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Sampling-Based Motion Planning
under Kinematic Loop-Closure Constraints

Juan Cortés and Thierry Siméon

LAAS-CNRS, Toulouse, France

Abstract. Kinematic loop-closure constraints significantly increase the difficulty
of motion planning for articulated mechanisms. Configurations of closed-chain mech-
anisms do not form a single manifold, easy to parameterize, as the configurations of
open kinematic chains. In general, they are grouped into several subsets with com-
plex and a priori unknown topology. Sampling-based motion planning algorithms
cannot be directly applied to such closed-chain systems. This paper describes our
recent work [7] on the extension of sampling-based planners to treat this kind of
mechanisms.

1 Introduction

Robot motion planning has led to active research over the two last decades
[13]. More recently, several sampling-based approaches (e.g. [12,16]) have been
proposed and successfully applied to challenging problems that remained out
of scope for previously existing techniques. They allow today to handle practi-
cal motion planning problems arising in such diverse fields as robotics, graphic
animation, virtual prototyping or computational biology [14].

In this paper, we consider motion planning for closed-chain mechanisms.
We present an extended formulation of the motion planning problem in pres-
ence of kinematic loop-closure constraints and we introduce a framework for
the development of sampling-based algorithms (Sects. 2 and 4). The addi-
tional difficulty of this instance of the problem is that feasible configurations
form lower-dimensional subsets in the search-space with no available represen-
tation. The performance of the very few approaches proposed for closed-chain
mechanisms [15,11] (Sect. 3) significantly degrades for reasonably complex
systems, mainly due to the difficulty of generating random samples in such
subsets. We propose a general and simple geometric algorithm, called Ran-
dom Loop Generator (RLG), for sampling random configurations satisfying
loop-closure constraints (Sect. 5). RLG enables virtually any sampling-based
planning algorithm to be extended to closed-chain mechanisms. We have
implemented and experimented with its integration within PRM-based and
RRT-based planners, obtaining very good results (Sect. 6).

Complex articulated mechanisms with closed kinematic chains appear in
all the domains where motion planning techniques can be applied. Figure 1
illustrates an example of coordinated manipulation of an object handled by
several robots. The generality and the practical efficiency of the extended
planners incorporating RLG allow to tackle such kind of problems as well
as problems involving parallel robots, or problems arising in computational
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Fig.1. A “closed-chain” version of
the piano mover’s problem. The pi-
ano is moved by three cooperating
mobile manipulators, creating multi-
ple closed kinematic chains.
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biology for the structural analysis of protein loops. All these applications
are commented in Sect. 7. We conclude devising new directions for future
research (Sect. 8).

2 Problem Formulation

The motion planning problem consists in finding a path between two given
locations of a mobile system that satisfies intrinsic constraints as well as
constraints that arise from the environment. Basically, motion constraints
are due to the kinematic structure of the mechanism and to collision avoid-
ance. Under these constraints, the problem can be posed and solved in the
configuration-space C [19]. Then, it is reduced to explore the connectivity of
the subset C¢,.c. of the collision-free configurations.

The problem has been clearly formulated for articulated mechanisms with-
out kinematic loops (see [13] for a detailed formulation). In this case, C cor-
responds to the space of the joint variables Q, called the joint-space. Topo-
logically, Q is a smooth manifold, with a simple parameterization [2]. For
an articulated mechanism with m independent joint variables defined in real
intervals, @ can be seen as a m-dimensional hypercube. If the articulated
mechanism contains closed kinematic chains, then some joint variables are
related by loop-closure equations [20]. A general expression of loop-closure
constraints is: f(Q)=1I, where f(Q) is a system of non-linear equations and
I is the identity displacement. The configuration-space C of a closed-chain
mechanism is the subset of Q satisfying such equations. The stratification
of C leads to several p-dimensional manifolds M; which can be connected
through sets of lower dimension Sj [3,27]. Note that p corresponds to the
global mobility of the mechanism. The M; are called self-motion manifolds
and the Sy are sets of singular configurations. The number of self-motion
manifolds is bounded, and it tends to decrease as p increases [3].

Figure 2 illustrates a fictive example with three joint variables {61,602, 63}
and p = 2. Let us consider a function of the form f (61,02, 63) =0, representing
loop-closure constraints. This function maps to several surfaces embedded in
the joint-space Q. Such surfaces are the different self-motion manifolds M. In
this example, M; and M5 intersect at a singular set S. We have represented
the obstacle region Qs in the joint-space. Qe is the complementary sub-
set: Qfree = Q\ Qobst- Crree is the intersection of Q free with the different M.
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Fig.2. Illustration for the for-
mulation of the motion planning
problem under kinematic loop-
closure constraints. Configurations
are grouped into several subsets em-
bedded in the joint-space.

