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Geometric Algorithms for the Conformational Analysis of
Long Protein Loops
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Abstract: The efficient filtering of unfeasible conformations would considerably benefit the exploration of the

conformational space when searching for minimum energy structures or during molecular simulation. The most
important conditions for filtering are the maintenance of molecular chain integrity and the avoidance of steric clashes.
These conditions can be seen as geometric constraints on a molecular model. In this article, we discuss how techniques
issued from recent research in robotics can be applied to this filtering. Two complementary techniques are presented:
one for conformational sampling and another for computing conformational changes satisfying such geometric
constraints. The main interest of the proposed techniques is their application to the structural analysis of long protein
loops. First experimental results demonstrate the efficacy of the approach for studying the mobility of loop 7 in
amylosucrase from Neisseria polysaccharea. The supposed motions of this 17-residue loop would play an important role

in the activity of this enzyme.
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Introduction

Prime techniques in structural investigations require the explora-
tion of the conformational space ‘6 of a molecule. Conformational
search methods' explore %6 to identify the stable structures of
molecules, which determine their properties and functions. Molec-
ular simulations® explore 6 while computing conformational
changes on a molecule under modified environmental conditions.
The analysis of such changes of the molecular structure is essential
for the understanding of many biologic processes.

Because the goal of the conformational search is to find min-
imum energy structures, the exploration is much more efficient
when it is limited to a subset of ‘€ excluding energetically unac-
ceptable conformations. Conformational changes explored in sim-
ulations can occur only if there is not a high energetic barrier to
overcome. Therefore, approaches treating these problems will
greatly benefit from efficient techniques able to provide samples
and paths in € that filter most unfeasible conformations.

The conformational analysis of a whole macromolecule is a
difficult problem. From a methodological point of view, two stages
are usually necessary: the first corresponds to the identification of
rigid segments (i.e., secondary structural elements) capable of
participating in the molecular framework; the second is devoted to
the remaining segments, so-called loops, assumed to be much

more flexible. However, available techniques to predict low-en-
ergy conformations of long loops are limited and much less effi-
cient because of the loop flexibility.

When the global molecular architecture is assumed to be
known and only portions (loops) are studied separately, the integ-
rity of molecular chains must be maintained. The first and last
atoms of the treated segment of a molecular chain must remain
bonded with their neighbor atoms. Breaking these bonds requires
a high amount of energy. A strong constraint is thus imposed for
the conformational exploration. This same constraint is present in
the analysis of cyclic molecules. It is often referred to in the
literature as the loop-closure constraint. Three main kinds of
methods can be applied to solve the loop-closing problem (i.e.,
computing conformations satisfying loop closure): analytic (e.g.,
refs. 3-5), optimization-based (e.g., refs. 6—8), and database meth-
ods (e.g., refs. 9 and 10). The difficulty of this problem increases
with the length of the molecular chain, and available techniques
are limited, or at least strongly penalized, by this.

In addition to breaking bonds, another large amount of energy
is required to get two nonbonded atoms significantly closer than
the sum of their van der Waals (vdW) radii. A violation of this
condition is called steric clash. Feasible conformations of a mo-



lecular segment cannot contain either internal clashes, which we
call self-clashes, or clashes with atoms of the rest of the molecule.
A possible filter for such unacceptable conformations consists of
evaluating the repulsive term of the vdW energy and discarding
conformations that exceed a given cutoff value.'' However, this
energetic constraint can also be treated by geometric procedures.
The use of “clash grids,” computed from the distances between
atoms, to perform this filtering was proposed in ref. 12. An
interesting alternative is the use of collision detection algorithms
applied on a 3D model of the molecule.'® Obviously, the higher
the number of atoms the more critical the efficiency of the tech-
nique.

In robotics, the same kinds of constraint appear when treating
the motion planning problem.'* Paths must be computed in the
subset of feasible configurations* of the robot, 6,.,.. The main
feasibility condition is collision avoidance. The robot cannot col-
lide with obstacles in the workspace and self-collisions are also
forbidden. Besides, when the robotic mechanism contains kine-
matic loops closure constraints must be considered in the com-
puted motions. Sampling-based motion planning techniques (e.g.,
refs. 15-17) have been demonstrated to be efficient and general
tools in this field. These techniques capture the topology of 6.,
within data structures (graphs or trees) by performing a random (or
quasirandom) exploration of ¢ on a model of the robot and its
environment.

In recent publications, we described efficient algorithms
for planning motions of closed-chain mechanisms. In this article,
we investigate the adaptation of these techniques to handle mo-
lecular models. Although the method could be applied to any
molecular segment or cyclic molecule, we are mainly interested in
the application to long protein loops.

18,19

Interest in Protein Loops

Loops play key roles in the function of proteins. They are often
involved in active and binding sites. Therefore, when predicting a
protein structure an accurate loop modeling is necessary for de-
termining its functional specificity.

