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Abstract— This paper presents a path planner for robots
operating in dynamically changing environments with both
static and moving obstacles. The proposed planner is based
on probabilistic path planning techniques and it combines
techniques originally designed for solving multiple-query
and single-query problems. The planner first starts with a
preprocessing stage that constructs a roadmap of valid paths
with respect to the static obstacles. It then uses lazy-evaluation
mechanisms combined with a single-query technique as local
planner in order to rapidly update the roadmap according to
the dynamic changes. This allows to answer queries quickly
when the moving obstacles have little impact on the free-
space connectivity. When the solution can not be found in the
updated roadmap, the planner initiates a reinforcement stage
that possibly results into the creation of cycles representing
alternative paths that were not already stored in the roadmap.
Simulation results show that this combination of techniques
yields to efficient global planner capable of solving with a
real-time performance problems in geometrically complex
environments with moving obstacles.

I. I NTRODUCTION

Robot motion planning has led to active research over the
two last decades [11]. In particular, probabilistic techniques
have received a lot of attention in recent years. They have
proven to be effective methods that can be applied to chal-
lenging problems arising in fields as diverse as robotics,
graphics animation, virtual prototyping or computational
biology. Probabilistic motion planners have been originally
designed for solving multiple-query or single-query prob-
lems. Sampling approaches like the PRM planners intro-
duced in [9] precompute a roadmap of valid paths reflecting
the connectivity of the free-obstacle-configuration space.
This allows to process multiple path queries as fast as pos-
sible. The diffusion variants introduced in [8], [10] solve
single queries without any preprocessing by incrementally
building trees rooted at the query configurations.

Dynamic changes in the environment are very common
in many path planning applications such as planning for
evolving industrial environments [13], navigation in real
[6] or in virtual worlds [14]. Despite the success of the
PRM framework, work has mostly concentrated on static
environments. Only a few recent contributions have ad-
dressed issues related to changing environments: roadmap-
based planners (e.g. [1], [5], [12]), techniques for real-time
replanning using the elastic strip framework [3], [4] or
using the decomposition-based approach proposed in [2],
and techniques exploring theconfiguration× time space
for obstacles moving along known trajectories (eg. [7]).

The adaptation of PRM planners to environments with
both static and moving obstacles has been limited so far.

Fig. 1. Example of a 3D scene with moving obstacles: start and goal
configurations of the 9dof mobile manipulator carrying a board and three
path solutions obtained for several settings of the environment (doors
closed/open and three other moving obstacles placed around the table)

This is mainly because the cost of reflecting dynamic
changes into the roadmap during the queries is very high.
On the other hand, single-query variants, which compute a
new data structure for each new query, deal more efficiently
with highly changing environments. They however do not
keep the information reflecting the constraints imposed
by the static part of the environment useful to speed up
subsequent queries.

This paper aims at providing a practical planner that
rapidly updates the roadmap at each query with only
little preprocessing to account for obstacle changes. The
planner combines several published ideas into an integrated
solution allowing to answer queries very quickly when
the moving obstacles have little impact on the free-space
connectivity. As in [1], it uses lazy evaluation ideas to
avoid spending too much time on updating the validity of
roadmap edges that are not relevant to obtain the solution
path. It also uses a single-query RRT planner [10] to
rapidly check possible reconnections along some invalid
edges of the roadmap. When the solution can not be
found in the updated roadmap, the planner also integrates
a reinforcement stage that possibly results into the creation
of cycles representing alternative paths that were not yet
stored in the roadmap.

The rest of the paper is organized as follows. Section II



gives an overview of the approach. Section III gives the
details of the planner and explains how the queries are
processed by lazily updating the roadmap connectivity and
by reinforcing the roadmap when required. In section IV,
we explain how this planner can be used for path-update
and control of path execution. Finally, the performance of
the planner is experimentally evaluated in Section V using
several simulated environments.