Several situations can rise in motion planning queries within this example.
The best case is a query for a path between ¢; and ¢g2. These configurations
lie on the same self-motion manifold and in the same connected component of
Cfree, thus there is a free path between them. A path is also feasible between
q1 and g3, even if it contains singular configurations. However, for g4 and gs,
the presence of obstacles makes these configurations cannot be connected by
a free path. Finally, a case that does not appear for open kinematic chains can
rise under closure constraints: ¢; and g4 lie on the same connected component
of Qfree but on different components of C !

3 Available Techniques

Only a few exact motion planning approaches have been proposed that treat
kinematic loop-closure and collision avoidance simultaneously, including these
two types of constraints within algebraic expressions (e.g. [4,1]). The compu-
tational complexity of these approaches makes them unpractical. Normally,
different techniques have to be combined for planning motions under kine-
matic loop-closure constraints. First, loop-closure equations must be solved
to obtain the configuration-space C. Then, motion planning algorithms can
be applied to compute paths in the collision-free subset Cyy.ce.

Techniques that provide a complete solution of loop-closure equations are
very limited in practice. Currently, they can be applied to non-redundant
mechanisms, single loops with only a few (two or three) degrees of redun-
dancy or particular classes of parallel mechanisms [22,21,23]. For more com-
plex closed-chain mechanisms, only discrete points in C can be obtained. The
use of a grid for globally representing C is not applicable to high-dimensional
spaces. The remaining possibility is then to use sampling techniques com-
bined with numerical or algebraic techniques to obtain single configurations
satisfying loop-closure equations. This fact restrains the choice of motion
planning algorithms to those based on sampling.

Sampling-based planners have demonstrated their efficacy for solving diffi-
cult problems in high-dimensional spaces. The Probabilistic RoadMap (PRM)
[12] and the Rapidly-exploring Random Trees (RRT) [16] are two approaches
that have had a particular success. However, only two attempts had been
made to extend such sampling-based planners to closed-chain mechanisms
[15,11].
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The first PRM-based approach able to handle mechanisms with closed
chains was presented in [15]. The problem is formulated in the joint-space Q.
Closure constraints are expressed by error functions involving distances in
the Euclidean space. Numerical optimization techniques are used to sample
and to connect configurations in the subset of Q satisfying these constraints
within a given tolerance. The approach is general but suffers the drawbacks
of optimization-based methods to solve inverse kinematic problems: they are
exposed to the local minima problem and the convergence can be very slow.
A technique to randomly sample the tangent space of the constraints is pro-
posed that increases the efficiency of the process to connect sampled config-
urations. More details of the method and the extension of RRT-based algo-
rithms were subsequently published in [29,30]. For the RRT approach, the
random configurations used to bias the exploration are generated ignoring
closure constraints. The argument is that computing closed configurations
is too expensive and does not provide appreciable benefit. We will show in
Sect. 6 that this last assertion is not totally right.

The approach described in [11] treats closed kinematic chains within a
PRM-based planner. Each loop in the mechanism is broken into two sub-
chains. For computing nodes, uniform random sampling is used to generate
the configuration of one of the subchains (called active subchain) and then
an inverse kinematics problem is solved to obtain the configuration of the
remaining part of the loop (called passive subchain) in order to force closure.
For computing edges, the local planner is limited to act on the active con-
figuration parameters and the corresponding passive variables are computed
for each intermediate configuration along the local path. For the efficiency
of the roadmap computation, the passive subchain of each loop must be a
non-redundant mechanism with closed-form inverse kinematics solution. As
the authors admit, this means an important drawback when the approach is
applied to a highly-redundant loop. The probability of randomly generating
configurations of a long active subchain for which a configuration of the pas-
sive chain satisfying closure constraints exists is very low. The performance
of the algorithm drops off significantly due to this fact.

Our approach shares some ideas used for the extension of PRM-based
planners in [11]. One of our contributions is to resolve the main drawback
of the referred technique by the integration of the RLG sampling technique
(explained in Sect. 5).

4 Sampling-Based Planning
and Closed-Chain Mechanisms

This section presents a general framework to extend sampling-based ap-
proaches for planning the motions of general closed-chain mechanisms. The
use of sampling-based planners is strongly justified since, for the kind of
problems we address (see Sect. 7), there is no available technique providing
a complete, exact representation of Cyye.. However, there are important dif-
ficulties for sampling and for checking the connectivity of configurations of
closed-chain mechanisms. Next, we discuss how to deal with these difficulties.
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Fig. 3. Projection of M; on the planes 6:02 and 6,0s.