Modeling loops in proteins is one of the main open problems in
structural biology. Comparative modeling methods (see ref. 20 for
a survey) often fail in the prediction of protein loop structures
when the percentage of sequence identities between known and
predicted protein family members is low. Indeed, it is well estab-
lished that there is no reliable approach for modeling long loops
(more than five residues) available at this time.>

The alternatives to comparative modeling are de novo (or ab
initio) methods.** Such methods carry out a search of low-energy
conformations for a given amino acid sequence. Many different
approaches have been proposed for modeling protein loops. One of
the most developed techniques is described in ref. 23. This refer-
ence article also provides a concise survey of loop modeling
methods. The accuracy of de novo methods mainly depends on the

*A configuration for a robot is equivalent to a conformation for a molecule.
We designate both, the configuration space and the conformational space,
by €.

energy function they use. Therefore, improvements in the results
provided by these approaches require the design of fine-energy
models. However, progress in the conformational exploration
strategies may also be necessary to increase the efficiency of these
techniques, which are today computationally expensive.

Even more important than the prediction of stable loop confor-
mations is the determination of the feasible conformational
changes. In many enzymes, for example, surface loops undergo
conformational changes to catalyze a reaction.** Further, loop
motions are in general involved in protein interactions. Therefore,
introducing loop flexibility into docking approaches is necessary
for a more accurate prediction of these interactions.*

Aim of Our Approach

The techniques proposed in this article aim to be new tools for the
structural analysis of long polypeptide segments and, in particular,
of protein loops. The efficiency of geometric algorithms developed
in the field of robotics can relieve conformational exploration
approaches of a part of the heavy energetic treatment.

In Section 5, we propose a conformational sampling technique
that generates random conformations satisfying loop-closure and
clash avoidance constraints. The backbone conformation is first
computed by an algorithm that relies on efficient geometric and
kinematic procedures. Side-chain conformations are then gener-
ated by combining sampling techniques and an effective collision
detection algorithm. Families of approaches requiring conforma-
tional sampling, such as Monte Carlo algorithms>® or stochastic
roadmap techniques,?” would directly benefit from such filtered
conformations.

Another interesting feature of our sampling technique is to
compute loop conformations avoiding steric clashes with the rest
of the protein. Using this technique to compute random samples
uniformly distributed in the conformational space will provide
useful information about the allowed conformations of the loop in
its environment. For instance, this information could be repre-
sented in the form of Ramachandran plots,?® and techniques (e.g.,
MODELLER??) using such statistical distributions could gain in
performance.

The geometric analysis can be pushed further. In Section 6, we
propose an algorithm to capture the connectivity of the subspace of
geometrically feasible conformations. The possible deformations
maintaining loop-closure and clash avoidance constraints are ex-
plored and encoded in a data structure. Such a data structure would
be useful for many existing conformational exploration ap-
proaches. Note that a conformational search method sharing sim-
ilar ideas has been proposed in ref. 29 for small molecules (li-
gands) under geometric constraints.

Problem Formulation

The problem is formulated from a robotic point of view. First, the
geometric model of the molecule is described. The constraints that
must be satisfied during the exploration of the conformational
space are then defined.
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Figure 1. Molecular chain model. Frames associated (a) with atoms and (b)
defining the articulated mechanism. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com.]

Geometric Model

Kinematics-Inspired Model

A molecule is a set of atoms o, partially connected by bonds. A
sequence of bonded atoms is called a molecular chain. Three
parameters, usually called internal coordinates, define the relative
position of consecutive atoms in a molecular chain: bond lengths,
bond angles, and dihedral angles. The widely adopted rigid geom-
etry assumption (see ref. 30 as one of the first references) considers
that only dihedral angles are variable parameters. Under this as-
sumption, a molecule can be seen as an articulated mechanism
with revolute joints between bonded atoms. The model of a mo-
lecular chain can be built from the internal coordinates using
kinematics conventions. We follow the modified Denavit—Harten-
berg (mDH) convention described in ref. 31. A Cartesian coordi-
nate system F; is attached to each atom i, and then the relative
location of consecutive frames can be defined by a homogeneous
transformation matrix:

Co, —S6; 0 0
il = S6,Ca;-; COCaiy —Sa;m; —Soi_yd;
180S0, COSa;y Caiy  Coyyd
0 0 0 1

where d, is the bond length between atoms &,_, and s ,; «;_, is
the supplement of the bond angle between o, ,, s, _,, and 4 ;;
0, is the dihedral angle formed by atoms 4, ,, s, _,, s,, and
A, [see Fig. 1(a)]. C and S represent sines and cosines, respec-
tively.

A molecular chain between atoms s, and #,, is then modeled by
akinematic chain, '%,, in which joint variables correspond to dihedral
angles. The conformation of the chain is determined by the array ¢ of
the 6,. The kinematic model of a polypeptide segment is composed of
a set of chains: the main-chain (the backbone) and the side-chains,

which are built upon it. The conformation of the segment is then
specified by an array containing the conformation parameters of the
backbone and of all the side-chains.

