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ABSTRACT

This paper presents a new method for computing macromolecular motions based on the
combination of path planning algorithms, originating from robotics research, and elastic
network normal mode analysis. The low-frequency normal modes are regarded as the
collective degrees of freedom of the molecule. Geometric path planning algorithms are
used to explore these collective degrees of freedom in order to find possible large-amplitude
conformational changes. To overcome the limits of the harmonic approximation, which is
valid in the vicinity of the minimum energy structure, and to get larger conformational
changes, normal mode calculations are iterated during the exploration. Initial results show
the efficiency of our method, which requires a small number of normal mode calculations
to compute large-amplitude conformational transitions in proteins. A detailed analysis is
presented for the computed transition between the open and closed structures of adenylate
kinase. This transition, important for its biological function, involves large-amplitude
domain motions. The obtained motion correlates well with results presented in related
works.
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INTRODUCTION

The study of conformational changes in macromolecules such as proteins or DNA is of
key importance for understanding their biological functions. Furthermore, accurately pre-
dicting molecular interactions with computational methods requires taking into account
molecular flexibility1–5. Therefore, the development of techniques to compute macromolec-
ular motions is currently the subject of much research.

The most rigorous method to simulate molecular motions is molecular dynamics (MD)6,7,
which calculates the trajectories of atoms using Newton’s Second Law and potential energy
functions of atom-atom interactions. However, the computational cost of MD prohibits rou-
tine simulations of large-amplitude motions of macromolecules. As an alternative to MD
methods, stochastic search methods compute low-energy paths by randomly exploring a
given molecular force field. Most of the stochastic approaches to compute molecular mo-
tions are based on Monte Carlo (MC) algorithms6,7. A recently proposed stochastic explo-
ration method based on robotic path planning techniques8 outperforms classical MC-based
algorithms by simultaneously examining multiple pathways. Despite efforts to develop ef-
ficient techniques, the ability of energy-based search methods to compute large-amplitude
motions of macromolecular models is limited by the complexity of the search-space. In-
deed, the molecular energy landscape is a very high-dimensional manifold with many local
minima.

The complexity of molecular energy landscapes led us to develop a two-stage approach
for computing large-amplitude motions9. The first and main stage is purely geometric. A
geometric treatment of the strongest molecular constraints, combined with efficient path
planning algorithms, permits our method to consider large-amplitude motions with low
computational cost. In the second stage, paths computed using the geometric approach
are refined by fast energy minimization. We obtained encouraging results when apply-
ing this method to compute protein loop motions10 and ligand-protein access pathways9.
Recently, a similar approach has been used to compute motions of pairs of α-helices in
transmembrane proteins11. However, despite the efficiency of such geometry-based confor-
mational exploration, it remains difficult to directly handle fully-flexible molecular models
with this approach because of the very high dimension of the conformational space.

This paper presents a new method to compute global macromolecular motions such as
open-closed conformational transitions in proteins. It combines the above mentioned geo-
metric approach with normal mode analysis (NMA)12. A number of works13–16 have shown
that large-amplitude motions in macromolecules (e.g. domain motions) are associated with
low-frequency normal modes, therefore demonstrating the ability of NMA-based methods
to predict the direction of collective conformational changes. However, such methods do
not precisely represent the conformational transition. The harmonic approximation of the
potential energy function is an accurate simplification only in the vicinity of the starting
energy minimum. Computing large-amplitude transitions, which are complex inharmonic
motions, requires additional tools. Previous works17–20 have used an iterative process that
recomputes the normal modes after each small displacement. The drawback of such a
method is that the number of iterations necessary to compute a large-amplitude transition
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can be very high. Since each normal mode calculation is computationally expensive, the
process can be very time consuming. Thanks to the combination with the geometric path
planning exploration, the approach presented in this paper requires only a small number
of normal mode calculations. The main idea is to guide the conformational exploration,
performed with a path planning algorithm on a purely geometric molecular model, using
the directions of collective atomic motions given by the low-frequency normal modes. In-
deed, the algorithm explores the space of the collective degrees of freedom provided by
the low-frequency modes, which is a lower-dimensional sub-manifold of the conformational
space.
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MATERIAL AND METHODS

We first briefly describe the two basic methods used within our approach: the NMA
method, which is based on an elastic network model of the molecule, and the geomet-
ric path search method. We then explain the algorithm for computing large-amplitude
conformational changes that combines both methods.

Elastic Network Normal Mode Analysis

NMA is based on the harmonic approximation of the potential energy function around a
minimum energy conformation. The diagonalization of the Hessian matrix of the potential
energy provides a set of eigenvectors and eigenfrequencies that characterize the normal
modes of vibration. The normal modes represent the atom displacements around the
equilibrium position at the energy minimum. Collective motions, in which many atoms
participate, are associated with low-frequency normal modes, while high-frequency modes
correspond to local fluctuations.

