resulting
trees in section IV. The method for automatic tuning of the
parameter is introduced in Section V and the experimental
results for it in Section VI.

II. T HE RRT FRAMEWORK

A. General approach

RRTs were originally introduced in [19]. Starting at a
given initial configuration, RRTs incrementally grow a tree
to explore the configuration space and find a path connecting
the initial and a goal configurations. The method is based on
a simple heuristic: at each iteration a new configuration is
sampled at random and the expansion from the nearest node
in the tree toward this sample is attempted. If the expansion
succeeds, a new node is added to the tree.

Several variations of this planner exist which exploit
the same exploration properties. In the basic RRT-Extend
algorithm, at each iteration a single expansion step of fixed
distance is performed. In a more greedy variant, RRT-Connect
[20], the expansion step is iterated while keeping feasibility
constraints (e.g. no collision exists). Bidirectional versions of
RRTs also exist (bi-RRTs), which alternate execution of the
basic algorithm for two trees growing from the initial and
the goal configurations, and put some additional bounds on
the sizes of each of the trees (bidirectional balanced RRTs).

RRTs exploration is determined by the Voronoi diagram
of the nodes in the tree. The probability that a node will be
chosen for an expansion is proportional to the volume of its
Voronoi region. Therefore, the RRTs tend to rapidly grow in
the unexplored regions of the configuration space. Note, that

Fig. 2. For a set of points inside a bug trap different sampling domains
are shown: (a) regular RRTs sampling domain, (b) visible Voronoi region,
(c) dynamic domain.

this intrinsic property of the algorithm does not require an
explicit computation of the Voronoi diagram.

B. Dependence on the configuration space boundaries

Consider a tree developed by an RRT-based planner. Nodes
for which their Voronoi regions grow together with the size
of the configuration space (all gray/brown regions in Figure
1) are calledfrontier nodes. In classic RRT planners the
sampling domain is defined by the boundaries of the config-
uration space. Since the behavior of the planner depends on
the Voronoi regions of the frontier nodes, it also depends on
the particular setting of these boundaries. If these boundaries
are chosen unsuitably to a given motion planning problem
the efficiency of the planner can be dramatically affected.

Classically, at the beginning of the expansion, when the
volume of the configuration space is significantly bigger than
the area covered by the tree, frontier nodes provide especially
strong bias toward unexplored portions of the configuration
space. Often this helps the tree to rapidly grow. However,
this may cause a slow-down in the performance when a
frontier node is also aboundarynode, i.e. when it lies in
some proximity to the obstacles. Such nodes have a high
probability of being chosen for expansion in the direction of
the obstacles, but most of the time the expansion fails.

This problem is illustrated by the example in Figure 1.
The task is to move the robot outside of a bug trap obstacle.
Because of the narrow passage, this problem can be chal-
lenging for any motion planner. For classic RRT algorithm
the difficulty also comes from the fact that frontier nodes
quickly become boundary nodes. Thus, the performance of
the planner highly depends on how the boundaries of the en-
vironment have been set. In Figure 1 (a), the boundaries of the
environment are close to the coverage of the tree. Therefore,
it gives quite a good chance to refine the existing tree inside
the explored region and thus to solve the problem. In (b) the
sampling domain is much bigger than the size of the tree. In
this case it will lead to many useless attempts of expansion
of the frontier nodes toward the obstacles. Consecutively, it



will decrease the performances of the planner.
Examples (c) and (d) illustrate another situation leading to

an arbitrary bias toward only some of the directions of the
configuration space. To overcome this drawback, the DD-
RRT algorithm proposes a way to control the Voronoi bias
of the nodes in the tree and breaks this implicit dependence
on the boundaries of the environment.

III. D YNAMIC -DOMAIN RRT PATH PLANNER

The sampling strategy proposed in [28] is based on the
notion ofvisible Voronoi region. For a given node of the tree,
such region is defined as the intersection of its Voronoi region
with the associated visibility domain, i.e. the set of configu-
rations that can be connected to the node by a collision-free
local path. While a uniform distribution over such visible
Voronoi region (Figure 2 b) would ideally circumvent the
bias issue of classical RRTs (Figure 2 a), its computation is
however a very hard problem. Another distribution, which
retains the good properties of the visibility distribution but is
more efficient to compute, is thus proposed (Figure 2 c).