Often, some portions of molecular models are treated as rigid
solids, for instance, peptide units in proteins. The rigid geometry
assumption also considers that double-bond torsion angles, such as
peptide bonds, are fixed. Hence, the number of frames required in the
kinematic modeling is reduced. Figure 1(b) illustrates how the frames
corresponding to the mDH parameters are obtained by simple geo-
metric operations when the dihedral angle associated with a peptide
bond w is fixed at a given value. Thus, several atoms in each peptide
unit have constant coordinates in these frames. As proposed in a
recent work,?” frames only need to be attached to rigid units (called
atomgroups by the authors). Then, the relative location of atoms in an
atomgroup only requires positional coordinates, yielding to a more
efficient method for updating conformations.

vdW Model

The vdW model consists of a representation of the molecule by the
union of solid spheres associated with atoms. A vdW radius is
assigned to each atom type. This geometric model of the molecule
is the simplest and most ordinary space-filling diagram.** In mo-
lecular models treated by our approach, such spheres are the
mobile bodies of the articulated polypeptide segment and the static
obstacles corresponding to the rest of the atoms in the molecule,
which compose what we call the environment.

Geometric Constraints

Loop Closure

A loop-closure constraint applied on the kinematic model of a
molecular chain ', fixes the relative location of the frames F,,
and F,, which we call base-frame and end-frame, respectively.

n’



Algorithm 1: RANDOMLOOPCONE.

input : the loop, the rest of the protein
output : the conformation ¢
begin
q,, < RANDOMBACKBONECONF(loop.bkb);
if not CLASHCHECK(q,,, loop.bkb, protein) then
if g, < GENERATESIDECHAINS(q,,, loop, protein) then
g < ComMPOUNDCONE(loop, q,,, q,);
else return Failure;
else return Failure;

end

Therefore, the transform matrix °7, is known. This matrix can also
be obtained from the sequence of local transformations:

o7, =T'T,..."'T,

This equality provides a system of equations, called closure equa-
tions, where the unknowns are the joint variables 60,. Hence, a
relationship must exist between the parameters in ¢ for satisfying
loop closure.

Clash Avoidance

Distances between nonbonded atoms that are substantially shorter
than the sum of their vdW radii must be avoided. The choice of the
limiting contact distance is ambiguous. For our experiments, we
model molecules using a percentage (usually 70%) of the vdW
radii proposed in ref. 34. Collisions between such reduced vdW
spheres must be avoided if they are separated by more than three
bonds. This condition must be satisfied between the atoms of the
articulated segment and between these atoms and the static atoms
of the rest of the molecule.

Conformational Sampling

Algorithm 1 computes a random conformation of a polypeptide
segment (the protein loop) achieving loop-closure and clash avoid-
ance constraints on the 3D model. First, the backbone conforma-
tion ¢, is generated. The procedure for obtaining random confor-
mations satisfying closure is explained in the next subsection.
These conformations are then tested for clashes of backbone atoms
between themselves and with atoms in the environment. Once a
feasible conformation for the backbone has been computed, ran-
dom conformations of the side-chains ¢, are tested. These chains
are built iteratively until all of them are free of clashes. The
process is explained below.

Backbone Conformation with Closure

Obtaining a backbone conformation satisfying loop closure re-
quires the solution of the closure equations mentioned above.
Unfortunately, and despite the intensive research in the field, no

efficient general solution is currently available to solve systems of
multivariable nonlinear algebraic equations (see ref. 35 for a
survey).

It is now well known that, in general, six variables in the
closure equations are dependent on the rest (independent vari-
ables). Note that six is the minimum number of parameters that
allow us to span full-rank subsets of SE(3) (the position-orienta-
tion space in a 3D world)."* Many articles in computational
chemistry and robotics (e.g., refs. 3, 5, and 36-39]) propose
methods to obtain these six dependent variables as a function of
the other parameters. Except for very particular geometries (e.g.
regular cyclohexane®®), only a finite number of solutions exists.

The remaining difficulty is how to obtain values for the inde-
pendent variables for which a solution of the closure equations
exists. In robotics, detailed analytic approaches have been pro-
posed only for planar or spherical closed mechanisms.*' In com-
putational chemistry, only a few authors have tackled this problem.
Decimation approaches and hierarchical decomposition of the
closing problem have been proposed for loops with six or more
residues.” However, for very long loops the efficiency of such
methods decreases because closure equations must be solved sev-
eral times for different fragments of the chain.

We propose an algorithm, called random loop generator
(RLG), that produces random configurations of articulated mech-
anisms containing closed chains. This algorithm has demonstrated
its efficiency within robotic motion planning techniques.'®'® The
configuration parameters of a closed kinematic chain are separated
into two arrays: we call the independent variables of the closure
equations the active variables q“ and the dependent variables the
passive variables q”. The RLG algorithm performs a particular
random sampling for ¢ that notably increases the probability of
obtaining solutions for ¢”.