II. PRESENTATION OF THE PROPOSED APPROACH

A. Motivation

Let us consider a robot in an environment with static
and moving obstacles. The problem consists of finding a
collision-free path for this robot from an initial to a goal
configuration, for specific positions of the moving obsta-
cles. Figure 1 illustrates a typical example of such dynamic
scenario. The robot (a 9dof mobile manipulator carrying a
board) moves in an office-like environment. The moving
obstacles in this example correspond to the two doors that
are opened or closed and also to other moving objects
located around the table (see the bottom/right image).
They can invalidate part of the roadmap and we therefore
need efficient mechanisms for updating this roadmap. The
figure also shows for a same path query the different path
solutions computed in real-time by the planner according
to current context.

It is well known that PRM planners spend most of their
time performing costly collision checks when constructing
the roadmap. Several methods (e.g. [1], [15]) have been
proposed for static environments to reduce the number of
tests by postponing them as long as they are not really
necessary.

In this paper, we apply a similar idea for planning in
dynamic environments. In such dynamic context, we use
the fact that moving obstacles often imply partial changes
of the robot’s free space. Based on this remark, three main
kind of methods are used to avoid collision tests:
• A lazy connectionstrategy is used to check con-

nections of the query nodes to the roadmap and to
limit the update of the roadmap to portions which are
relevant for obtaining the solution path.

• A local reconnectionis attempted to reconnect edges
temporary broken by mobile obstacles.

• An edge labelingmechanism stores previous positions
of moving obstacles in the scene to relieve the number
of collision tests for the edge.

These methods are detailed in section III.

B. General approach

Because the environment is only partially modified be-
tween each of the queries, we use a two-stage method.

First, we compute a roadmap for the robot and the static
obstacles, without considering the presence of the moving
obstacles (Fig. 2.1). Then to solve the path query, portions
of the roadmap are updated by checking if existing edges
are collision-free with respect to the current position of the
moving obstacles. Colliding edges are labeled as blocked
in the roadmap. If this labeling permits to obtain a path
which does not contain any blocked edge, then a solution is
found (Fig. 2.2). When the solution path contains blocked

edges, a mechanism of local reconnection based on RRT
techniques is used. It tries to reconnect the two extremities
of those blocked edges (Fig. 2.3). Finally, if the existing
roadmap does not allow to find a solution, new nodes are
inserted and the roadmap is reinforced with cycle creation
(Fig. 2.4). In practice, this general approach is combined
with several methods avoiding unnecessary collision tests,
which makes it more efficient. The next section presents
the main features of the approach.

Fig. 2. A static roadmap is first computed in the configuration space
of the robot (1). During queries, a solution path can be found directly
inside this roadmap (2) or via a RRT like technique to reconnect edges
broken by dynamic obstacles (3). If the existing roadmap does not permit
to find a solution, new nodes are inserted and the roadmap is reinforced
with cycle creation (4).

III. D ETAILS OF THE APPROACH

A. Roadmap labeling and solution path search

During path queries, the planner first checks whether a
solution exists in the preprocessed roadmap. Hence, the
roadmap edges already correspond to collision-free paths
with respect to the static obstacles. They only need to
be checked for collision with the moving obstacles. For
efficiency reasons, it is useless to update edges which are
not yet connected to the query nodes. Checking such direct
connections with the query nodes is a costly operation
since it also requires to check the edge validity with the
static obstacles. It is therefore preferable to limit such tests
a much as possible by avoiding systematic connections
tests to all components of the roadmap after their dynamic
update.

Based on the remarks above, the planner performs the
roadmap labeling concurrently with the search for the
solution path. It iteratively alternates the two following
operations until a valid path is found or all connections
have been attempted without success:
• Connection of query nodes to the nodes of the

roadmap.
• Search for a valid path inside the roadmap.
The search for a valid path yields the labeling of some

edges in the roadmap. It first searches whether a statically
valid path exists in the roadmap, and then updates the
dynamic validity of the edges along the path. A solution is
found when all edges remain collision-free with the moving



obstacles. Otherwise, the colliding edges are invalidated
and used to reconstruct a part of the dynamic connectivity
of the roadmap. The updated connectivity is then used at
the next iteration to select the best candidate nodes in the
roadmap in order to find other possible connections of the
query nodes. We explain how these candidate nodes are
selected based on the current connectivity information in
the next paragraphs.

B. Query nodes connections

At each iteration, the candidate nodes are selected by
decomposing each statically connected component into
three sub-components : nodes potentially reachable from
the init node, nodes potentially reachable from thegoal
node, and nodes which are currently not reachable from
the query nodes. A roadmap’s node is potentially reachable
from a query node if there exists a path linking both nodes,
and which contains no blocked-labeled nodes.