In this work, we use an NMA-based method that considers a simplified potential for
normal mode calculations based on an elastic network model (ENM) of the molecule21.
The potential energy function of the ENM has the following form:

EP =
∑

d0
ij<Rc

C

2
(dij − d0

ij)
2

where dij is the distance between atoms i and j, and d0
ij represents their distance in the

initial conformation. C is the elastic constant, which for simplicity is assumed to be the
same for all interacting pairs. The sum is restricted to atom pairs separated by less than a
distance Rc, which is an arbitrary cut-off parameter. The ENM is often applied to a coarse-
grained molecular model that only considers one point per residue (e.g. the position of
the Cα atoms). Such a simplified NMA variant, which we refer to as elastic network NMA
(EN-NMA), can potentially predict the direction of collective conformational changes of
proteins15 and even larger macromolecular assemblies such as viruses22. Methods based
on EN-NMA have been used for very different applications such as the evaluation of ther-
mal fluctuations in proteins23, flexible docking studies24, flexible fitting of high-resolution
macromolecular structures into low-resolution maps obtained by electron microscopy19,
and finding candidate conformation of multidomain proteins for use in molecular replace-
ment20. The ENM has also been used within other methods to compute conformational
transitions. Kim et al.25 proposed a method for computing transition pathways using a
coarse-grained ENM and interpolating the distances between spatially neighboring residues
given by the two end conformations. The plastic network model (PNM) proposed by Mara-
gakis and Karplus26 also relies on the ENM. The elastic energy functions of the different
conformers are involved in a single equation that is used to compute the conformational
change pathway.

The most time consuming operation in normal mode calculations is the diagonalization
of the Hessian matrix. Our current implementation integrates ElNémo27. This NMA
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package considers all-atom models of molecules and applies a building-block approximation,
called the rotation-translation block (RTB)28, to speed up the calculation. The RTB
considers rigid-body motions of atom groups (usually, one group per residue) instead of
considering the individual motions of all the atoms. This approximation considerably
reduces the size of the matrix, thus making the diagonalization much more efficient in
terms of computing time and memory. It has been shown that the RTB approximation
has very little influence in low-frequency modes28.

A significant advantage of EN-NMA compared to NMA methods using detailed po-
tentials is that the initial structure does not need to be energy minimized21. Indeed, any
initial conformation is a minimum energy conformation for the ENM potential energy func-
tion. This advantage is particularly important for techniques, like the one presented in this
paper, that repeatedly compute normal modes within an iterative process.

Geometric Path-Planning-Based Conformational Exploration

Path planning is a classical problem in robotics29. It consists of computing feasible motions
for a mechanical system in a workspace cluttered with obstacles. In recent years, path plan-
ning techniques have undergone considerable progress. Sampling-based algorithms30 have
been demonstrated to be efficient tools for exploring constrained high-dimensional spaces.
Such algorithms have been successfully applied to challenging problems in diverse appli-
cation domains, including computational biology8,9,11,31. We present below an overview of
the method described by Cortés et al.9, which is extended in the present work to handle
fully-flexible molecular models using collective motions provided by EN-NMA.

Mechanistic molecular model

Within our approach, molecules are modeled as articulated mechanisms. Groups of rigidly
bonded atoms form the bodies of the mechanism and the articulations between bodies
correspond to bond torsions. These torsions are the molecular degrees of freedom. The
atoms are represented by spheres with (a percentage of) van der Waals radii. Fig. 1 shows
the van der Waals sphere representation of adenylate kinase and illustrates the articulated
mechanical model on a detailed view of a residue. Using a geometric interpretation of the
van der Waals repulsive force, the spheres associated with non-bonded atom pairs cannot
overlap. Additional distance and orientation constraints can be imposed between elements
of this mechanistic molecular model in order to simulate attractive interactions such as
hydrogen bonds or aromatic interactions.

We use the tailored algorithm BioCD32 for efficient collision detection and distance
computations in such mechanistic molecular models. BioCD uses spatially-adapted hier-
archical data structures that approximate the shape of the protein at successive levels of
detail, allowing the number of interacting pairs tested for collision to be significantly re-
duced. The algorithm is well suited to a sampling-based path planning scheme in which
many degrees of freedom are simultaneously and arbitrarily modified during the exploration
of the conformational space.
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Conformational exploration algorithm

The conformational search technique applied in this work is based on the Rapidly-exploring
Random Trees (RRT) algorithm33. RRT-like path planners perform well in highly con-
strained spaces. Molecular motions are generally extremely constrained due to steric clash
avoidance.