We next explain the main elements of our approach and how it
can be applied to polypeptide backbone segments. Explanations
are illustrated on a simple mechanism, the 6R planar linkage in
Figure 2. The &, are the rigid bodies and the J; the revolute joints
connecting them.

Loop Decomposition

The choice of the dependent and independent variables in the
closure equations is arbitrary. We choose them consecutively in
the kinematic chain. Thus, we can refer to a passive subchain
involving joints whose variables are in g” (passive joints). Al-
though the passive subchain can be placed anywhere in the closed
chain, it is convenient to place it in the middle. In general, the
passive subchain is a mechanism with six degrees of freedom. For
a polypeptide backbone model under the rigid geometry assump-
tion, only dihedral angles ¢ and ¢ are variable. Therefore, the
passive subchain is composed of the backbone of three residues. In
the example in Figure 2, three consecutive revolute joints (i.e., a
3R planar mechanism) are sufficient. We have chosen J5, J,, and
J5 to be the passive joints of the 6R linkage. Then, the rest of the
joints (active joints corresponding to ¢“) can be seen as contained
in two active subchains rooted on the (fictive) solid on which the
base frame and the end frame are fixed (¥, in Fig. 2).
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Figure 2. Steps of the RLG algorithm performed on a 6R planar linkage. [Color figure
can be viewed in the online issue, which is available at www.interscience.wiley.com.]

RLG Algorithm

The pseudocode of the algorithm that generates random configu-
rations of a single-loop closed chain (applied to the loop backbone)
is synthesized in Algorithm 2. First, the configuration parameters
of the active subchains, ¢“, are computed by the function Sam-
PLE_g“ detailed in Algorithm 3. The idea of the algorithm is to
progressively decrease the complexity of the closed chain treated
at each iteration until only the configuration of the passive sub-
chain, ¢”, remains to be solved. The two active subchains are
treated alternately. The ideal solution should be to sample each

Algorithm 2: RANDOMBACKBONECONF.

input : the backbone
output : the conformation ¢,
begin

q“ <= SAMPLE_q“(backbone);

if ¢” < COMPUTE_q” (backbone, q“) then
q, < CoMPOUNDCONF(backbone, q“, q");

else return Failure;

end

joint variable from the subset of values, which we call closure
range, satisfying the closure equations. However, computing this
subset is as difficult as solving the general closure equations. Thus,
an approximation is used. This approximation must be conserva-
tive to guarantee a complete solution (i.e., no region of the sub-
space satisfying closure constraints is excluded from the sam-

Algorithm 3: SamMPLE_g“.

input : the backbone
output : the active variables g“
begin

(Jps J.) < INITSAMPLER(Dackbone);

while not ENDACTIVECHAIN(backbone, J,) do
1. < CoMPUTECLOSURERANGE(backbone, J,, J,);
if /. = O then go to line 1;
SETJOINTVALUE(J,,, RANDOM(/,));
J, < Nex1JOINT(backbone, J,);
if not ENDACTIVECHAIN(backbone, J,) then
|_SW1TCH(J,,, J.);

end




pling). More details about how to obtain the approximated closure
range are given in the next subsection. The closure range of the
joint variable treated at one iteration depends on the configuration
of the previously treated joints. Hence, this subset must be recom-
puted for all joints (except the first treated one) in the generation
of each new configuration. Because of the conservative nature of
the approach, it is possible to obtain an empty set. In this case, the
process is restarted.

Figures 2(a)-2(c) illustrate how the values of 6,, 6,, and 6, (the
active variables ¢“) are generated for the 6R linkage. For each
joint variable, the estimation of the closure range is computed and
a random value is sampled inside this set. Figure 2(d) shows the
two solutions of the closure equations for the passive subchain. In
this case, these solutions are obtained by simple trigonometric
operations. The solution for the passive subchain in the polypep-
tide backbone model is treated below.

Computing Closure Range

The problem can be formulated as follows. Given a closed kine-
matic chain “¥, involving joints from J, to J, (we consider b <
e in this explanation), two open kinematic chains are obtained by
breaking the body &£, between J, and J, , . A suitable break point
is the physical placement of J,,,, but any other point can be
chosen. A frame F . associated with this break point can be seen
as the end frame of both open chains. The closure range of the joint
variable corresponding to J,, 6,, is the subset of values for which
F is reachable by the open chain “¥, ;. In general, the exact
solution to this problem is extremely complex. Most works in the
robot kinematics literature are limited to particular instances (e.g.,
refs. 42 and 43). For our purpose, a simple and fast method is
preferred to a more accurate but slower one. We solve the problem
only considering positional reachability.

