N
N

N

HAL

open science

Disassembly Path Planning for Complex Articulated
Objects

Juan Cortés, Léonard Jaillet, Thierry Simeon

» To cite this version:

Juan Cortés, Léonard Jaillet, Thierry Simeon. Disassembly Path Planning for Complex Articulated
Objects. IEEE Transactions on Robotics, 2008, 24 (2), pp.475-481. hal-01987955

HAL Id: hal-01987955
https://laas.hal.science/hal-01987955

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://laas.hal.science/hal-01987955
https://hal.archives-ouvertes.fr

Disassembly Path Planning for Complex
Articulated Objects

Juan Cortés, Léonard Jaillet, and Thierry Siméon

Abstract—Sampling-based path planning algorithms are powerful tools
for computing constrained disassembly motions. This paper presents a vari-
ant of the Rapidly-exploring Random Tree (RRT) algorithm particularly
devised for the disassembly of objects with articulated parts. Configura-
tion parameters generally play two different roles in this type of problems:
some of them are essential for the disassembly task, while others only need
to move if they hinder the progress of the disassembly process. The pro-
posed method is based on such a partition of the configuration parameters.
Results show a remarkable performance improvement as compared to stan-
dard path planning techniques. The paper also shows practical applications
of the presented algorithm in robotics and structural bioinformatics.

Index Terms—Articulated mechanisms, disassembly paths, molecular
interactions, path planning algorithms, robotic manipulation.

1. INTRODUCTION

This paper' addresses the problem of automatically computing mo-
tions to disassemble objects. The problem can be formulated as a
general path planning problem [2], [3] (see Section III). Indeed, path
planning concepts and algorithms have been applied to solve different
instances of the (dis)assembly planning problem (see Section II). The
instance treated in this paper considers two objects, with the partic-
ularity that both objects may have multiple articulated parts. Fig. 1
illustrates a simple 2-D example.

The algorithm presented in this paper is a variant of a sampling-based
path planning method: the Rapidly-exploring Random Tree (RRT) al-
gorithm introduced in [4]. Section IV reminds the principle of this
method. Sampling-based path planners are efficient, general, and easy-
to-implement methods. The RRT algorithm has been widely studied
and applied to different types of problems in the last few years (see
http://msl.cs.uiuc.edu/rrt/ for a general survey). The particular-
ity of the proposed variant is to introduce two types of configuration
parameters, labeled as active and passive, and to generate their mo-
tion in a decoupled manner. We call this variant Manhattan-like RRT
(ML-RRT), because the computed paths look like Manhattan paths over
these two sets of parameters that change alternatively. The ML-RRT
algorithm is explained in Section V. The partition of the configura-
tion parameters into active and passive corresponds to their role in

This work was supported in part by the European Community under Contract
IST 045359 “PHRIENDS,” in part by the Région Midi-Pyrénées under
Project “ALMA” of the Insti-tut des Technologies Avancées en Sciences
du Vivant (ITAV), and Project “AMOBIO” in the framework of the
Communauté de Travail des Pyrénées (CTP), and in part by the French
National Agency for Research (ANR) under Project “NanoBioMod.”

The authors are with the Laboratoire d’Architecture et d’Analyse des
Systémes, Centre National de la Recherche Scientifique (LAAS-CNRS),
Universit¢ de Toulouse, 31042 Toulouse, France (e-mail: jcortes@laas.fr;
ljaillet@laas.fr; nic@laas.fr).

o

1—

Fig. 1. Disassembly path planning problem for two objects with articulated
parts. The problem consists in finding a path to extract the small (red/dark)
object from the big one.

the disassembly problem. Active parameters are essential for the dis-
assembly task, while passive parameters only need to move if they
hinder the progress of the disassembly process. The ML-RRT algo-
rithm presents two main advantages with respect to the basic RRT: 1)
the computing time is notably reduced (see results in Section VI) and
2) the passive parts that have to move for finding a solution path are
automatically identified. Thus, the plannerref is able to handle models
involving hundreds of potential degrees of freedom (DoFs), avoiding
user intervention to select the important ones. This feature is particu-
larly interesting for one of the applications commented in Section VII:
the simulation of molecular interactions. Besides this application in
structural bioinformatics, the ML-RRT algorithm is applicable to more
classic domains involving part disassembly, such as Product Lifecycle
Management (PLM) [5]. Moreover, the algorithm can be easily ex-
tended for integrating the constraints imposed by the handling device
(e.g., a robotic manipulator) that carries out the disassembly task (see
Section VII). Other possible extensions are outlined in Section VIII.