The visible Voronoi regionof a boundary node v, is
approximated by itsboundary domainwhich is defined as the
intersection of the Voronoi region ofv and ann-dimensional
sphere of radiusR centered atv. Then thedynamic domain
of radiusR for a set of points is the boundary domains of
the boundary points combined with the Voronoi regions of
all other points. The uniform distribution over this domain is
called thedynamic domain distribution.

In order to obtain the dynamic domain distribution, a
distribution from the configuration space is first generated and
then restricted to the dynamic domain. Given that the original
distribution was uniform, the obtained restriction is also
uniform. Computing this dynamic distribution corresponds
to the lines 3-6 in the algorithm description of Figure 3. The
radius of each point is set to the valueR if it is a boundary
point and to the value∞ otherwise. Note, that for this step
to be efficient the random configurations are chosen from the
area closely fitting the dynamic domain. Practically, it means
that we sample inside the smallest bounding box containing
all the boundary domains.

The pseudocode of the DD-RRT algorithm is shown on
Figure 3. The algorithm updates the information about the
boundary points on the fly. At the beginning of the explo-
ration of the tree, all the points are considered to be non-
boundary. As soon as the expansion of a given node fails, it
becomes a boundary node. This corresponds to the lines 11-
12 in the code. The radius field of this node is then updated to
R. For the following iterations, the samples from the Voronoi
region of this node are restricted to its boundary domain.

Let’s remark that the tree tends to produce more nodes
in the free space, since the bias of the boundary nodes is

reduced. Moreover, many samples may get rejected before the
one belonging to the dynamic domain is found. Therefore an
efficient nearest neighbor method [2] adapted to the topology
of the configuration space should be used.

BUILD DD RRT(qinit)
1 T .init(qinit);
2 for k = 1 to K do
3 repeat
4 qrand ← RANDOM CONFIG();
5 qnear ← NEAR NEIGH(qrand, T , dnear);
6 until (dnear < qnear.radius)
7 if qnew ← CONNECT(T , qrand, qnear)
8 qnew.radius =∞;
9 T .addvertex(qnew);
10 T .addedge(qnear, qnew);
11 else
12 qnear.radius =R;
13 ReturnT ;

Fig. 3. The dynamic-domain RRT algorithm with a fixed radius

IV. I NFLUENCE OF THEDYNAMIC -DOMAIN RADIUS

We can distinguish for the RRT based planners two
main expansion modes mixed together. The first one is
an exploration mode that steers the expansion of the tree
toward unexplored regions of the configuration space. This
exploration mode is performed through the expansion of the
frontier nodes. The second one corresponds to a refinement
mode resulting from the addition of new nodes in regions
already covered by the tree.

As noted in [28], the value of the dynamic domain radius
R should be carefully chosen since it controls the balance
between these two expansion modes. The bigger the radius,
the stronger the exploration, which also causes the detriment
of the tree refinement.

Fig. 4. 3 different radius values for the dynamic domain distribution. In
(a), small radius increases the refinement mode of the planner whereas in
(b), an important radius provides a bigger weight for the exploration. In (c),
refinement and exploration are balanced.



Fig. 5. Visible Voronoi region and associated boundary domain in two
situations. In (a and b) the boundary node is only locally close to the obstacle.
In (c and d) the boundary node is surrounded by obstacles in almost all the
directions.

For a given problem, the balance between these two
behaviors can be difficult to find. Too much refinement will
add potentially useless nodes at the price of slowing down
the planner’s performance. On the contrary, a strong bias to
exploration can lead to useless attempt to extend frontier
nodes that are also boundary nodes, whereas the insertion
of a new node in the already explored regions is necessary
to discover a new passage and further expand the tree.

In practice, it means that a too small or too important
radius decreases the performance of the planner (see Figure
4). This behavior has been experimentally verified on differ-
ent examples (see graphs of Figures 7 8 and 9). Generally,
we can say that the performance remains close to the best
one when the value of the radius is set between half and
twice the “optimal” radius value. Outside these bounds, the
performance rapidly decreases and the further the radius is
from the “optimal” one, the worse the performance is.

In the initial DD-RRT algorithm, the radius of each point
can only have two values : the valueR if it is a boundary
point and∞ otherwise. There is no transition between
these two values. As we previously explained, we want
the boundary domain to fit as much as possible the visible
Voronoi region of the point but this domain is very different
depending on whether it is strongly surrounded by obstacles
or not (see Figure 5). Nevertheless, as long as the node is
defined as a boundary node, its bounding domain is always
defined by the same given radius.