Because J, is a revolute joint, the origin of F. describes a
circle around its axis. The approximation of the closure range is
obtained by the intersection of this circle with a volume (surface
for the planar case in Fig. 2) bounding the region mapped by the
origin of F attached to the chain “J{, . ,, which is called the
reachable workspace (RWS) in robotics. This bounding volume is
contained between two concentric spheres (circles) centered at the
origin of the base frame and whose radii are the maximum and
minimum extension of the chain, r., and r;,. For a general
mechanism, obtaining these radii requires the solution of complex
optimization problems. If the appropriate (even if computationally
slow) method is available, it can be used in a precomputing phase.
However, simpler particular solutions can be adopted for particular
classes of mechanisms. The solution is straightforward for the
planar linkage in our example. The regions designated as RWS in
Figures 2(a)-2(c) represent such bounding surfaces at different
steps of the algorithm.

In the application to molecular models, frames F are the
frames attached to atoms. Particularities in the geometry of
polypeptide backbones allow the design of a simple approximated
method to compute the spheres bounding RWS. For chains con-
taining more than three residues (which is the size of the passive
subchain), r;,, can be simply considered zero without decreasing
the performance of the technique.
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Figure 3. Maximum extension of polypeptide backbone with Paul-
ing—Corey geometry.

The maximum distance between the extreme atoms of a seg-
ment of polypeptide backbone* is often obtained for a conforma-
tion with all the dihedral angles at 7. We call this length /.
However, this assumption is not always true, in particular if a
slight rotation around peptide bonds is allowed. An upper bound of
the maximum is required for guaranteeing completeness. This
upper bound [ is the sum of the distances between consecutive C,,
atoms (i.e., the length of peptide units). Obviously, when the chain
begins or ends with a fragment of a peptide unit (i.e., only one or
two of the three concerned atoms in the backbone are contained in
the chain) the length of this portion is added. Instead of using a
constant value, r.,, is sampled from a distribution between /. and
I each time this dimension is required in the process. We suggest
using a Gaussian distribution with w = [_ and ¢® = 1. This
increases the efficiency of the approach while keeping complete-
ness.

This approximated method to obtain r.,, is not dependent on a
particular kind of geometry. It can be applied on standard models
or to structures acquired from the Protein Data Bank (PDB)
(http://www.rcsb.org/pdb). Figure 3 illustrates the application to
backbone segments with standard Pauling—Corey geometry.**

General 6R Inverse Kinematics

The kinematic model of the three-residue backbone corresponding
to the passive subchain in our approach can be seen as a 6R
manipulator with general geometry.*> Obtaining the conformation
of a serial manipulator, given the location of the base frame and the
end frame (i.e., solving the closure equations), is known in robotics
as the inverse kinematics problem.

The method we use to solve the general 6R inverse kinematics
problem is inspired by the work of Lee and Liang.>® The principle

*Without proline. This case, studied apart, is not detailed in this article.



of the method is described in ref. 39.* The algebraic elimination of
variables starts in a way similar to that used in related works (e.g.,
refs. 37 and 38). However, Renaud goes further in the elimination
process, arriving at an 8 X 8 quadratic polynomial matrix in one
variable instead of the 12 X 12 matrix in the referred methods. The
problem can then be treated as a generalized eigenvalue problem
(as previously proposed in ref. 38), for which efficient and robust
solutions are available.*® Another important advantage of the
method in relation to all previous approaches is that it requires a
minimum number of divisions in the elimination process. In par-
ticular, divisions by zero are avoided to guarantee robustness.

Note that the general 6R mechanism can have up to 16 inverse
kinematic solutions. Thus, several sets of values of the passive
variables ¢” satisfy loop-closure equations for a given value of the
active variables ¢“. Each backbone conformation obtained by
composing ¢“ with the different ¢” is treated by the algorithm
RaNDOMLOOPCONF (Algorithm 1).

Clashes and Side-Chain Conformation

Collision Detection Algorithms

A collision detection algorithm determines if contacts or penetra-
tions exist between 3D bodies. They are important tools in com-
putational geometry and robotics.*”*® Collision detection is the
most computationally expensive process in sampling-based motion
planning techniques. Thus, effective algorithms have been devel-
oped in this field to try to minimize this cost.

In our current implementation of the approach, clashes in a
sampled conformation are checked by a generic collision detection
algorithm,*® which operates well within geometrically complex 3D
scenes.

Sampling Side-Chain Conformation

The conformation of the side-chains is built upon a feasible back-
bone conformation. These side-chain conformations are generated
by randomly sampling the side-chain dihedral angles and tested
until a collision-free solution is found. A progressive construction
is carried out. Instead of rebuilding all the side-chains when the
collision test is positive, only the conformation of clashing side-
chains is resampled. The resampling and collision detection pro-
cess is performed following an arbitrary order of the side-chains,
intending to prevent a privileged conformational sampling. When
two side-chains collide together, but self-clashes or clashes with
the backbone and the rest of the protein do not exist, only one of
them will be resampled. The process is iterated a certain number of
times before returning that a clash-free conformation of the side-
chains cannot be found.