II. RELATED WORK

Assembly and disassembly planning are important problems in man-
ufacturing engineering. Many techniques have been developed in this
field for automatically generating (dis)assembly plans that optimize
time, cost, etc. [6], [7]. Most of these techniques are based on re-
lation graph models of the assembly or precedence graphs, and use
graph theory and Al algorithms for computing disassembly sequences.
Geometric reasoning approaches have been proposed for reducing the
combinatorial complexity of the problem, as well as the amount of in-
formation that has to be provided by the user. Wilson’s pioneering work
on geometric reasoning about mechanical assembly [8] introduces the
directional blocking graph (DBG), which identifies which parts col-
lide given an instantaneous displacement in a given direction, and the
nondirected blocking graph (NDBG), which represents how parts are
constraining each other, based on a partition of the space of allowed
motions and on the associated DBGs. Many subsequent (dis)assembly
sequencing methods have used these two concepts. The approach pre-
sented in [9] generalizes the solutions in [8] to arbitrary motions be-
tween parts. The method involves constructing configuration space di-
agrams that explicitly represent interferences between pairs of parts for
every relative motion. A similar approach is developed in [10], based

on the concept of motion space, which is an extension of the notion of
configuration space, and represents possible motions of subassemblies.
More recently, disassembly sequencing planners have been proposed
based on randomized path planning algorithms. Contrary to the afore-
mentioned planners, these methods are not complete; but, they are able
to treat complex models, thanks to their computational efficiency. The
technique presented in [11] constructs a disassembly tree rooted at the
starting (assembled) configuration using a randomized diffusion strat-
egy. The sampling of movement directions is biased using geometric
information (e.g., face normals) for improving performance.

The assembly maintainability study [12] is a variant of the
(dis)assembly problem. Given an assembled system, maintainability
studies are conducted to determine if it is possible to remove a particular
part, and, if so, to obtain the disassembly path. Normally, such studies
involve only one mobile part, and therefore, “standard” path planning
algorithms could be applied. However, the workspace is usually ex-
tremely constrained in this context, and problem-specific algorithms are
required for efficiently computing disassembly paths. A fast and effec-
tive algorithm for this kind of problems is presented in [5]. The method
is based on an iterative RRT-like algorithm that reconstructs some parts
of the search tree while progressively increasing the size of the objects.

All the methods mentioned before address (dis)assembly problems
involving rigid objects. The method we present in this paper is well
suited for assembly maintainability studies in which the disassembled
objects have articulated parts.

III. PROBLEM FORMULATION

The disassembly path planning problem can be formulated as a gen-
eral path planning problem for a system with multiple mobile objects,
using the notion of configuration space C' [2], [3], [13]. A configura-
tion q is a minimal set of parameters defining the location of the mobile
system in the world, and C is the set of all the configurations. Given
the assembled configuration q;,;; and a goal configuration qg,.1 (any
disassembled configuration), the problem consists in finding a feasible
collision-free path in C' that connects both the configurations.

The instance studied in this paper considers two objects with possi-
bly multiple articulated parts. Considering that the spatial location of
one of the objects is fixed, then, the configuration parameters are those
defining the pose of the reference frame attached to the other (mobile)
object plus the DoFs associated with the articulated parts in both ob-
jects. Thus, the configuration vector is given by: g = {q™, q’®, q’*},
where q™ contains parameters defining the position and the orienta-
tion of the mobile reference frame, and q’™ and q”’* represent the joint
variables of the articulated parts in the mobile object and the static
object, respectively.

In general, the most significant parameters for the disassembly of
articulated objects are those concerning the pose of the mobile ob-
ject g™ . The parameters associated with the articulated parts are rel-
atively less important, since they only need to move if they hinder
the progress of the mobile object toward the disassembled configu-
ration. Therefore, configuration parameters can be separated into two
sets: g = {q**, gP**}, with g*** = g™, representing the active pa-
rameters and gP** = {q’™, q’*}, representing the passive parameters.
The terms active and passive have been chosen in relation to how
the algorithm described in Section V acts on them. This partition
induces the corresponding submanifolds in the configuration space:
C — Cm‘,t % Cpas’

Although the aforementioned described partition can be generally
adopted, any other partition can be defined by the user. The mobile
parts are separated into two lists, L,.; and Ly, containing the active
and the passive parts, respectively. For a given partition, g is the set

Fig. 2. Illustration of one expansion step of an RRT search tree. The tree tends
to cover Cl,,: the feasible subset of the configuration space C.