On the Parameterization of C: Configurations of a closed-chain mech-
anism are grouped into a finite number of lower-dimensional manifolds M;
embedded in the joint-space Q (the search-space in our problem). These
manifolds can be parameterized, at least locally, by a set of p independent
parameters, selected from the joint variables. Points in the different man-
ifolds can be generated by sweeping the p parameters through their range
and evaluating the loop-closure equations that provide the value of the other
(dependent) variables. An atlas of each one of these manifolds M; can be
constituted by a finite number (in general not exceeding the dimension of Q,
m) of local charts considering different combinations of p parameters. With-
out loss of generality, sets of p consecutive joint variables in a kinematic chain
can be chosen as local coordinates [27].

Following a terminology also used in [11], we call active variables ¢* the
set of the p joint variables chosen as parameters of a local chart and passive
variables gP the remaining set of the m — p dependent joint variables, so that
{¢*.¢"} =qeCC Q.

Main Principle: The core of our approach is to explore the connectivity of
Ctree by sampling configurations and by testing feasible connections through
local parameterizations of C. Motion planning algorithms are applied on the
local parameters ¢. Using a roadmap method such as PRM, the nodes are
generated by sampling ¢* and local paths are obtained by applying a local
planner (also called steering method) to these parameters. In a similar way,
q* are the configuration parameters directly handled by incremental search
methods like RRT. Obviously, for each computed value of the parameters,
loop-closure equations must be solved for obtaining the whole configuration
of the mechanism ¢ € C. Therefore, the efficiency of the planner partially
relies on the efficient solution of these equations.

Configuration Sampling: Given a set of active variables ¢“, loop-closure
equations have real solutions only for a range of values of each joint variable,
that we call the closure range. Besides, the closure range of a parameter
depends on the value of the other parameters. The last assertion is illustrated
in Fig. 3, that shows the projection of the manifold M; of Fig. 2 on the planes
6105 and 6,05. Let us consider ¢* = {01,02} (the left image). If we sample
first #; and then 0y for generating a configuration g; € My, then 0; can be
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sampled in its whole closure range (i.e. the feasible range for any value of
the other joint variables). However, 6 is valid only in a subset of its whole
closure range, determined by the value of 6.

There is no general and efficient method to define closure ranges of joint
variables. Thus, in practice, the only possibility for sampling configurations is
to use a trial method: sampling parameters ¢* in the intervals defined for joint
variables and solving the loop-closure equations. Nevertheless, when a closure
range is very restricted with respect to the interval of a joint variable, too
many samples maybe tested before finding a feasible configuration. Hence,
too much computing time is spent in solving closure equations leading to
imaginary values. This is an important drawback for the efficiency of motion
planners, and mainly for those using a roadmap approach, such as the planner
in [11]. The RLG algorithm, further discussed in Sect. 5, resolves this problem
using simple geometrical operations.

Computing Local Path: Sampling-based roadmap methods check the con-
nectivity of nearby configurations by local paths. Incremental search methods
try to expand a configuration toward a local goal, producing also a sort of
local path. Such paths can be computed by explicitly variating the local pa-
rameters ¢® and solving loop-closure equations with a given resolution for
obtaining ¢P.

Without a topological characterization of C, the number of different sets
of parameters ¢® required to determine if two configurations are connected
or not is a priori unknown. This fact can easily be understood on Fig. 3.
Let us consider that a linear interpolation of the parameters ¢® produces a
kinematically feasible path (i.e. there are no differential constraints). Then,
any two configurations lying on M can be connected (directly or indirectly)
using ¢* ={601, 62} as local parameters. On the contrary, choosing ¢*={61,03}
leads to a non-complete solution of motion planning queries within M;. A
solution path between configurations ¢; and ¢o can be immediately obtained
since they are directly connected by a local path. However, a path between ¢
and g3 can not be found using sampling-based techniques. The point indicated
by the small square is a singularity of this parameterization. The probability
of generating this point by sampling values of ¢* ={61, 605} is null, as well as
the probability of sampling two points on a line (local path) passing through
this singularity. Thus, finding a feasible path between ¢; and g3 requires
another set of local parameters than {61, 603}.

Local paths have to satisfy other motion constraints besides loop-closure,
such as collision avoidance. In this paper, we do not talk about these other
constraints, that can be checked along local paths by techniques (e.g. [18])
similar to those used for open-chain mechanisms.

Dealing with Kinematic Singularities: Up to now we have limited our
discussion to the case of a single manifold. However, C may be composed of
several manifolds. These manifolds are either disjoint, or they intersect at
lower-dimensional subsets corresponding to kinematically singular configu-
rations. Therefore, exploring the connectivity of Cy,. requires to deal with
these singularities.
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Fig. 4. Probabilistic roadmap cap-
turing the connectivity of Csyee for
the fictive motion planning problem
involving kinematic closure con-
straints of Sect. 2.