The basic principle of the RRT algorithm is to incrementally grow a random tree
rooted at the initial conformation qinit to explore the reachable conformational space and
find a feasible path connecting qinit to a goal conformation qgoal. Algorithm 1 gives the
pseudocode for the RRT construction and Fig. 2 illustrates the process. At each iteration,
the tree is expanded toward a randomly sampled conformation qrand, generated by the
function SamplePoint. This random sample is used to simultaneously determine the tree
node to be expanded and the direction in which it is expanded. The nearest node qnear

in the tree to the sample qrand is selected by the function BestNeighbor (given a distance
metric in the conformational space) and an attempt is made by the function ExpandTree to
expand qnear in the direction of the straight path to qrand. This straight-line connection is
usually called a local path. A new node qnew is generated in the feasible sub-path (i.e. the
local path segment satisfying motion constraints) between qnear and qrand. The process
iterates until qgoal can be connected to the tree or a stop condition determines that no
solution exists. Note that, in the absence of specified goal, the same algorithm can be
used to encode within the computed tree a representative subset of feasible paths and
conformations reachable from qinit. The key idea of the RRT expansion strategy is to bias
the exploration toward unexplored regions of the space. Hence, the probability that a node
will be chosen for an expansion is proportional to the volume of its Voronoi region (i.e.
the set of points closer to this node than to any other node). Therefore RRT expansion is
biased toward large Voronoi regions enabling rapid exploration before uniformly covering
the space.

NMA-Guided Path Planning Method

The geometric path search method described above performs well when the macromolecular
flexibility is only treated partially (e.g. flexible side-chains or flexible loops connecting rigid
secondary structure elements)9. However, considering fully-flexible macromolecular models
is much more complex because of the number of degrees of freedom and constraints. To
address this complexity, the idea developed in this paper is to guide the conformational
exploration carried out by the geometric approach using information about global molecular
motions provided by low-frequency normal modes of vibration. This section first presents
a brief description of the method and then explains the algorithmic details.

Outline of the method

To deal with fully-flexible molecular models, we define the search-space not as the space of
the degrees of freedom of the mechanistic molecular model (i.e. the bond torsions) but as
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the space of the low-frequency normal modes provided by EN-NMA. Each normal mode
is considered as a collective degree of freedom and its amplitude is a parameter of the
search-space. Starting from a given conformation, the RRT algorithm is used to explore
the sub-space of the collective degrees of freedom that satisfies geometric constraints of the
mechanistic model (i.e. collision avoidance). Thus, the computed tree encodes the feasi-
ble regions of the conformational space reachable from the initial conformation, following
motion directions provided by a set of low-frequency normal modes while satisfying the
constraints imposed on the geometric molecular model. Since the information provided
by NMA is only accurate in a relatively small region around the initial conformation, the
guidance of the RRT search would degrade when exploring larger regions. Therefore, nor-
mal mode calculations are iteratively updated during the conformational exploration in
order to compute large-amplitude conformational transitions.

Algorithm

Algorithm 2 summarizes the main stages of the iterative search process. Starting from the
initial conformation, the normal modes are computed and the RRT algorithm (Algorithm 1)
is applied to explore possible motions in the space of the collective degrees of freedom until
the search tree cannot be sensibly expanded toward unexplored regions of the search-
space or until a given cost function can not be significantly improved. The resulting tree is
analyzed in order to select the new start conformation for the next iteration. Thanks to the
use of EN-NMA, the intermediate start conformations do not need to be energy minimized
before the normal mode recalculation. At the end of the process, the conformational
transition pathway is obtained by the concatenation of the sub-paths computed throughout
all the iterations. We detail below the main features of the NMA-guided RRT search
method.

The search-space. The search-space is the coordinate space of the low-frequency normal
modes, which we denote by SNM . We consider an arbitrary number n of the lowest-
frequency modes (as in related works19,20, we consider 10-30 modes) and we assume that
all of them have the same frequency. Thus, any combination of these n normal modes
is potentially explored. This is a reasonable assumption for the first few normal modes
obtained with coarse-grained EN-NMA methods. The movement along each mode mi is
parameterized by a single real variable ai ∈ [−1, 1]. Therefore, the search-space SNM is the
Cartesian product of n real intervals [−1, 1], which is an n-dimensional smooth manifold.
Each point in SNM is defined by a vector α = {a1, . . . , an}.