Algorithm 1: Construct_RRT

input : the configuration space C;

the root qni¢ and the goal qgpar;
output : the tree T;
begin

7« InitTree(qiit);

while not StopCondition(r, qgeal) do
Qrand < SampleConf(C);
Qnear <+ BestNeighbor(7, qrand);
Qnew + Expand(Qgnear, Qrand);
if not TooSimilar(quear, Gnew) then

L AddNewNode(T, gnew);
AddNewEdge(T, Qnear, Qnew);

end

of configuration parameters associated with the parts in L,.¢, and g***
is the set associated with L.

IV. BASIC RRT ALGORITHM

The basic principle of the RRT algorithm [4] is to incrementally
grow a random tree 7 rooted at the initial configuration q;,;; in or-
der to explore the reachable configuration space and to find a feasible
path connecting q;,;; to a goal configuration qg,.1. Fig. 2 illustrates
the process, and Algorithm 1 gives the pseudocode for the RRT con-
struction. At each iteration, the tree is expanded toward a randomly
sampled configuration q,,,q € C. This random sample is used to si-
multaneously determine the tree node to be expanded and the direction
in which it is expanded. Given a distance metric in the configuration
space, the nearest node qy,,, in the tree to the sample q,,,q is selected,
and an attempt is made to expand .., in the direction of q;,,q. For
kinematically unconstrained systems, the expansion procedure can be
simply performed by moving on the straight line segment between
Qnear and Q4. If the expansion succeeds, a new node q,.,, and a
feasible local path from q,.., are generated. The key idea of this ex-
pansion strategy is to bias the exploration toward unexplored regions
of the space. Hence, the probability that a node will be chosen for an
expansion is proportional to the volume of its Voronoi region (i.e., the
set of points closer to this node than that to any other node). Therefore,
the RRT expansion is biased toward large Voronoi regions, enabling
rapid exploration before uniformly covering the space.

Different strategies can be adopted for the design of RRT-based path
planners [14]. Configuration sampling (function SampleConf) is nor-
mally made using a uniform random distribution in the configuration
space C. However, more sophisticated sampling strategies (e.g., [15]
and [16]) may improve the performance of the RRT algorithm. Another

technical point concerns the function BestNeighbor. The basic RRT
algorithm selects g, as the nearest node to q,,,q using an Euclidean
metric? in C. Such a metric distance is very simple and easy to
compute. However, since it does not consider motion constraints (e.g.,
obstacles, kinematic constraints), it may lead to a poor performance
of the planner, by repeatedly selecting “exhausted” nodes for futile
expansion. To avoid this problem, two modifications can be introduced
in BestNeighbor: 1) a node is no longer selected after its expansion
fails a given number of consecutive times [and 2) q,.., is selected at
random among the k nearest neighbors.?> The efficiency of these two
modifications has been shown in related works [18]-[20]. One can
also choose a more or less greedy strategy for the expansion procedure
(function Expand in Algorithm 1). In the basic RRT algorithm, a
single expansion step of fixed distance is performed. Here, we use
the RRT-Connect variant [14], which iterates the expansion step while
feasibility constraints are satisfied. This variant is, in general, more
efficient than the single-step version for systems without differential
constraints, which are the type of systems considered in this paper.

V. ML-RRT VARIANT

This section presents a variant of the RRT algorithm that considers
the active/passive partition of the configuration parameters introduced
in Section III. The algorithm, ML-RRT, computes the motion of the
parts associated with the both parameter types in a decoupled manner.
Active parameters are directly handled by the planner, while passive
parameters are treated only when required to expand the tree. Indeed,
passive parts only move if they hinder the motion of other mobile parts
(active parts or other passive parts involved in the expansion).