01

The roadmap represented in Fig. 4 has been built using ¢* = {61,602} as
only set of parameters. Each point {61, 63} maps to two configurations (i.e.
there are two solutions for ¢P =03) on different manifolds for all the domain
under M and Mj except for the singular set S where they intersect, so that
configurations in these manifolds are connected by this singular set. This
kinematic singularity corresponds to the singularity of the parameterization
q* = {61,603} commented above. It can be traversed by a local path on the
current parameterization. When a local path is computed between two con-
figurations at different sides of S, the bifurcation of the solution can be easily
detected when checking the local path validity, and the singular configuration
(marked by the small rectangle in Fig. 4) connecting M; and My can then
be identified.

Let us consider now a more difficult case where M7 and My do not
intersect along a line but meet at a point. None of the three possible pa-
rameterizations would allow to identify such a singular point exactly. The
difference in this case is that the singular set has dimension p — 2 instead
of p — 1. In theory, sets of kinematically singular configurations can have
dimension from p — 1 to zero. Using sampling techniques for generating con-
figurations on C and steering methods on subsets of configuration parameters
q%, our approach has only the guarantee (if we do not admit a tolerance) to
find connections through singular sets of dimension p — 1. The other singular
sets, from dimension p — 2 to isolated singularities, must be identified by
other methods. The general treatment of such singularities goes beyond the
scope of this paper. As far as we know, techniques able to globally charac-
terize singular configurations have been proposed only for particular classes
of mechanisms (e.g. [10,28]).

5 The RLG Algorithm

We have developed an algorithm, that we call Random Loop Generator
(RLG), for sampling configurations of closed-chain mechanisms. The general
approach was presented in [5]. Then, a variant that treats more efficiently
parallel mechanisms was introduced in [6]. More details can be found in [7].
In this section, we present an overview containing main ideas.
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passive subchain

~——  active subchains —#

Fig. 5. Decomposition of a multi-loop in single loops, and a
possible choice of passive and active subchains in loop La.

5.1 Mechanical System Decomposition

General Case: RLG is based on a decomposition of the mechanism into
open kinematic chains. In the general case, single loops are handled sepa-
rately, in a determined order. For each loop, sets of active and passive joint
variables are defined consecutively such that they correspond to segments
of the kinematic chain. We call passive subchain the segment involving the
passive variables and active subchains to the other segments. There can be
one or two active subchains depending on the placement of the passive sub-
chain. The passive subchain is a non-redundant mechanism whose end-frame
can span full-rank subsets of the workspace. In general, this requires three
joint variables for a planar mechanism and six for a spatial mechanism. Effi-
cient methods to solve inverse kinematics problems for such mechanisms are
usually available [22].

In multi-loops, some joint variables are involved in the configuration of
several individual loops. Their value is computed for the single loop treated
first, and then, these common portions of the mechanism become rigid bodies
when treating the other loops. Figure 5 shows an example of a planar multi-
loop mechanism. The individual loops are designated by L;, where the index
1 indicates the order for the treatment. The figure also illustrates the decom-
position of L5. This 6R planar linkage has mobility p = 3. Thus, ¢* and ¢?
contain three joint variables each. In this illustration we have chosen 63, 0,4
and 05 (the variables associated with joints J3, J4 and J5) to be the passive
variables. Then, active variables can be seen as configuration parameters of
two open chains rooted at a (fictive) link Ag¢.

Parallel Mechanisms: A parallel mechanism is an articulated multi-loop
structure in which a solid, the end-effector or platform P, is connected to the
base Ag by at least two independent kinematic chains C;. The pose of P is
defined by a vector ¢p = {zp,yp, 2zp, vp, Bp,ap}. The three first elements
represent the position of Fp relative to Fu,, the frames associated with P
and A( respectively. The orientation is given by three consecutive rotations
around the coordinate axes of Fp '. We consider the configuration ¢ of a
parallel mechanism is defined by the platform pose and the configuration of
the chains K;: ¢ = {gp, g5 - - - aK,, }. The parameters defining the platform

! RLG could also handle other parameterizations (e.g. Euler angles).
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Fig. 6. Steps of the RLG algorithm performing on a 6R planar linkage.

pose gp are selected as active variables. For a given platform pose, the base-
frame and the end-frame of each chains K; have fixed relative location. Thus,
they have to be treated as closed kinematic chains. If a chain C; is redundant,
it is decomposed in active and passive subchains as explained above for a
single loop. Thus, we can separate joint variables as follows: g, = {q,“C , q%i}.
Hence, variables defining the configuration ¢ of a parallel mechanism are
divided into active and passive such that:

¢ ={ap. a0k, ) @ ={d, -, )

5.2 Sampling process

RLG performs a “guided”-random sampling for ¢® that notably increases the
probability of obtaining real solutions for ¢? when solving the loop-closure
equations. Figure 6 illustrates the process on a planar 6R linkage (the loop
L5 in Fig. 5). The active joint variables are computed sequentially by the
function SAMPLE_q¢® detailed in Algorithm 1. The two active subchains are
treated alternately. The idea of the algorithm is to progressively decrease
the complexity of the closed chain until only the configuration of the passive
subchain, ¢P, remains to be solved (by inverse kinematics).

At each iteration, the function COMPUTECLOSURERANGE returns a set of
intervals I, which approximate the closure range of a joint variable, for a fixed
configuration of the portions of loop previously generated. The approximation
must be conservative in the sense that no region of C is excluded for the
sampling. This is required in order to guarantee any form of sampling-based
completeness (e.g. probabilistic completeness) of motion planning algorithms.
The value of the joint variable is randomly sampled inside the intervals I..

The problem of computing the closure range of a joint variable can be for-
mulated as follows. Given a closed kinematic chain °/C, involving joints from
Jp to J. (we consider b < e in this explanation), two open kinematic chains
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Algorithm 1: SAMPLE_¢*

input : the loop £
output : the parameters ¢“
begin

1 (Jv, Je) < INITSAMPLER(L);

while not ENDACTIVECHAIN(L, J,) do
I. — CoMPUTECLOSURERANGE(L, Jy, Je);
if I. = () then goto line 1;
SETJOINTVALUE(J;, RANDOM(I.));
Jp «— NEXTJOINT(L, Jp);
if not ENDACTIVECHAIN(L, J.) then SWITCH(Jy, J.);

end

are obtained by breaking the link A4; between J, and Jp41. A suitable break-
point is the physical placement of Jy41, but any other point can be chosen.
A frame F, associated with this break-point can be seen as the end-frame of
both open chains. The closure range of the joint variable corresponding to
Jy is the subset of values making F, reachable by the chain ¢/Cy1 ;. Solving
such a problem requires to represent the workspace of this chain, which is in
general very complicated. For our purpose, a simple and fast method is pre-
ferred versus a more accurate but slower one. RLG handles simple volumes
that bound the reachable workspace (i.e. only considering positional reacha-
bility). They are denoted by RWS in Fig. 6. In general, a reasonable choice
for the RWS is a spherical shell with external and internal radii correspond-
ing respectively to an upper bound of the maximum extension and a lower
bound of the minimum extensions of the chain. Once defined RWS(¢Kp41),
computing the approximation of the closure intervals for Jj is very simple. If
Jy is a revolute joint, then the origin of F, describes a circle around its axis.
If J, is a prismatic joint, the origin of F. moves on a straight-line segment.
Then, I. is obtained from the intersection of a circle or a line with a simple
volume RWS.

The function to sample gp for a parallel mechanism is based on the same
principle that SAMPLE_¢®. The parameters are sampled progressively from
the computed closure range approximations. The main difference is that the
closure range depends now on the satisfaction of closure constraints that
simultaneously involve several individual loops.

6 Performance of RLG

RLG is a general technique, applicable to any sampling-based planner. In this
section, we show examples of motion planning problems solved by PRM and
RRT planners extended to handle loop-closure constraints. The goal of the
experiments is to compare the performance of the planners with and without
incorporating RLG. The tests have been made with the software Move3D
[25], in which our algorithms have been implemented.
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Fig.7. Motion planning problem for four robotic arms manipulating an object.
Start and goal configurations (left) and trace of the solution path (right).

6.1 Results with a PRM-based Planner

PRM-based algorithms build a graph (the roadmap) whose nodes are ran-
domly sampled configurations that satisfy motion constraints. For a closed-
chain mechanism, only the parameters ¢ are sampled, and loop-closure equa-
tions have to be solved to determine if the sample yields a valid configuration
or not. We have compared the performance of the planner using an uniform
random sampling 2 or RLG for sampling ¢°.