This selection mechanism is illustrated in Figure 3.
The first selection is done considering that all roadmap
nodes are not potentially reachable, and choosing among
this set the closest node from each of the query nodes
(Fig. 3.1). A statically valid path is then searched in the
roadmap and the path edges labeled as blocked or valid
in the dynamic context. The blocked edges (dashed edges
of Fig. 3.2) modify the connectivity of the roadmap. The
query connection extends the two sub-components of nodes
reachable by the init and goal nodes while the blocked
edges extend the third component gathering nodes which
are not yet potentially reachable. The three sub-components
are then used for the next selection. New connections are
envisaged between the init (resp. goal) node and the set
of nodes determined as reachable from the other query
node (Fig. 3.3a-b) and also the connection to portions of
the roadmap not yet connected to any query node (Fig.
3.3c). The next connection candidate in each set is selected
as the closest node to the query one. The reason is that
short local paths have a higher chance to be valid and
collision detection along short paths is also more efficient.
In this example, the third component (Fig. 3.3c) yields
valid connections to both query nodes and the next path
search/labeling (Fig. 3.4) yields the solution (Fig. 3.5).

In practice, this method avoids many costly updates of
edges that are not strictly necessary to answer the query. In
particular, the components of the roadmap which are not
connected to the query nodes will never be tested.

C. Local reconnections

As explained above, for each new connection of the
query nodes to the roadmap, the algorithm tries to find a
solution path which does not contain blocked edges. If such
a path cannot be directly extracted from the roadmap, the
algorithm tries to solve the problem locally, using a Rapidly
exploring Random Tree planner to connect the endpoints
of the blocked edges. The principle of the bidirectional
RRT-Connectalgorithm (see [10]) used in our reconnection
planner consists of incrementally building two random
trees rooted at the start and goal configurations. The
complexity of RRT depends on the length of the solution
path. This means that the approach quickly finds easy

Fig. 3. Query nodes are connected to the roadmap (1) and a first
attempt to find a valid path is done. If this attempt fails, it means that
some edges have been labeled as blocked (2). Then three new connections
are envisaged : connection of a query node to nodes potentially reachable
from the other query node (3.a, 3.b) and connection to portions of the
roadmap no more connected to any query node (3.c). In this exemple, the
last kind of connection (4) permits to find a valid path (5).

solutions. If the mechanism of broken edges reconnection
fails, a new connection from the query nodes to the static
roadmap is attempted as described in Sect. III.B.

D. Nodes insertion and cycles creation

If all connections have been attempted without success,
new nodes are added to the roadmap to solve the query.
These nodes are connected to the different components of
the roadmap taking into account the partial edge labeling
previously achieved. Such new nodes are necessary to find
an alternative way to dynamically re-connect disjoint com-
ponents that were previously linked in the static roadmap
(see Fig. 2.4). Because this reinforcement stage only occurs
when local reconnections have failed, we avoid the creation
of needless edges and nodes inside the roadmap which
could reduce the efficiency of the planner for future queries.

E. Edge labeling

The planner uses the information gained during the
queries to increase the efficiency of the edge labeling
process. This allows to reduce the cost of the queries.
For this, a specific data structure is added to the roadmap
(figure 4).

This structure stores information for key positions of
moving obstacles. When theEdge-Labelingfunction is
called, current positions of moving obstacles are compared
to positions already stored and information derived from
previous collisions checks is reused (see Algorithm 1).

The first time theEdge-Labeling function is called
for a given edgeE, no specific information has been
stored so far. Collisions tests are done classically, until a
collision is detected or all the moving obstacles are tested.
Concurrently, results of all those tests are stored in the
data structure, taking the current positions of each moving