The ML-RRT algorithm is schematized in Algorithm 2. At each
iteration, the motion of active parts is computed first. The function
SampleConf receives as argument the list of active parts L, , and it
only samples the associated parameters q*°" . Thus, this function gener-
ates a configuration ¢2°t ; in a submanifold of the configuration space
involving the active parameters C*°*. The function BestNeighbor
selects the node to be expanded q,.., using a distance metric in
C ', Note that the function BestNeighbor also integrates the ba-
sic improvements mentioned in Section IV. Then, Expand performs
the expansion of the selected configuration by only changing the ac-
tive parameters. A greedy strategy is used. The returned configuration
Quew corresponds to the last valid point computed along the straight
line segment from qy.,, toward {q2c!,,qP2% }. If the expansion is
not negligible, a new node and a new edge are added to the tree. The
function Expand also analyzes the collision pairs yielding the stop of
the expansion process. If active parts in L, . collide with potentially
mobile passive parts in Ly, the list of the involved passive parts
Lf,‘;ls is returned. This information is used in the second stage of the
algorithm, which generates the motion of passive parts. The function
PerturbConf generates a configuration ¢**°, by randomly sampling

rand

the value of the passive parameters associated with L;(;]S inaball around

their configuration in qy.,.. Note that, if the previous call to Expand
has been successful, q,.., has been updated in order to contain the
new configuration of the active parameters. An attempt is then made
to further expand gy, toward {q*°,, q"*° }. Only the parts in L¢°!

near’ qrand pas

move during this tree expansion. The function Expand returns a list

2We use a weighted metric for translation and rotation components, with
3-D rotations represented by Euler angles. Note, however, that the use of unit
quaternions will be more appropriate [17].

31n our implementation, [is a constant with default value equal to 10, and k&
is computed as 7,,,40/100 rounded to the nearest upper integer, where n,de
is the current number of nodes in the tree. These values have been empirically
determined.

Algorithm 2: Construct_ML-RRT

input : the configuration space C;
the 100t ginir and the goal ggoqa;
the partition {Lact, Lpas };
output : the tree 7;
begin

T + InitTree(qii);

while not StopCondition(r, qgoa) do

¢!, — SampleConf(C, Lac);

Qnear — BestNeighbor(r, g2, Lact);

(Qnew, L]Cngq) <« Expand(Qnear, q?acxtld);

if not TooSimilar(qnear, Qnew) then
AddNewNode(T, qnew);
AddNewEdge(T, Qnear, Qnew);

L Qnear < {Qnew;

while L% # 0 do

qf:;d < PerturbConf(C, qnear, nggg);

(qnew, L;gb «— Expand(qnear, qgjjd);

if not TooSimilar(qnear, qnew) then
AddNewNode(T, Qnew);
AddNewEdge(T, qnear, Qnew);

Qnear <— (new;

col col’ col ,
Lpas — Lpas \ Lpas’

end

L;‘;L’ if the expansion is stopped by a collision involving passive parts.

If this list contains new passive parts (in relation to L;‘;ls), the process
generating passive part motions is iterated. Such a possible cascade of
passive part motions may be useful to solve problems, where passive
parts indirectly hinder the motion of the active ones because they block
other passive parts.

Finally, note that although the active and passive parts move alter-
nately in the path obtained by the ML-RRT algorithm, a randomized
path smoothing postprocessing* is performed in the composite config-
uration space of all the parameters, so that simultaneous motions are
obtained in the final path.

VI. EMPIRICAL PERFORMANCE ANALYSIS

The basic RRT algorithm and the ML-RRT variant have been im-
plemented into the path planning software Move3D [22]. An empirical
performance analysis has been carried out applying both algorithms to
several 2-D and 3-D academic examples. The first example, 2D-simple,
corresponds to the problem illustrated in Fig. 1. The second example,
2D-hard, is a more difficult version involving a longer static object with
six mobile sticks (see Fig. 3). The other two examples, 3D-simple and
3D-hard, correspond to similar variants of the 3-D problem illustrated
in Fig. 5. In all the cases, the active parameters for the ML-RRT al-
gorithm are those defining the location of the mobile object, while the
parameters corresponding to all the articulated parts are passive. Tests
have been performed on an Apple iBook with a 1.2 GHz PowerPC G4
processor. Numerical results have been averaged over ten runs.