*The author is currently working on an extended version with full tech-
nique details.

Algorithm 4: ExploreByRRT.

input : the loop, the rest of the protein, q,,;,
output : the tree J

begin

G < INITTREE(q,,,;,);

Npain < 0;

while not SToPCONDITION(T ) do

q rana < GUIDEDRANDOMCONF(loop);

< NEARESTNEIGHBOR(G, s J )3

Qnear

Qfeas <~ nears

state < OK;

while state = OK do

Gsiep < MAKESTEP(Geqss G rana)s

if FEASIBLECONF(q,,,,,) then g .., < q.,;
else state <— FAIL;

if not TOOSIMILARCONK(G > Geas) then
Gers < INTERMEDIATECONF( s Gfeas)}
GROWTREE(G 1015 Grears T )3

| pais < 05

L else ng,;; < ng, + 13

end

Conformational Space Exploration

Sampling-Based Motion Planning Techniques

Sampling-based motion planning techniques appeared in robotics
as an alternative to exact approaches'* that cannot be applied to
high-dimensional configuration spaces. In particular, algorithms
based on the probabilistic roadmap (PRM) approach (e.g., refs. 15
and 16) have mostly been developed. The general PRM principle
is to construct a graph (roadmap) that captures the topology of the
feasible subset of robot configurations, ¢ The nodes of this
graph are randomly sampled configurations satisfying intrinsic
conditions in this subset (e.g., collision avoidance). The edges are
short feasible paths (local paths) linking “nearby” nodes. Other
families of methods aim to efficiently solve single planning que-
ries instead of covering the whole search space. The rapidly-
exploring random tree (RRT)'” is a data structure and sampling
scheme to quickly search high-dimensional constrained spaces.
@.eas 18 €xplored by one or two trees rooted at the start and/or goal
configurations. The exploration is biased by sampling points in €
and incrementally pulling the search tree(s) toward them.

This section treats the application of these techniques onto
geometric models of molecules. Let us call €, the subset of the
conformations satisfying the loop-closure constraints and 6., the
subset of clash-free conformations. €., = 6,05 N 6ee is the
subset of the geometrically feasible conformations to be explored.
Obviously, not every conformation in €, is energetically accept-
able, but a significant number of high-energy structures are ex-
cluded from this subset. We assume that 6., contains all the
energetically feasible conformations: €,.,, z C € ... C €.

feas*



Figure 4. Incremental exploration of €., using an RRT-like technique.

Incremental Search Keeping Constraints

We next explain an algorithm to carry out the incremental search
of %, using an RRT-like technique'” extended to handle the
geometric constraints in our problem. Algorithm 4 gives the
pseudocode and Figure 4 illustrates the exploration in a simple 2D
example. The darker regions in the figure correspond to confor-
mations with steric clashes, 6,... being the rest of the space. In
general, conformations satisfying closure (in €_,.,) are grouped
into different disjoint continuous manifolds.>® We considered two
manifolds 6/, and 62, for this illustration.

The starting point ¢,,;, can be a randomly sampled feasible
conformation (e.g., generated by the technique explained above) or

a known conformation (e.g., acquired from the PDB). For execut-
ing an expansion step of the RRT, a random conformation g, is
first sampled in 6. g,,,q need not satisfy either closure or clash
avoidance constraints. This conformation is only used as a local
goal for the exploration. Nevertheless, we have experimentally
shown that a guided-random sampling generating q.,.4 close to the
subset satisfying closure equations improves the process (i.e., a
wider portion of the space is explored in less time) in relation to a
uniform random sampling.>" For this, the configuration parameters
corresponding to the independent variables of the closure equa-
tions, ¢“, are generated by the function SAMPLE_g“ (Algorithm 3),
explained above. Then, the nearest node in the current tree, ¢,

Figure 5. Structure of AS from N. polysaccharea.



is selected using a distance metric in 6. A new conformation gy,
is iteratively pulled from ¢,,, toward ¢,,,4. The pulled conforma-
tion must remain in the feasible subset. The closure constraint is
maintained as follows. A conformation g, is obtained by inter-
polating ¢, and ¢,,,4 following a law (e.g., linear interpolation).
The closure equations are then solved for the passive variables of
the backbone conformation (called ¢” above). If the solution in the
same manifold as ¢, exists, then the conformation satisfying
closure, g is checked for clashes. The process goes on until one
of the feasibility conditions is violated. The new node of the tree,
Gnew 18 an intermediate conformation between ¢, and the last
obtained ¢.,,. We use a Gaussian sampling between g, and g, ...
to obtain it.