Fig. 4. Edge structure

Algorithm 1 Edge-Labeling(E)
for eachMovable ObstacleMOi do

for eachKey PositionKPj of MOi stored inE do
if KPj = Current Posthen

is-collision←Extract-Col-Info(E,KPj)
else

is-collision←Col-test(E, MOi)
Store is-collision in R

end if
if is-collision = TRUE then

Return invalid
end if

end for
end for
Returnvalid

obstacles as key positions. The next time theEdge-Labeling
function is called for this edge, the current position of
MOi is compared to the stored positions. If one of the
stored positions is the same as the current one, the result
of the previous collision test is extracted and the new test
is avoided (Extract-Col-Info of algorithm 1). Otherwise,
the new position is inserted in the edge structure. This
principle is repeated for all the calls of theEdge-Labeling
function. Because obstacles can continuously move in
the environment, leading to an infinity of intermediate
positions, we only keep the last checked positions. Older
positions are removed from the data structure in order to
limit the size expansion of the roadmap. In practice, the
memorization of the information concerning only the few
last positions is sufficient to avoid many useless tests as
in the two following kind of situations : when a moving
obstacle has discrete positions (e.g. doors which can be
open or closed), it is only considered for collisions the first
time it is placed at one of the discrete positions. Also when
a moving obstacle stops (e.g. displaced object, stopped
robot), it starts to be treated exactly as static objects and
unnecessary collision tests are avoided.In summary, the
only collision tests which are needed to be performed for a
given edge, are the ones that correspond to new positions
of moving obstacles.

IV. PATH UPDATE AND CONTROL OF PATH EXECUTION

The dynamic planner has also been tested in applications
requiring real-time performance. Two kinds of problems
have been addressed for environments with continuous
changes :
• Update of a valid path.
• Control of a path execution.

The mechanism used is very similar in both cases. For path
update, a valid path is first computed as explained above.
Then, its validity is checked at different time steps with
some moving obstacles. When the path collides, a local
reconnection mechanism, as proposed for the edges of the
roadmap is attempted. If it fails, our planner finds a new
path, valid in the current context. During path execution,
in addition to path update, the robot goes forward along
the path for a fixed length if the update has succeeded.
In practice we only test the portions of the path the robot
will cover soon. This avoids changing the solution when an
obstacle crosses the path far from the actual robot position
and may have disappeared when the robot arrives there. In
section V-E, we show an example using these mechanisms.

V. EXPERIMENTAL RESULTS

The dynamic planner was implemented within the soft-
ware platform Move3D [17] developed at LAAS. The
reported computation times correspond to experiments con-
ducted on a 333 MHz Sun Blade 100 workstation. Each
value given in the tables has been averaged over 20 runs
of the planner. Indicated collision tests correspond to the
sum of the static and dynamic collisions tests performed.

A. Global Performance

The first experiment compares our planner with two
other planners : the single-query plannerbi-RRT[10], and a
planner based on a roadmap precomputed with avisibility-
PRM method [16]. The later one uses a systematic update
of the validity of all the roadmap edges (called “global la-
beling”) instead of the lazy connection strategy performed
by the dynamic planner. The environment used for the
test is the office-like scene shown in figure 1. It contains
two doors which are randomly closed or opened before
each query and also three other moving objects randomly
placed around the table. Comparative performance results
are shown in table I.

bi-RRT Visibility Dynamic
PRM Planner

Time (s) 4.3 1.1 0.2
Collisions 5697 1722 356

Edges 45 78 78
Tested edges 45 78 18

TABLE I

PERFORMANCE OF THE DYNAMIC PLANNER COMPARATIVELY TO TWO

OTHER PLANNERS.

One can note that the “global labeling” method is more
efficient than the single query one. Even if more edges are
tested (78 against45), they are only checked for collisions
against moving obstacles, which significantly decreases the



overall cost of collision checking. One can also note the
gain of the lazy connection and edge labeling mechanisms
used by the dynamic planner compared to a systematic
labeling. The number of collision tests is almost divided
by 5, even for the small size of roadmaps computed for
this example.

Fig. 5. An example of query (left) and the path solution (right), in an
environment with static columns and 20 cube-shaped moving obstacles.

B. Lazy labeling

To further evaluate the performance of the lazy connec-
tion strategy, we performed tests on the environment of
figure 5 for several sizes of the precomputed roadmaps
(containing or not cycles), and also for a different number
of moving obstacles. The different settings are summarized
in the table below:

Test Mov. obstacles Nodes Edges
A 5 100 99
B 5 100 318
C 20 100 99
D 20 100 318
E 20 200 700

The environment is composed of 13 static columns
and several cube-shaped moving obstacles. The robot is
the same 9dof mobile manipulator used in the previous
environment. Both, the query nodes and the positions of
the moving obstacles are randomly chosen. Because we
analyze here the edge labeling, solutions involving addition
of new nodes are not retained for results. Table II presents
the results of the tests.