Conversion into internal coordinates. Most EN-NMA techniques, as the one used in
this work, generate relatively small atom displacements in Cartesian coordinates following
the directions given by the normal modes. Since normal modes are simply used as a guide
for the conformational exploration, an amplification factor can be applied to these displace-
ments disregarding its physical meaning. However, large atom displacements in Cartesian
coordinates yield unrealistic bond lengths and bond angles. Thus, the displacements are
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converted from Cartesian coordinates into internal coordinates, and the amplification fac-
tor is applied only to the bond torsions. In this way, each point α in SNM corresponds to
a conformation of the mechanistic molecular model, q= f(α). The function SamplePoint

in Algorithm 1 generates conformations by randomly sampling values for α. Each node
in the search tree stores q, the molecular conformation, and α, the associated vector of
parameters in the space of the normal modes.

Decoupled backbone and side-chain motions. Side-chain motions are disregarded
by EN-NMA methods considering coarse-grained molecular models. In the case of ElNémo,
even if an all-atom model is considered for computing the potential energy, the building-
block approximation used for the diagonalization of Hessian matrix only considers one
block per residue, therefore neglecting side-chain fluctuations. However, side-chain motions
can be important during a conformational transition and must be taken into account for
accurately computing the pathway. Our exploration method considers decoupled backbone
and side-chain motions. The backbone atoms move following the directions provided by
the combination of normal modes, while the side-chains only move when they collide. The
procedure to compute side-chain motions is further explained in the paragraph below,
describing the method used to validate local paths. Note that the different natures of
backbone and side-chain motions in proteins have been experimentally shown by Lindorff-
Larsen et al.34. On average, a protein can be characterized as having solid-like rigidity in
the backbone with liquid-like side-chains attached.

Motion validation. A key process in the RRT algorithm is the expansion of a node in
the search tree {qnear,αnear} toward a randomly sampled point qrand = f(αrand), yield-
ing the generation of a new node {qnew,αnew}. This process is carried out by the function
ExpandTree in Algorithm 1. A local path is generated from the linear interpolation between
αnear and αrand. Beginning from qnear, the satisfaction of motion constraints (i.e. collision
avoidance) is verified for each conformation q = f(α) along the local path. This path is
validated using discrete steps. The discretization step size is determined using a conserva-
tive approach that guarantees that, at each step, no atom moves more than a prespecified
distance. A collision between backbone atoms means that the local path cannot continue
in the direction toward qrand. However, when a side-chain is involved in a collision, the
method randomly perturbs its torsion angles aiming to find a collision-free conformation
that will permit the expansion process to continue. The random perturbation is iterated
a predefined number of times before determining that the backbone conformation is not
valid because of side-chain collisions. The new node {qnew,αnew} is the point obtained at
the end of the valid portion of the local path.

Biased conformational search. Information about the conformational change can be
used to bias the exploration performed by the RRT algorithm. We introduce this bias when
selecting the node to be expanded, {qnear,αnear}. This node selection is performed by the
function BestNeighbor in Algorithm 1. In the standard RRT algorithm, the selected node
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is the nearest neighbor of the random sample {qrand,αrand} for a given distance metric in
the search-space. In our case, the metric is simply the Euclidean distance in the space
of the normal modes SNM . In order to bias the selection, this distance can be weighted
by a factor w that reflects the preference of the node for future expansion. If the goal
conformation qgoal is known, the weight is computed from the RMS distance (RMSD)
between the conformation q associated with the node and this goal conformation as:

w = RMSD(qgoal,q)/RMSD(qgoal,qinit)

Note that, in some cases, the goal conformation is unknown, but information is available
about one or several pairs or residues that should be closer (or farther) after the confor-
mational transition. The weight can then be computed from the distance between these
residue pairs.

Termination conditions. Each RRT exploration iterates until a stop condition is satis-
fied. The procedure implemented for the StopCondition in Algorithm 1 detects when the
search tree cannot be sensibly expanded toward unexplored regions of the search-space.
The method consists of measuring the volume of a simple convex hull (e.g. a bounding
box) of the tree and stopping when this volume does not increase after a given number
of iterations. However, if information about the goal conformation is available, a simpler
condition can be used that stops the exploration when the above defined weight associated
with the conformations is not improved. Once the RRT construction stops, the function
SelectNewStart (in Algorithm 2) analyzes the resulting tree in order to select the start
conformation for the next iteration. If the goal conformation is known, the conformation
with smallest RMSD to it is selected. Otherwise, the new start conformation is chosen
among the farthest nodes to the initial one. In the current implementation, only one con-
formation is selected. Nevertheless, the algorithm could be easily modified to re-iterate
the exploration from several significantly different conformations. The main process stops
when the function EndConformation in Algorithm 2 determines that either the new start-
ing point is arbitrarily close to the given goal conformation or the pathway cannot be
significantly extended.