Figure 7 shows four manipulators handling an object. The whole system
can be seen as an articulated parallel structure. If the grasps are modeled as
fixed attachments, the composed mechanism involves m = 30 joint variables
(6 for each manipulator and 6 for the movable object), and the mobility is
p = 6. Since the manipulators are non-redundant, ¢* = gp: the parameters
defining the location of the object. Almost all (more than 90%) the con-
figurations gp generated by RLG make the object simultaneously reachable
by the four manipulators. Using a uniform random sampling, the bounds of
the parameters gp have first to be adjusted “by hand” with relation to the
workspace of the manipulators (this is not necessary for RLG). Even with a
good setting of the bounds, less than 0.05% of the samples yield valid (closed)
configurations. Let us see now the repercussion when solving motion plan-
ning problems using the PRM approach. In the problem illustrated in the
figure, the manipulators have to unhook an object and to insert it into the
cylindrical axis. For computing a roadmap containing the solution path to
this problem, millions of poses generated by uniform random sampling were
necessary and the process took more than 20 minutes 3. Using RLG for sam-
pling configurations, less than 500 random platform poses were generated
and the roadmap was built in less than 20 seconds. This result show that
RLG avoids an enormous number of futile operations (i.e. calls to inverse
kinematics functions) which drop off the performance of the planner.

2 Implemented using the rand() function of the GNU C Library.
3 Tests were performed using a Sun Blade 100 Workstation with a 500-MHz
UltraSPARC-IIe processor.
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Fig. 8. Sequence of the solution to a difficult motion planning problem
for two robotic arms manipulating an object among obstacles.

6.2 Results with an RRT-based Planner

The principle of RRT is to use uniformly distributed configurations ¢,qnd,
sampled at random in C, to bias the expansion of search trees in Cfyee. Under
loop-closure constraints, the use of samples in Q was proposed in [29] in
order to evade the cost of sampling C. We have compared the performance
of a uniform random sampling in Q versus RLG for generating g2,

In the example illustrated in Fig. 8, two robotic arms coordinate for ma-
nipulating a twisted bar among two vertical bars that restrict its motion. The
goal is to solve a motion planning query between configurations in Fig. 8.a
and Fig. 8.d. The figure shows a sequence of intermediate configurations of
the solution of this puzzle-like problem. The difficulty of this problem de-
pends on the distance between the vertical bars dp,-s. We have made tests
with three settings: dpars ={150,175,200}. In this example, ¢* corresponds to
the configuration of one of the arms grasping the bar. The next table shows
averaged results of tests. N is the number of iterations for expanding the
search trees. T is the computing time. These results show the importance
of an appropriate sampling considering the presence of kinematic loops. The
gain obtained using the RLG sampling technique increases with the difficulty
of the motion planning problem.

d Uniform With RLG
bars 'NT T |[N|[T [gain T
200 [2719] 42.26[118[3.23] x 13
175 |4995(102.92[424[6.30] x 16
150 |9761]312.76[615[9.14] x 34

7 Applications of Closed-Chain Motion Planning

We have studied some of the possible applications of algorithms for motion
planning under loop-closure constraints. One of them, coordinated manipu-
lation planning, has been illustrated with the two examples in Sec. 6 and the
problem shown in Fig. 1. This last problem combines several types of diffi-
culty. First, the virtual structure composed by the three mobile manipulators
grasping the piano can be seen as a parallel mechanism with redundant legs
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Fig.9. Model of the robot Logabex-LX4, composed of four Gough-Stewart
platforms connected in series, and trace of a collision-free path.

(the chains IC; correspond to the mobile manipulators). And second, the ge-
ometric complexity of the scene makes collision checking very hard. Besides,
obstacles are strategically placed in order to hinder the motion of robots for
changing the orientation of the piano. A roadmap that permits to solve most
possible queries in this scene was computed using the an extended version of
the Visibility-PRM algorithm [24] in 5 minutes.

Applied to parallel robots, motion planning algorithms can help designers
of these mechanisms, or can provide useful data for real-time trajectory plan-
ning. Our work on parallel mechanisms [6] represents the first effective appli-
cation of sampling-based planners to this kind of articulated structures. The
generality of our approach is demonstrated by the complexity of the systems
that it is able to treat, such as the model of the Logabex-LX4 (Fig. 9), whose
configuration-space is a 25-dimensional variety embedded in a 97-dimensional
joint-space. Planning queries for moving the manipulator with the grasped
bar from one to another opening of the bridge were solved by the extended
RRT-based algorithm in less than one minute.

The above expounded closed-chain planners can also be used as a key
component of a novel manipulation planning approach described in [26]. The
clever idea is to explore the connectivity of the subset where the manipula-
tion sub-paths (i.e. transit and transfer paths) meet via a virtual closed-chain
mechanism consisting of the robot grasping the movable object placed at a
stable position. Our manipulation planner automatically generates, among
continuous sets, the grasps and the intermediate placements of the movable
object required to solve complicated problems. It is the first general manip-
ulation planner with this capability.