Table I displays the computing time (with standard deviation), and
the number of nodes, samples, and collision tests required for solving
the four problems with RRT and ML-RRT. Note that, for ML-RRT,
Na¢t represents the number of samples for the active parameters.

samp

These results show that ML-RRT clearly outperforms the basic RRT,

4We use the probabilistic path shortening method [21] for path smoothing.

Fig. 3. Projection of search trees for problem 2D-hard obtained. (a) With the
basic RRT algorithm. (b) With the ML-RRT algorithm.
TABLE I
NUMERICAL RESULTS
2D-simple 2D-hard ~ 3D-simple ~ 3D-hard
Npor 7 10 9 11
RRT T(sec.) 752 £ 526 — 00 10+ 9 — 00
Niode 5047 — 00 1102 — 00
Nsamp 32348 — 00 1207 — 00
Neoll 44742 — 00 5054 — 00
ML-RRT T(sec.) 8t 4 14 + 6 3£2 11 +38
Niode 856 1189 757 1142
Nigh, 1698 2226 412 1194
Neoll 5458 7650 5061 11353

and that the performance gain increases with the complexity of the
articulated objects. Note that the basic RRT is unable to solve the diffi-
cult versions of the problems in reasonable computing time, while the
performance of ML-RRT is only slightly affected by the problem diffi-
culty. Fig. 3 shows a projection of the search trees on the coordinates of
the center of mass of the mobile object, for example, 2D-hard. The tree
computed with the basic RRT algorithm contains 10 000 nodes, but all
are concentrated in a small region of the search space around the initial
configuration. The tree obtained with the ML-RRT algorithm contains
less than 1000 nodes, and yet, better covers the search space.

Besides the computational efficiency, the solution paths obtained
with the ML-RRT algorithm are also qualitatively different to those of
the basic RRT. Fig. 4 shows the trace of a solution path obtained with
each algorithm. The difficulty of the basic RRT in finding the solution
is reflected by an ugly path [see Fig. 4(a)] with many small motions
needed to circumvent the mobile parts of the fixed object. The ML-RRT
produces a much more natural-looking path in which the mobile object
progresses toward its goal while “pushing” the passive parts.

VII. PRACTICAL APPLICATIONS
A. Robotic Manipulation

The proposed algorithm can be extended to integrate a robot that
manipulates the mobile object. The system composed by the robot
grasping the mobile object at a given pose can be seen as a closed-
chain mechanism, and possible motions take place in the self-motion
manifold of this mechanism.

Fig. 4. Trace of solution paths for problem 2D-simple obtained. (a) With the
basic RRT algorithm. (b) With the ML-RRT algorithm.

Fig.5. Two variants of a 3-D academic example. (a) 3D-simple. (b) 3D-hard.

For nonredundant manipulators, only a finite number of configura-
tions will match a given object pose and grasp position. These con-
figurations can be directly obtained by inverse kinematics (IK). For
ensuring the path continuity and avoiding singularities, only the IK
solution corresponding to the same configuration type (e.g., elbow-up
or elbow-down) as the expanded configuration should be considered.

The extension is more difficult for redundant manipulators, since
the robot can grasp the object with an infinite number of configura-
tions. The general approach for closed-chain path planning described
in [23] can be applied to explore the self-motion manifold for these
more difficult cases. This approach solves the configuration sampling
problem using the Random Loop Generator (RLG) algorithm. The
kinematic loop is broken into two open subchains, called the active
and passive sub-chains. The passive subchain is a nonredundant mech-
anism, with a finite number of possible configurations corresponding
to a given configuration of the active subchain. RLG combines random
sampling techniques with simple geometrical operations aiming to gen-
erate configurations of the active subchain into the reachable workspace
of the passive subchain, whose configuration is then obtained
by IK.

Fig. 6 shows an example in which a nonredundant manipulator arm
extracts an object from a box containing articulated parts. This problem
has been solved with ML-RRT (extended to closed chains) in only 4 s.

q init

Fig. 6. Two objects of the example 3D-simple are disassembled by a robotic
manipulator.
Fig. 7. Ligand in the active site of a protein. Both molecules can be modeled

as articulated mechanisms.