Solution pathway. The result of one iteration of Algorithm 2 is a sequence of elementary
motions, each obtained from a different linear combination of modes, which are combined
with side-chain motions. The computed pathway is the concatenation of the sub-paths
obtained after each iteration. This output is a continuous path that satisfies the geometric
constraints of our all-atom molecular model (no bond stretching and bending, and no atom
overlaps). The continuous solution pathway can be discretized into an arbitrary number
of feasible intermediate conformations.
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RESULTS

The proposed method has been applied to compute transition pathways involving large-
amplitude domain motions between known conformations of several proteins. A detailed
analysis is first presented for adenylate kinase and results are compared to those obtained
with other computational methods. Then, results obtained with other proteins allow us to
analyze the performance of the method when applied to different protein types.

Adenylate Kinase Conformational Transition

Adenylate kinase (ADK) is a good testbed for our method for several reasons: it is a
well-known protein, the structures of its open and closed conformers have been exper-
imentally determined, the transition between these conformers involves large-amplitude
domain motions, and this conformational change has been studied with different compu-
tational methods18,26. In this section, we show results obtained with our method for the
transition pathway from the open conformer of ADK (PDB code: 4AKE) toward the closed
conformer (PDB code: 1AKE). The structure of ADK35 is divided into three domains. Two
of these domains, called the LID and the NMPbind domains in related literature, are in-
volved in the conformational transition, while the main domain, called the CORE, remains
unchanged26,36. The three domains of ADK are represented with different gray levels in
Fig. 3: the clearest region at the right is the CORE, the darkest portion at the top is the
NMPbind domain, and the left domain is the LID. Fig. 3.a and Fig. 3.c show the open
and the closed conformers respectively. Fig. 3.b represents an intermediate conformation
of the transition pathway.

Transition pathway

Computing the transition pathway of ADK with our approach required only 10 iterations
of the NMA-guided RRT search algorithm (Algorithm 2). Fig. 4 shows the ribbon super-
position of the open conformer and the 10 intermediate conformations obtained after each
iteration toward the closed conformer. Remarkably, although the whole protein model
is potentially flexible, only the two segments between residues 35-63 and 112-169 move
significantly (more than 3 Å). These two segments nearly correspond with the NMPbind
and the LID domains respectively. The analysis of the obtained pathway shows that the
conformational transition occurs in two steps. During the first iterations, only the LID
starts closing toward the CORE. The motion of the NMPbind domain becomes significant
from the 5th iteration, when the RMSD from the open conformer approaches 7 Å. Fig. 3.b
shows the conformation obtained after the 5th iteration. At this iteration, the LID is near
its final conformation in the closed conformer, while the NMPbind domain is closer to its
initial conformation than to its final one. The plot in Fig. 5 represents the displacement of
the Cα atoms measured for each pair of consecutive conformations in the pathway. One can
observe two darker regions in this plot: the biggest one, between iterations 1 and 4, corre-
sponds with the LID motion, while the region around residue 50 and between iterations 5
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and 7 corresponds with the pathway segment where the motion of the NMPbind domain
is more significant. Note that such a two-step nature of the conformational transition of
ADK has been described before by Maragakis and Karplus26.

Fig. 6 shows the variation of the RMSD (computed from the Cα atom positions in
the all-atom model) along the transition pathway. The distance between the open and the
closed conformers is approximately 9 Å. The conformation obtained after the 10th iteration
of our computational method is very similar to the closed conformer. The Cα RMSD
between both conformations is 1.95 Å. Fig. 7 shows the superposition of both structuresa.
Note that, although the RMSD associated with the conformational transition of ADK is
moderate because of the rigidity of the CORE domain, the LID and the NMPbind domains
undergo large-amplitude motions. In the computed pathway, the Cα of Gly151 (in the LID
domain) moves more than 25 Å and the Cα of Ala55 (in the NMPbind domain) moves
more than 12 Å.

The variation of the strain energy along the computed transition pathway is displayed
in Fig. 8. The strain energy was calculated for the coarse-grained model (only considering
the Cα atoms) using an elastic constant C = 2.0 × 10−2 kcal/mol per Å2 and a cutoff of
8 Å, as proposed by Maragakis and Karplus26. Like in the referred work, the strain energy
with relation to the open conformer remains very low during most of the pathway. It only
starts increasing rapidly from an RMSD of 7 Å.

Performance and parameter settings

Computing ADK conformational transition pathway required about 80 minutes of CPU
time on an Intel Pentium 4 processor at 3.0 GHz. Fig. 9 shows the computing time spent
in each iteration of the RRT-based conformational exploration. The plot also displays the
number of nodes generated in each search tree. The normal mode calculation preceding
each exploration step took about 1 minute. Note that, although the above results mainly
concern the 10 intermediate conformations obtained after each iteration of Algorithm 2,
the output of our computational method is a continuous smooth path, free of steric clashes
for the all-atom protein model. A movie of this pathway is available as supplementary
material.