In the following, we propose to adapt the radius of each of
the nodes independently during the search process. This adap-
tation has two main advantages. First it helps to automatically

balance the weight allocated to exploration and refinement.
Secondly it allows to differentiate locally the behavior of the
planner and thus better adapt it to the shape of the free space.

V. A DAPTIVE TUNING OF THE SAMPLING DOMAIN

BUILD ADAPTIVE DD RRT(qinit)
1 T .init(qinit);
2 for k = 1 to K do
3 repeat
4 qrand ← RANDOM CONFIG();
5 qnear ← NEAR NEIGH(qrand, T , dnear);
6 until (dnear < qnear.radius)
7 if qnew ← CONNECT(T , qrand, qnear)
8 qnew.radius =∞;
9 if qnear.radius 6= ∞;
10 qnear.radius =(1 + α)× qnear.radius;
11 T .addvertex(qnew);
12 T .addedge(qnear, qnew);
13 else
14 if qnear.radius =∞
15 qnear.radius =R;
16 else
17 qnear.radius =(1− α)× qnear.radius;
18 ReturnT ;

Fig. 6. The dynamic-domain RRT algorithm with an adaptive radius.

The example of Figure 5 illustrates two kinds of situations
for a boundary node. In the first one (a and b), despite
the proximity to the obstacle, the visible Voronoi region of
the node remains a large region (a) and would be better
approximated by a boundary domain with a big radius value
(b). In the second case (c and d) the node is strongly
surrounded by obstacles and thus its visible Voronoi region
is small (c). A boundary domain with a small radius value
(d) is better suited for this case.

This observation means that the information gained during
the various attempts to extend a node can help to have a better
evaluation of the visible Voronoi domain surrounding the
node. Each time the expansion of a given node fails increases
the probability of the node to be strongly surrounded by
obstacles. Each time it successes, this probability decreases.
Consequently, we propose to adapt the boundary domain of
a given node (i.e. its associated radius) as a function of the
number of expansion attempts and failures from this node.

The pseudocode representing the DD-RRT algorithm in-
cluding the adaptive radius modification is shown on Figure
6. As soon as the expansion from one of the nodes fails, the
node becomes a boundary node. Its radius is then initialized
to a given value. Then, each time the node is chosen for



expansion, its associated radius is modified depending on the
success or the failure of the expansion attempt. If the attempt
succeeds and then leads to the creation of a new node in the
tree the radius value is increased by a given percentageα
(line 10 of the algorithm). On the contrary, if the expansion
fails the radius value is decreased by the same ratio (line 17
of the algorithm).

To keep the probabilistic completeness of the algorithm we
always ensure the possibility for a node to be extended. To
do so, we put a lower bound on the possible radius values
of the nodes (not shown in the algorithm of Figure 6). This
bound is a multiple of the interpolation step used to check
the collisions when we attempt to expand a node.

A last point is to define a value forα. Experimentally, we
have noticed that the value of this parameter is not at all as
critic as the radius parameter was in the initial version of
DD-RRT. A small value forα (usually a few percents) is
sufficient to increase the robustness of the algorithm and is
used in the experiments presented in the next section.

Adaptive radius RRT
K 5 10 20 100 200

time (s) 14 12 14 28 38 719
no. nodes 6 263 4 992 5 134 5 929 4 909 6 929
CD calls 47 440 38 711 40 869 51 300 44 832 1 627 974

Fixed radius
K 5 10 20 100 200

time (s) 17 15 13 28 66
no. nodes 7 522 5 868 4 665 4 638 5 136
CD calls 56 900 45 596 38 229 59 384 115 214

Fig. 7. Results on a bug trap environment. The robot is a 2dof cylinder
shown in the bottom left inside the bug trap.

VI. EXPERIMENTAL RESULTS

The algorithms were implemented in C with the software
platform Move3D developed at LAAS [25]. The experiments
were performed on a 333 MHz Sunblade 100 running SunOs
5.9 and compiled under gcc 3.3. For each example the perfor-
mances for the mono-directional versions of three algorithms,
the classic RRT, DD-RRT with fixed radius and our new
version of DD-RRT with an adaptive radius for each node,
are compared. The initial radius valuesR are defined as a
multiple of the interpolation stepε, R = Kε. Graphs of

Figures 7, 8 and 9 show the evolution of the performance
(in term of collision detection calls) as a function of thisK
parameter. Tables indicate for each experiment and each value
of K the running times, the number of nodes in the solution
trees and the number of collision detection (CD) calls during
the construction process. All the reported values are averaged
over 50 runs. We first show (Figure 7) the results obtained