We also began to investigate applications out of the field of robotics. Mo-
tion planning techniques can be used as new tools to help the resolution of
important open problems in computational biology [9]. We discuss in [8] the
application of closed-chain planning techniques to the structural analysis of
protein loops. The algorithms that we have presented can act as efficient fil-
ters for conformational search methods by making a geometric treatment of
strong energetic constraints: maintaining the backbone integrity (i.e. loop-
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Fig. 10. Simulated conformational gating of loop 7 in amylosucrase. Crys-
tallographic conformation (left) and geometrically feasible change (right).

closure) and avoiding steric classes. We have developed a conformational
sampling algorithm that provides random conformations achieving such ge-
ometric constraints. The algorithm combines RLG for generating the back-
bone conformation with other sampling and collision detection techniques to
obtain feasible conformations of the side-chains. We also propose a new con-
formational search technique, inspired by the RRT approach, for studying
geometrically feasible loop motions. Preliminary results are promising. They
demonstrate the capacity of the techniques to handle protein models with
long loops that involve several dozens of degrees of freedom in the backbone
and in the side-chains. Figure 10 illustrates an example of such a long loop
in the model of amylosucrase from Neisseria polysaccharea.

8 Conclusions and Future Work

We have introduced sampling-based motion planning algorithms into an ex-
tended formulation of the motion planning problem under kinematic loop-
closure constraints. We have tried to give general directives without focusing
on a particular implementation. The RLG algorithm allows to overcome the
challenge of sampling random configurations for general closed-chain mecha-
nisms. The results obtained, in different domains of application, when solv-
ing difficult problems with PRM-based and RRT-based extended planners,
demonstrate the efficacy and the generality of the approach.

Several points remain for future research. Some of them concern the RLG
sampling algorithm. RLG provided good results in all our experiments. Nev-
ertheless, a deeper analytical work is necessary in order to characterize its
performance. Also, studying new forms of sampling, using quasi-random se-
quences or multi-resolution grids recently proposed [17], seems to be an in-
teresting way to follow. Another improvement involves the selection of active
and passive subchains. A general automatic method, based on an analysis of
kinematic diagrams of mechanisms, remains to be devised.

A general methodology for the treatment of singularities within sampling-
based motion planning algorithms remains an open topic to be further in-
vestigated. Recent interval methods [21,23] appear to be another matter to
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study for the improvement of closed-chain motion planning techniques. In-
terval methods can provide a complete approximated representation of the
whole set of configurations satisfying loop closure equations. They compute
a set of boxes that contain the continuum of solutions. Such a representa-
tion is very suitable for the application of sampling-based motion planning
algorithms.

Another direction for future research concerns the application of closed-
chain motion planning to computational biology. We intend to further study
problems in structural biology that require the development of new tech-
niques for the conformational analysis of protein loops. A first goal is to get
efficient algorithms to capture the whole subset of the geometrically feasible
conformations of one or several loops in the same protein. The next goal is to
handle several proteins that interact while changing the conformation of loops
on their surfaces. Applications to structural biology are attractive for the
algorithmic development because of the kinematic complexity of molecular
models. Obviously, robotic applications could also benefit from improvements
achieved in this field.

Acknowledgments.
This work has been supported by the European project IST-37185 MOVIE
and the project BioMove3D of the CNRS Bioinformatics Research Program.

References

1. Basu S., Pollack R., Roy M.-F. (2000). Computing Roadmaps of Semi-algebraic
Sets on a Variety. J. Am. Math. Soc. 13(1), 55-82

2. Burdick J.W. (1988). Kinematic Analysis and Design of Redundant Robot Ma-
nipulators. PhD Thesis, Stanford University.

3. Burdick J.W. (1989). On the Inverse Kinematics of Redundant Manipulators:
Characterization of the Self-Motion Manifold. Proc. IEEE Int. Conf. Rob. &
Autom., 264270

4. Canny J.F. (1988). The Complexity of Robot Motion Planning. MIT Press,
Cambridge

5. Cortés J., Siméon T., Laumond J.-P. (2002). A Random Loop Generator for
Planning the Motions of Closed Kinematic Chains using PRM Methods. Proc.
IEEE Int. Conf. Rob. & Autom., 2141-2146

6. Cortés J., Siméon T. (2003). Probabilistic Motion Planning for Parallel Mech-
anisms. Proc. IEEE Int. Conf. Rob. & Autom., 43544359

7. Cortés J. (2003). Motion Planning Algorithms for General Closed-Chain Mech-
anisms. PhD Thesis, Institut National Polytechnique de Toulouse

8. Cortés J., Siméon T., Remaud-Siméon M., Tran V. (2004). Geometric Algo-
rithms for the Conformational Analysis of Long Protein Loops. J. Comp. Chem.
25(7), 956-967