We used the following parameter settings: we considered the 20 lowest-frequency normal
modes provided by ElNémo for a cutoff distance of 8 Å; we applied an amplification factor
of 100 to the bond torsions extracted from the atom displacements given by the normal
modes; atom collisions were checked using spheres with 80% of the van der Waals radiib; the
discretization step for validating the local paths permitted a maximum atom displacement
of 0.1 Å; the RRT exploration stops when 100 new nodes are consecutively generated
without reducing the RMSD.

aWe have used MASS37 for structure superposition.
bConsidering a percentage of the van der Waals equilibrium distance ensures that only energetically

infeasible conformations are rejected by the collision checker. The value of 80% is often used in techniques
that geometrically check atom overlaps38.
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Other Examples

Besides ADK, the proposed method has been applied to several proteins selected from the
Database of Macromolecular Movements (DMM)39. This section provides results obtained
for four other proteins: ATP sulfurylase (ATP), C. Glutamicum DAP Dehydrogenase
(DAP), EIAV Capsid Protein P26 (EIA), and Lysine/Arginine/Ornithine binding protein
(LAO). All the examples involve large-amplitude domain motions: ATP, DAP, and LAO
movements are classified predominantly hinge in the DMM, while EIA movement is con-
sidered as predominantly shear. Table I provides the PDB IDs corresponding to initial
and final conformations and summarizes the numerical results obtained when computing
the associated conformational transitions. All tests were performed using the same pa-
rameter settings as for ADK (see above). The values reported in the table for RMSDinit

and RMSDend are the RMSD to the goal conformation measured at the beginning and at
the end of the computed pathways. In all the cases, the RMSD to the goal conformation
is reduced below 2 Å. Also note that the number of iterations of the NMA-guided RRT
search algorithm (Algorithm 2), Niter, required to compute the transition pathway remains
very small: it ranges from 3 for ATP to 12 for LAO. The total computing timec, Ttotal,
ranges from 70 minutes for EIA to 200 minutes for DAP. Ti

NMA and Ti
explor respectively

represent the average computing time required for the normal mode calculation and the
RRT-based conformational exploration at each iteration. Results reported in the table
indicate that Ti

NMA strongly depends on the protein size (Nres is the number of residues
in each protein), while Ti

explor is much less affected by that. Indeed, Ti
explor and Niter are

more related to the protein structure and shape than to the protein size. Interestingly, in
the two examples requiring a lower number of iterations (ATP and EAI) the domains are
connected by a single linker, while two linkers exist between domains in the other cases
(see Fig. 10 for illustration). When two domains are connected by two linkers, the N- and
C-terminal regions are in the same domain. Working in internal coordinates, it is difficult
to maintain the shape of the domain containing the terminal regions during the confor-
mational exploration. Thus the feasible displacements generated by the RRT-based search
are smaller in that case. For DAP, the interface between the two domains is a wider region
than for LAO, and thus their relative motion is more constrained. This may explain the
higher value of Ti

explor.
These results confirm the ability of the NMA-guided RRT search method to compute

large-amplitude conformational changes of all-atom protein models from a very small num-
ber of NMA calculations. The number of required NMA calculations is notably lower when
compared to existing iterative NMA-based methods17–20, which are limited to computing
small displacements of the protein structure at each iteration. The performance gain with
respect to these other methods would still increase for large proteins, since the computing
time associated with NMA calculations rapidly grows with the protein size.

cComputing time corresponds to runs on a single Intel Pentium 4 processor at 3.0 GHz.
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DISCUSSION

On the direction of the conformational transition. Results presented above concern
conformational transitions from open conformers toward closed conformers. Nevertheless,
the method can also be applied to computing closed-to-open pathways, and our tests show
that the search algorithm is not very sensitive to the chosen direction. Computing the
transition pathway from the closed conformer toward the open conformer of ADK required
11 iterations of the NMA-guided RRT search algorithm (Algorithm 2) and about 80 minutes
of computing time for attaining an RMSD of 1.97 Å. Fig. 11 shows the superposition of
the open conformer and the conformation obtained after the 11th iteration. These results
are very similar to the ones presented in the preceding section. The profile of the RMSD
variation displayed in Fig. 12 is also very similar to the profile corresponding to the open-
to-closed transition pathway. Our tests indicate that the low-frequency normal modes
computed from the closed conformer are still a suitable guide for the RRT-based search
method, even if EN-NMA methods have been shown to perform better when applied to an
open protein form than to a closed form15.