Several criteria can be adopted for stopping the exploration.
The simplest one is to build the tree until it contains a given
number of nodes. The drawback is that this criterion is not related
to a coverage of the explored region. We believe that an estimation
of this coverage could be deduced from the number ng,; of
consecutive times the algorithm fails when trying to expand the
tree. A similar relationship has been demonstrated in related meth-
ods.'®

While the infinite solutions of the global inverse kinematics
problem are grouped into different disjoint continuous manifolds
and collision-free portions of each manifold can be also disjoint,
the explained algorithm can explore only a region in €. Several
starting points are required for exploring the different connected
components of €..,.. An algorithm combining RRT and PRM
techniques could be used for the exploration of the whole subset.

Exploration with Flexible Geometry

Considering fixed values for bond lengths, bond angles, and dou-
ble-bond torsion angles is a well-accepted assumption that reduces
the complexity of the structural analysis of molecules. However, it
implies a severe restriction for conformational space exploration.>*
The rigid geometry assumption can be relaxed by allowing a
slight variation of these parameters within given intervals. Han-
dling these new variables is not a hard problem for our exploration
algorithm, proceeding as follows. To generate a conformation
Grang» Parameters d, a, and w (see above) are first randomly
sampled within the defined intervals. Then, the approach explained
in the Conformational Sampling section can be used. In the incre-
mental variation of the selected conformation ¢, toward gq,,,q4,
the new parameters are treated like the rest of the (nonpassive)
variables (i.e., they are interpolated following a given law).

First Results: Loop 7 Motions of Amylosucrase
from Neisseria Polysaccharea

Amylosucrase (AS) is a glucansucrase that catalyzes the synthesis
of an amylose-like polymer from sucrose. In the Carbohydrate-
Active enZYme database (CAZy) (http://afmb.cnrs-mrs.fr/~cazy/
CAZY/index.htm), this enzyme is classified in family 13 of glu-
coside-hydrolases (GH), which mainly contains starch-converting
enzymes (hydrolases or transglycosidases). Remarkably, this en-
zyme is the only polymerase acting on sucrose substrate reported
in this family, all the other glucansucrases being gathered in GH

family 70. Which structural features are involved in AS specificity
is an important fundamental question. Indeed, the structural sim-
ilarity of AS to family 13 enzymes is high. The 3D structure
reveals an organization in five domains.>® Three of them are
commonly found in family 13: a catalytic (/a)g barrel domain, a
B domain between B-strand 3 and «-helix 3 (loop 3), and a C
terminal Greek key domain. Two additional domains are found in
AS only: a helical N-terminal domain and a domain termed B’,
formed by an extended loop between B-strand 7 and a-helix 7.
Domain B’ partially covers the active site located at the bottom of
a pocket and is mainly responsible for this typical architecture.
Recently, cocrystallization of AS with maltoheptaose revealed the
presence of two maltoheptaose binding sites, the first (OB1) in the
main access channel to the active site and a second (OB2) at the
surface of domain B’. Soaking AS crystals with sucrose also
revealed the presence of a second sucrose binding site (SB2)
different from the active site initially identified.>* The comparison
of the various structures obtained suggests that motion of the
17-residue fragment of domain B’ starting at residue Gly433 and
ending at residue Gly449, consecutive to oligosaccharide binding,
could facilitate sucrose translocation from SB2 to the active site. In
the following part, this fragment will be called loop 7. This loop
could play a pivotal role responsible for the structural change and
the polymerase activity. In this context, molecular simulation of
loop 7 motion appears to be crucial to gain new insight into AS
structure—function relationships.

Figure 5 shows the crystallographic structure of AS and the
location of the residues we mention in the following paragraphs.
The model for our tests was created from the PDB file containing
this structure (PDB ID: 1G5A), considering loop 7 as an articu-
lated mechanism and the rest of the atoms as static elements.
Atoms were modeled with 70% of their vdW radii. Images on the
left in Figure 6 represent the articulated vdW model of the loop
and a portion of its environment. Under our modeling assumptions,
the results of the geometric exploration showed that only slight
conformational variations of the loop are possible if the backbone
integrity is maintained and steric clashes are avoided. The image
on the right in Figure 6(a) shows the skeleton of the articulated
segment and a representation of one of the RRTs computed for this
test. Nodes of the RRT are graphically represented by the positions
explored by the C_, atom of Ser441, the middle residue of the loop.
This result contradicts presupposed significant loop fluctuations.
Of course, our approach is not deterministic and therefore we
cannot guarantee that such a motion does not exist. However, after
several exhaustive tests we can assert that the probability of its
existence is low. The average size of the constructed RRTs is 1000
nodes, for which about 4000 random conformations and 20,000
complete collision tests were necessary. The average computing
time was 1 h.* Note that computing time is mostly spent in
collision detection. The generation of random conformations is
fast. For this loop, computing a conformation-satisfying closure
(including the update of all the frames and atom positions) takes
less than 0.1 s with a nonoptimized implementation. The confor-
mational sampling used by the exploration algorithm (i.e., guided-

*Tests were performed using a Sun Blade 100 workstation with a 500-MHz
UltraSPARC-IIe processor.