B. Structural Bioinformatics

The computational analysis of molecular interactions in biologi-
cal systems is a key instrument for the understanding of life. In this
framework, we address protein—ligand interactions [24]. Fig. 7 shows
a protein model with a ligand located in its active site. Most of the
computational approaches to this problem address a static view of the
molecular recognition. However, several studies tend to show that the
ligand access/exit to the protein active site can be very important for the
understanding of the biological mechanism [25]. The difficulty is that
computing the pathway of aligand to go out from a deep active site to the
surface of a protein (or vice versa) with “classic” molecular modeling
methods [26] is too computationally expensive. For facing the com-
plexity of computing molecular motions, molecules can be modeled
as articulated mechanisms [27], and efficient path planning algorithms
can be used to explore their conformational changes [28]. Considering
such a mechanistic representation of molecules, the protein—ligand exit
problem can be formulated as a mechanical disassembly problem for
articulated objects, and the ML-RRT algorithm can be applied for find-
ing solution pathways. The difficulty comes from the complexity of the
molecular model that contains hundreds of flexible side-chains possibly
involved in the disassembly. Thus, if no prior knowledge on the ligand
passageway is available, hundreds of DoFs have to be considered. The

Fig. 8. Solution path for the molecular disassembly problem illustrated in
Fig. 7. The image shows a transversal cut of the protein active site and the trace
of the ligand path. The ligand and the nine residues with moving side chains
are displayed in stick representation. In the color version of the figure (available
online), the configurations of the ligand and the moving side-chains at different
steps along the path are colored in red scale and blue scale, respectively.

ML-RRT algorithm performs well when applied to this kind of diffi-
cult problems [20]. Problems involving hundreds of potential DoFs are
solved in very short computing time. For example, the protein in Fig. 7
contains 628 amino acid residues. If all the protein side chains are
considered to be flexible, the model contains 1237 DoFs. The ligand
exit pathway in this example (computed in 160 s) is very constrained
and requires an important motion of some side chains. Among all the
side chains, ML-RRT determines that the motion of only nine of them
is required for “disassembling” the ligand, as illustrated in Fig. 8. Note
the significant motion of the side chain located at the middle-top of the
image. This side-chain motion, which is known to be biologically im-
portant for the protein—ligand interaction, was automatically identified
by the algorithm.

VIII. CONCLUSION AND FUTURE WORK

The ML-RRT algorithm described in this paper is an efficient method
for disassembly path planning of two objects with articulated parts. An
interesting feature of the algorithm is its ability to treat problems with
a high number of potentially mobile parts and to automatically identify
the DoFs that are important for the disassembly task. This feature has
already been exploited in structural bioinformatics applications, and
we think that it will be also very useful in computer-aided design/pad
limiting metal (CAD/PLM) problems.

The current version of ML-RRT is devised for solving problems in
which passive articulated parts are “pushed” by the mobile object. A
future extension of the algorithm will also consider “pulling” motions,
which may be important in some classes of disassembly problems.

Another envisaged extension is to address disassembly planning
problems for multiple (possibly articulated) objects. Disassembly
sequences could be computed using an active/passive decomposition of
the configuration parameters and applying the mechanism for motion
propagation implemented in the ML-RRT algorithm. The active/passive
roles could be assigned based on a (random) selection of objects being
moved with priority. Sampling-based path planning algorithms have
already been proposed for disassembly sequencing [11]. The main
advantage of ML-RRT over other existing methods is a reduced compu-
tational cost, thanks to the decoupled exploration of configuration space
submanifolds associated with the active/passive parameter subsets.

(1]

[2]

(3]

[4]

[3]

(6]

[7]
[8]
[9]
[10]

[11]

[12]
[13]

[14]

[15]

REFERENCES

J. Cortés and T. Siméon, “Disassembly path planning for objects with
articulated parts,” in Proc. I[FAC Workshop Intell. Assem. Disassembly,
2007, pp. 34-39.

J.-C. Latombe, Robot Motion Planning. Boston, MA: Kluwer, 1991.
S.M. LaValle, Planning Algorithms. ~New York: Cambridge Univ. Press,
2006.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State Univ., Ames, IA, Rep.
98-11, 1998.

E. Ferré and J.-P. Laumond, “An iterative diffusion algorithm for part
disassembly,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp. 3149—
3154.

A. Bourjault, “Contribution a une approche méthodologique de
I’assemblage automatisé : Elaboration automatique des séquences
opératoires,” Thése d’Etat, Université de Franche-Comté, 1984.
L.S.Homem de Mello and S. Lee, Computer-Aided Mechanical Assembly
Planning. Boston, MA: Kluwer, 1991.