On the number of modes. We also analyzed the influence of the number of normal
modes used as collective degrees of freedom within the NMA-guided RRT search on the
performance of the method. Table II summarizes results obtained using the 5 and the 20
lowest-frequency modes for the first iteration of ADK transition pathway computation in
both directions (open-to-closed and closed-to-open). The reported computing time T and
the RMSD reduction have been averaged over 10 runs of the iteration. One can note that
the number of modes has very little influence when starting from the open conformation.
However, a higher number of modes is necessary to obtain a good performance of the
algorithm when the exploration starts from a closed protein form. The different behavior
is due to stronger motion constraints to avoid steric clashes for the closed form of the
protein compared to the open one. In the latter case, since less constrained conformational
space regions are explored, combinations of very few modes may be sufficient to yield
feasible large-amplitude motions. In contrast, feasible motions are more complex near
the closed form, and require a combination of a higher number of modes. Even for such
constrained situations, tests (not reported in this paper) using a higher number of modes
(up to 50) do not show significant performance improvement compared to tests using 20
modes. From our tests, using 20 modes presents the best compromise between exploration
rate and computing time. Therefore, this value has been considered as a constant for all the
iterations. During the search, all the lowest frequency modes are assumed to have the same
frequency. Thus, any linear combination of them can be explored. This is a reasonable
assumption since we only use the first few normal modes computed from a simplified ENM
potential. However, if a higher number of modes was considered, it might be suitable to
better guide the exploration by applying frequency-dependent weights to emphasize the
lowest modes, as proposed by Jeong et al.20.
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On the method reliability. Despite the random nature of the RRT-based conforma-
tional exploration, different runs of the algorithm yield very similar transition pathways.
The normal mode guidance combined with the geometric constraints drive the molecular
motion toward a unique pathway class. Fig. 13 and Fig. 14 display results for 10 different
runs of the first iteration of the algorithm starting from the open ADK conformer. The
structure superposition in Fig. 13 shows that the obtained conformations are remarkably
similar: the average Cα RMSD is 0.62 Å. The plot in Fig. 14 shows that each residue moves
approximately the same distance in each run. This result demonstrates the reliability of
the method.

On the convergence. Looking at Fig. 6 and Fig. 12, one can observe a slower con-
vergence rate of the iterations when approaching the final conformation. The RMSD to
the goal conformer decreases very rapidly during the first iterations, but later, it tends to
show a slower asymptotic convergence. This is a common behavior for most iterative NMA
methods19. The rigid geometry assumption for the internal coordinates considered in our
approach may also explain the difficulty reducing RMSD to the goal conformation below
2 Å. Indeed, since the conformational exploration considers a protein model in which bond
lengths and bond angles are maintained constant at the values of the initial structure, it
is not possible to exactly converge to a goal conformation for which the values of these
parameters are in general slightly different. Introducing variable bond lengths and bond
angles in the articulated molecular model might enable the method to decrease the final
RMSD, but will require more costly update operations that would slow-down the overall
performance.

On side-chain motions. Side-chain motions may have important implications in the
protein conformational change. Compared to other methods applying coarse-grained EN-
NMA that consider rigid side-chains, a nice feature of the NMA-guided RRT search method
is that it handles side-chain mobility. Indeed, the exploration modifies side-chain conforma-
tions during the transition pathway when they are involved in steric clashes. The efficiency
of the current procedure, based on simple random perturbation of the side-chain torsions,
although sufficient, may probably gain from using a rotamer library to bias the random
sampling. Another possible improvement for better considering side-chain mobility may
be to use all-atom normal mode calculations computed from detailed potentials instead
of the EN-NMA method. Such a more accurate (but computationally expensive) method
would better deal with coupled motions of the backbone and the side-chains. Note that
the DIMB method40 could be an interesting choice for such improvement because of its
computational efficiency.

On predicting unknown candidate conformations. While the results above show
the good performance of the approach for computing large-amplitude transition pathways
between known conformers, the problem of predicting feasible pathways to unknown can-
didate conformations remains a much more challenging and yet open problem. Providing
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an accurate predictive method is beyond the scope of this paper. However, the discussion
below highlights the potential of the NMA-guided RRT search algorithm to address such
problems. In the case of an unknown goal conformation, the RRT search tree tends to cover
the subset of the conformational space reachable from the initial conformation. Starting
from the open conformer of ADK, we applied this exploratory variant to the first iteration
of the algorithm. The exploration stopped after 5 minutes with a tree containing almost
1000 nodes. The resulting tree nodes, ordered by increasing RMSD to the initial open con-
formation, were then clustered in a very simple way in order to select significantly different
conformations. Conformations were only kept if the RMSD between them was greater
than a given threshold. For a threshold equal to the maximum RMSD from the initial
conformation to any node in the tree, only two significantly different conformations were
obtained. Fig. 15 shows these two conformations superposed to the open ADK conformer.
One can observe that in both cases the most mobile part is the LID domain, while the
rest of the protein remains almost unchanged. This behavior corresponds to the beginning
of the transition pathway presented in the preceding section. For the farthest conforma-
tion (Fig. 15 left), the LID domain moves toward its position in the closed conformer,
and the RMSD to this conformation is reduced of 1.00 Å. Note that the other selected
conformation (Fig. 15 right) corresponds to a LID motion in the opposite direction. This
preliminary study tends to show that the approach could be extended for predicting path-
ways to unknown protein conformations. However, this interesting extension will require
the introduction of some form of energetic scoring for selecting candidate conformations.
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CONCLUSION