Figure 6. Exploration (a) with and (b) without the side-chain of Asp231.
[Color figure can be viewed in the online issue, which is available at
www.interscience.wiley.com.]

random sampling of ¢ without solving the closure equations for
q”) demands only about 0.01 s per conformation.

Several structural elements, and mainly loop 3 (residues
183-262), restrain the mobility of loop 7. Residue Asp231 was
identified as the main “geometric lock™ responsible for the loop
7 enclosing. The side-chain of this residue was removed from
the model to simulate a possible conformational change of this
chain or even of the whole loop 3. The conformational explo-
ration in this case showed that the loop is able to effect the
expected motions keeping geometric constraints. The C, atom
of Ser441 can be dislocated more than 9 A from its crystallo-
graphic position. Several tests were performed to see if the
random nature of the approach could have an important influ-
ence on the nature of the results. Similar motions were obtained
for all of them. The loop moves almost as a rigid body with
hinges at the extreme residues. Considerable variations of the
backbone dihedral angles are concentrated in residues 433—436
and 446—-449. Figure 6(b) shows the representation of the RRT
constructed in one of these tests. The images in Figure 7
correspond to four frames of the conformational change en-
coded in the RRT. Therefore, an “opening/closing” mechanism
similar to other enzymes (e.g., refs. 24 and 55), termed confor-
mational gating, is suspected for this loop. The role that residue
Asp231 could play in this mechanism is being investigated.
Directed mutagenesis experiments, replacing residue Asp231
by glycine, are currently being developed.

Discussion and Prospects

We proposed geometric techniques aimed at providing powerful
filters for conformational sampling and search methods. Our solution
to the loop-closing problem is computationally efficient and its per-
formance is only slightly affected by the length of the molecular
chain. To the best of our knowledge, only the CCD algorithm recently
proposed in ref. 8 offers a similar performance. While this optimiza-
tion-based algorithm converges to an approximate closure solution
starting from a nearly open conformation of the loop, our RLG
sampling method computes exact solutions to the closure problem.
Also, one disadvantage pointed out in ref. 8 is that the CCD optimi-
zation technique, which considers one degree of freedom at a time,
may favor large changes in the first residues of the loop. By compar-
ison, the random strategy of RLG produces more uniformly distrib-
uted samples, better suited for exploration of the conformational space.

Our algorithms are currently implemented within the motion
planning platform Move3D>® developed at LAAS for robotics
applications. No particular consideration has been given to reduc-
ing computation time in the present implementation, which is
aimed at demonstrating the efficacy of the proposed techniques.
More extensive experimental tests and performance comparisons
remain for future work, based on an optimized version taking
advantage of the specifics of molecular models. We started the
development of such an optimized version and a standalone library
that could be made accessible to the scientific community.



c)

Figure 7. Simulated conformational gating of loop 7 in AS. [Color figure can
be viewed in the online issue, which is available at www.interscience.

wiley.com.]

Concerning the avoidance of steric clashes, collision detection
algorithms combined with smart sampling techniques constitute an
attractive alternative to methods producing optimization-based re-
arrangements. We are developing a tailored collision detection
algorithm for molecular models that should perform faster than the
generic checker currently used. In addition, a different progressive
process for building backbone conformations is going to be tried.
In contrast to the described sampling approach, clashes between
the backbone atoms and the static environment will be checked
after each step of the RLG algorithm.

In our current implementation, values for all variable dihedral
angles in the side-chains and backbone are randomly sampled in
the interval (—r, 7). As in other related techniques, our approach
could handle information on the statistically preferred values of
these angles (e.g., from Ramachandran plots by residue type).
Using this information, many local steric clashes should be im-
plicitly avoided.

Concerning the exploration technique, we are working on a
method for pruning branches of the RRT to decrease the size of
this data structure, thus increasing the speed of the search process.
Preliminary results using a visibility-based heuristic'® seem prom-
ising.

The algorithms presented in this article treat conformations of
a molecular segment in a static environment. The extension of
these algorithms to handle the flexibility of side-chains in this
environment could be done without difficulty. Handling several
loops that share the same region of the space (e.g., antibody
hypervariable loops®”) is an interesting extension we expect to
develop.

The first results of the application of our robotic approach to
molecular models show the potential of this technique. A fast
geometric analysis can help find the answer to important biochem-

ical questions such as: what are the crucial residues in the bio-
chemical reaction? and what are the possible conformational
changes?

Although our next goal is to improve this geometrically con-
strained exploration, the final aim is to incorporate the energetic
analysis into the incremental search technique. An energy function
can easily be integrated into this kind of exploration algorithm.
Indeed, impressive results have been obtained by conformational
search methods inspired by sampling-based motion planning tech-
niques applied to computer-assisted drug design,?® protein fold-
ing,?”°® and ligand—protein docking.>®*° Given this energy func-
tion, geometrically feasible conformations generated by our
approach could be evaluated and labeled, and then only the subset
of the conformational space 6.,  below a certain energetic limit
should be explored.
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