9. Finn P.W., Kavraki L.E., Latombe J.-C. et al. (1998). RAPID: Randomized
Pharmacophore Identification. Comp. Geom.: Theory & Appl. 10(4), 263-272

10. Gosselin C. (1988). Kinematic Analysis, Optimization and Programming of
Parallel Robotic Manipulators. PhD Thesis, McGill University



16

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Juan Cortés and Thierry Siméon

Han L., Amato N.M. (2001). A Kinematics-Based Probabilistic Roadmap
Method for Closed Kinematic Chains. In: Donald B.R., Lynch K.M.,
Rus D. (Eds.) Algorithmic and Computational Robotics: New Directions
(WAFR2000). A.K. Peters, Boston, 233-245

Kavraki L.E., Svestka P., Latombe J.-C., Overmars M.H. (1996). Probabilistic
Roadmaps for Path Planning in High-Dimensional Configuration Spaces. IEEE
Trans. Rob. & Autom. 12(4), 566-580

Latombe J.-C. (1991). Robot Motion Planning. Kluwer Academic Publishers
Latombe J.-C. (1999). Motion Planning: A Journey of Robots, Molecules, Dig-
ital Actors, and Other Artifacts. Int. J. Rob. Res. 18(11), 1119-1128

LaValle S.M., Yakey J.H., Kavraki L.E. (1999). A Probabilistic Roadmap Ap-
proach for Systems with Closed Kinematic Chains. Proc. IEEE Int. Conf. Rob.
& Autom., 473-479

LaValle S.M., Kuffner, J.J. (2001). Rapidly-Exploring Random Trees: Progress
and Prospects. In: Donald B.R., Lynch K.M., Rus D. (Eds.) Algorithmic and
Computational Robotics: New Directions (WAFR2000). A.K. Peters, Boston,
293-308

LaValle S.M., Branicky M.S. (2004). On the Relationship Between Classical
Grid Search and Probabilistic Roadmaps. In: Boissonnat J.-D., Burdick J.,
Goldberg K., Hutchinson S. (Eds.). Algorithmic Foundations of Roadmaps V
(WAFR2002). Springer-Verlag, Berlin, 59-75

Lin M.C., Manocha D. (2004). Collision and Proximity Queries. In: Hand-
book of Discrete and Computational Geometry: Collision Detection. To appear.
Available at http://www.cs.unc.edu/~dm/

Lozano-Pérez, T. (1983). Spatial Planning: A Configuration Space Approach.
IEEE Trans. Computers 32(2), 108-120

McCarthy J.M. (2000). Geometric Design of Linkages. Springer-Verlag, New
York

Merlet J.-P. (2001). A Parser for the Interval Evaluation of Analytical Functions
and its Applications to Engineering Problems. J. Symb. Comp. 31, 475-486
Nielsen J., Roth B. (1997). Formulation and Solution for the Direct and Inverse
Kinematics Problem for Mechanisms and Mechatronic Systems. Proc. NATO
Adv. Study Inst. on Comp. Meth. in Mech. 1, 233-252

Porta J.M., Ros L., Thomas F., Torras C. (2003). A Branch-and-Prune Algo-
rithm for Solving Systems of Distance Constraint. Proc. IEEE Int. Conf. Rob.
& Autom., 342-348

Siméon T., Laumond J.-P., Nissoux C. (2000). Visibility-Based Probabilistic
Roadmaps for Motion Planning. Adv. Rob. J. 14(6), 477-494

Siméon T., Laumond J.-P., Lamiraux F. (2001). Move3D: a Generic Platform
for Path Planning. Proc. IEEE Int. Symp. Assembly & Task Planning, 25-30
Siméon T., Laumond J.-P., Cortés J., Sahbani A. (2004). Manipulation Plan-
ning with Probabilistic Roadmaps. Int. J. Rob. Res., in press

Thomas F. (1993). The Self-Motion Manifold of the N-bar Mechanism. In:
Angeles J., Hommel G., Kovédcs P. (Eds.) Computational Kinematics. Kluwer
Academic Publishers, Dordrecht, 95-107

Trinkle J.C., Milgram R.J. (2002). Complete Path Planning for Closed Kine-
matic Chains with Spherical Joints. Int. J. Rob. Res. 21(9), 773-789

Yakey J.H. (2000). Randomized Path Planning for Linkages with Closed Kine-
matic Chains. MA Thesis, Iowa State University

Yakey J.H., LaValle S.M., Kavraki L.E. (2001). Randomized Path Planning for
Linkages with Closed Kinematic Chains. IEEE Trans. Rob. & Autom. 17(6),
951-958