We have presented an efficient and reliable method for computing large-amplitude con-
formational changes in proteins. Combining normal mode analysis and geometric path
planning algorithms, the approach overcomes the limitations of each individual method
for computing this type of macromolecular motion: the normal modes are only able to
accurately represent motions in a vicinity of the minimum energy structure, while geo-
metric path planning approaches need guidance to obtain realistic motions of fully-flexible
macromolecular models. The described procedure is completely automatic (i.e. does not
need user intervention) and requires tuning of few parameters. The output of the proposed
algorithm is a continuous pathway that satisfies the geometric constraints of a mechanistic
all-atom molecular model. These constraints correspond to the strongest energetic barriers.
The analysis of such a geometrically feasible pathway can provide very useful information.
Our study of ADK conformational transition indicates that the solution obtained with
this mechanistic approach correlates well with results of previous studies. Additionally,
a rapid energy minimization of intermediate conformations may enable a finer analysis of
the transition pathway. Our goal in the near future is to apply the method presented in
this paper to consider protein flexibility in the computational analysis of protein-ligand
interactions. We expect to extend our previous work on protein-ligand accessibility9 to the
case of fully-flexible receptor models.
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path planning approach for computing large-amplitude motions of flexible molecules.
Bioinformatics 2005;21:i116-i125.
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Table I: Numerical results for ADK and four other proteins that undergo large-amplitude

conformational transitions.

Table II: Experiments on the influence of the number of modes over the performance of the

computational method. Results for one iteration of the NMA-guided RRT search algorithm

(Algorithm 2) in the two directions of ADK conformational transition.
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Figure 1: Mechanistic molecular model. Proteins are modeled as articulated mechanisms.

Bonded atom groups form the bodies and the articulations correspond to bond torsions.

Figure 2: Illustration of one expansion step

of a search tree using an RRT-based algo-

rithm. The tree tends to cover Sfeas: the

feasible subset of the search-space S.
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Figure 3: Three frames of the conformational transition of adenylate kinase: (a) open

conformer, (c) closed conformer, (b) an intermediate conformation. The CORE (right),

LID (left) and NMPbind (top) domains are represented with different gray levels.
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Figure 4: Superposition of the open ADK conformer (black) and 10 intermediate confor-

mations (gray-scale) obtained after each iteration for computing the transition pathway

toward the closed conformer.
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Figure 5: Displacement of the residues along the conformational transition. The plot shows

the displacement of the Cα atoms for each iteration step along the pathway. The darker

regions correspond with the more mobile segments.
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Figure 6: Variation of the RMSD along the computed pathway from the open conformer

toward the closed conformer of ADK.

Figure 7: Superposition of the closed ADK conformer (black) and the final conformation

of the computed transition pathway from the open conformer (gray).
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Figure 8: Variation of the strain energy along the conformational transition pathway.
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Figure 9: Performance of the conformational exploration technique: computing time and

number of nodes of the search tree (RRT) constructed at each iteration.

Figure 10: Structures of EIA (left) and LAO (right). The linkers between the different

domains are represented in black. The two domains of EIA are connected by a single linker,

while two linkers connect the two domains of LAO.
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Figure 11: Superposition of the open ADK conformer (black) and the final conformation

of the computed transition pathway from the closed conformer (gray).
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Figure 12: Variation of the RMSD along the computed pathway from the closed conformer

toward the open conformer of ADK.
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Figure 13: Superposition of the obtained structures for 10 different runs of the first iteration

of the NMA-guided RRT search algorithm (Algorithm 2) from the open ADK conformer

toward the closed conformer.
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Figure 14: Displacement of the residues for 10 different runs of the first iteration of the

NMA-guided RRT search algorithm (Algorithm 2) from the open ADK conformer toward

the closed conformer.
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Figure 15: Superposition of the open ADK conformer (black) and the two farthest confor-

mations (gray) obtained after a single iteration of the NMA-guided RRT search algorithm

(Algorithm 2) with no bias toward a goal conformation. The region with a more signifi-

cant motion corresponds to the LID domain. One of the conformations (left) shows a clear

tendency toward the closed conformer. The other (right) shows a more open conformation

of the LID domain.
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