R. H. Wilson, “On geometric assembly planning,” Ph.D. dissertation,
Stanford University, Stanford, CA, 1992.

T. Lozano-Pérez and R. H. Wilson, “Assembly sequencing for arbitrary
motions,” in Proc. IEEE Int. Conf. Robot. Autom., 1993, pp. 527-532.
D. Halperin, J.-C. Latombe, and R. H. Wilson, “A general framework for
assembly planning: The motion space approach,” Algorithmica, vol. 26,
pp- 577-601, 2000.

S. Sundaram, I. Remmler, and N. M. Amato, “Disassembly sequencing us-
ing a motion planning approach,” in Proc. IEEE Int. Conf. Robot. Autom.,
2001, pp. 1475-1480.

H. Chang and T.-Y. Li, “Assembly maintainability study with motion
planning,” in Proc. IEEE Int. Conf. Robot. Autom., 1995, pp. 1012-1019.
T. Lozano-Pérez, “Spatial planning: A configuration space approach,”
IEEE Trans. Comput., vol. C-32, no. 2, pp. 108-120, Feb. 1983.

S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” in Algorithmic and Computational Robotics: New Direc-
tions, B. Donald, K. Lynch, and D. Rus, Eds. Boston, MA: A K. Peters,
2001, pp. 293-308.

A. Yershova, L. Jaillet, T. Siméon, and S. M. LaValle, “Dynamic-Domain
RRTs: Efficient exploration by controlling the sampling domain,” in Proc.
IEEE Int. Conf. Robot. Autom., 2005, pp. 3867-3872.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

B. Burns and O. Brock, “Single-query motion planning with utility-guided
random trees,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 3307—
3312.

J. J. Kuffner, “Effective sampling and distance metrics for 3D rigid body
path planning,” in Proc. IEEE Int. Conf. Robot. Autom., 2004, pp. 3993—
3998.

P. Cheng and S. M. LaValle, “Reducing metric sensitivity in randomized
trajectory design,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2001,
pp- 43-48.

C. Urmson and R. Simmons, “Approaches for heuristically biasing RRT
growth,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2003, pp. 1178—
1183.

J. Cortés, L. Jaillet, and T. Siméon, “Molecular disassembly with RRT-
like algorithms,” in Proc. IEEE Int. Conf. Robot. Autom., 2007, pp. 3301—
3306.

S. Sekhavat, P. Svestka, J.-P. Laumond, and M. H. Overmars, “Multi-level
path planning for nonholonomic robots using semi-holonomic subsys-
tems,” Int. J. Robot. Res., vol. 17, no. 8, pp. 840-857, 1998.

T. Siméon, J.-P. Laumond, and F. Lamiraux, “Move3D: A generic platform
for path planning,” in Proc. IEEE Int. Symp. Assemb. Task Planning, 2001,
pp- 25-30.

J. Cortés and T. Siméon, “Sampling-based motion planning under kine-
matic loop-closure constraints,” in Algorithmic Foundations of Robotics
VI, M. Erdmann, D. Hsu, M. Overmars, and F. van der Stappen, Eds.
Berlin, Germany: Springer-Verlag, 2005, pp. 75-90.

H.-J. Bohm and G. Schneider, Protein-Ligand Interactions: From
Molecular Recognition to Drug Design. ~ Weinheim, Germany: Wiley,
2003.

S. K. Liidemann, V. Lounnas, and R. C. Wade, “How do substrates enter
and products exit the buried active site of cytochrome p450cam? 1. random
expulsion molecular dynamics investigation of ligand access channels and
mechanisms,” J. Mol. Biol., vol. 303, no. 5, pp. 797-811, 2000.

T. Schlick, Molecular Modeling and Simulation—An Interdisciplinary
Guide. New York: Springer-Verlag, 2002.

D. Parsons and J. Canny, “Geometric problems in molecular biology
and robotics,” in Proc. Int. Conf. Intell. Syst. Mol. Biol., 1994, pp. 322—
330.

J. Cortés, T. Siméon, V. Ruiz, D. Guieysse, M. Remaud, and V. Tran, “A
path planning approach for computing large-amplitude motions of flexible
molecules,” Bioinformatics, vol. 21, pp. 116-125, 2005.