A B C D E
Lazy connection

Time (s) 0.2 0.3 0.7 1.0 1.7
Collisions 340 478 640 681 1379

% of tested edges 9.1 4.1 10.1 5.7 6.1
Global labeling

Time (s) 2.4 3.6 4.8 7.3 15.7
Collisions 4602 7123 4882 6809 14338

% of tested edges 100 100 100 100 100

TABLE II

INFLUENCE OF THE LAZY CONNECTION ACCORDING TO THE NUMBER

OF MOVING OBSTACLES AND THE ROADMAP SIZE.

The techniques using lazy labeling are from 7 to 12 times
faster than a global edge labeling. This can be explained
by the small fraction of the roadmap explored.

C. Edge labeling

The environment of figure 5 is also used to analyze the
efficiency of the edge labeling mechanism. The roadmap

Fig. 6. Creation of roadmap cycles for a 3dof robot (top) evolving in
a virtual house. A first roadmap is computed without taking into account
doors (left). Then, after several queries, roadmap is reinforced with new
cycles (right). Dashed edges correspond to edges invalid in the current
context.

and the moving obstacles are the same as described in the
test D. Figure 7 shows the average time to label edges of
the roadmap, depending of the number of moving obstacles
whose position is stored in the roadmap structure.

Fig. 7. Influence of edge labeling: computation time decreases with the
number of stored positions

As we would expect, the time for edge labeling decreases
linearly with the number of positions stored in the roadmap.
For the extremal case where all the current positions of
moving obstacles are stored in the roadmap, no collision
test is done when checking the validity of the edges.

D. Cycles creation

Figure 6 shows the house environment used to illustrate
the mechanism of cycle creation. It contains many static
obstacles which represent a total geometrical complexity
of 70000 facets and 7 doors used as moving obstacles
that are opened or closed. The robot used is the 3dof



mobile robot shown in the top image. The bottom left
image shows the “static” roadmap that was first computed
using the Visibility-PRM technique [16], without consid-
ering the doors. In the example, it permits to capture the
connectivity of the free space with only 33 nodes. Then,
ten queries were solved by the planner for randomly chosen
open/closed positions of each door. When the solution
can not be found within the current roadmap, nodes are
inserted with the Visibility-PRM technique. The bottom
right image shows that after the queries, the roadmap is
reinforced with 3 nodes and11 edges creating several
useful cycles. In total,3.5 seconds were spent for the
roadmap reinforcement during the ten queries (i.e. an
average of.35 sec. per query).

E. Real-time applications

Figure 8 shows an example of path execution controlled
by the dynamic planner. The robot is a 6dof manipulator
arm in an assembly line environment. It is surrounded by
two other articulated arms considered as moving obstacles.
The first image shows the start and goal configurations of
the problem (the goal is wireframed) and the trajectory
initially computed. The planned trajectory is executed, but
it is successively perturbed by the motions of the two other
arms of the assembly line. Then, it is dynamically updated
with our planner during its execution.

Fig. 8. Trajectory execution controlled by the dynamic planner for a
6dof manipulator arm in an assembly line environment.

This example illustrates the capability of the planner
to work with real time performances. Several movies
illustrating real-time path updates and control of path
execution are also available onhttp://www.laas.fr/
~ljaillet .

VI. CONCLUSION AND PERSPECTIVES

In this paper we proposed a roadmap planner designed to
operate in dynamically changing environments. The plan-
ner relies on several lazy evaluation mechanisms allowing a
partial but fast dynamic update of the roadmap to answer
path queries as fast as possible. Preliminary experiments
are promising. They show the capability of the planner to
solve real-time problems in geometrically complex scenes
with several moving obstacles. Several improvements re-
main for future work. In particular it should be further
investigated how to relate workspace changes to particular
regions of the roadmap that can be potentially affected,
in order to further limit the validity tests to the relevant
portions of the roadmap.
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