Adaptive radius RRT
K 5 10 20 100 200

time (s) 34 24 21 75 80 240
no. nodes 1 029 1 009 718 943 844 1 314
CD calls 11 166 11 160 11 468 27 786 27 343 162 570

Fixed radius
K 5 10 20 100 200

time (s) 47 21 28 166 245
no. nodes 1 277 890 724 809 856
CD calls 12 408 10 871 18 107 117 903 174 714

Fig. 8. Results for a 6dof manipulator arm. the goal is to extract the
hoop-like object from the S-shaped bar.

for the 2 dimensional bug trap. Although it does not appear
in the figure, the size of the environment was chosen to be
much larger (150 times) than the volume occupied by the
bug trap.

For the original DD-RRT the optimal radius tuning is close
to R = 20ε. For this radius value the number of collision
detection calls is more than40 times larger than for the
classic RRT planner! When the value of the radius is smaller
than the optimal one, the performance decreases very quickly.
When it is larger, it decreases slower, almost linearly as a
function of the radius. With the adaptive tuning variant the
performance is also affected when the radius value is smaller
than the optimal, but quite stable when it is larger. We can see
that this robustness holds even for a radius 10 times bigger
than the initial one.

Note that for the bug trap example, all the boundary nodes
have almost the same kind of “contact” region with the
obstacles. It means that in average, the evolution of the radius
for all the boundary nodes is probably quite similar. Thus,
it may indicate that the good performance of the adaptive
method is not only due to the local differentiation of the
radius attributed to each node but comes also from a global
good balancing between exploration and refinement.



Adaptive radius RRT
K 5 10 20 100 200

time (s) 206 157 179 148 144 96
no. nodes 22 190 11 932 12 160 9 186 9 783 10 419
CD calls 125 233 88 781 103 512 94 139 102 609 159 392

Fixed radius
K 5 10 20 100 200

time (s) 124 58 68 93 95
no. nodes 22 685 9 604 9 503 10 524 10 678
CD calls 144 197 86 482 104 953 154 201 165 035

Fig. 9. Results for a maze environment. The C-shaped robot has to move
from one extremity of the maze to the other by combining rotations and
translations.

Next experiment involves a constrained motion planning
problem for a 6 dof manipulator arm carrying a hoop-
like object which has to be extracted from a S-shaped bar.
For a fixed radius, the efficiency of the DD-RRT algorithm
decreases very quickly when the gap between the radius set
and the optimal one increases. When this radius is 10 times
bigger than the optimal one (K = 100 instead of10), the
gain in terms of collision detection calls becomes less than 40
percents. For the adaptive DD-RRT this gain is still a factor
of 6. Also note, that with the adaptive tuning the performance
still decreases but very slightly from the initial setting.

Last example in Figure 9 is a 2 dimensional labyrinth
which combines 2d rotations and translations (it gives 3
degrees of freedom in the configuration space). The goal is to
move the C-shaped robot from one corner of the labyrinth to
another. The collision checks are very cheap in this problem.
It explains the fact that the average time to solve the problem
is bigger when we use the adaptive version of the algorithm.
Nevertheless, the number of collision detection calls is still
very controlled when we use this version.

As we can see, the performance robustness of the algo-
rithm relatively to the radius parameter is in general largely
increased in our adaptive version of the algorithm. The
gain is particularly significant when the initial value is an
overestimation of the optimal value compared to an under
estimation. It means that with its low sensitivity to the
parameter the adaptive tuning method allows to initialize the
planner with an important radius without any significant lost
in performance.

VII. C ONCLUSIONS ANDFUTURE WORK

The DD-RRT algorithm is an algorithm especially efficient
for problems with complex geometries where the collision
tests are expensive. In this work we have proposed a new
extension of the dynamic-domain RRT algorithm. This ex-
tension significantly increases the robustness of the planner
by automatically adapting the region of influence of each
node during the search process. Several other directions of
research remain to improve the DD-RRT algorithm.

In particular, the information about the distance to the
obstacles could be used to define the dynamic domain.

Another important direction is to investigate the application
of the DD-RRT framework to other constrained motion
planning problems such as planning for closed linkages or
planning under differential constrains, where both the cost of
the iteration computations and the Voronoi bias greatly affect
the efficiency of planning algorithms.
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