
HAL Id: hal-01988387
https://laas.hal.science/hal-01988387

Submitted on 21 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algorithms for rough terrain trajectory planning
Alain Haït, Thierry Simeon, Michel Taïx

To cite this version:
Alain Haït, Thierry Simeon, Michel Taïx. Algorithms for rough terrain trajectory planning. Advanced
Robotics, 2002, 16 (8), pp.673-699. �hal-01988387�

https://laas.hal.science/hal-01988387
https://hal.archives-ouvertes.fr

ALGORITHMS FOR ROUGH TERRAIN TRAJECTORY PLANNING

Alain HA

�

IT, Thierry SIMEON and Michel TA

�

IX

LAAS-CNRS, 7 avenue du Colonel-Roche, 31077 Toulouse, France

fhait,nic,taixg@laas.fr

Abstract| This paper deals with motion planning on rough terrain for mobile robots.

The aim is to develop e�cient algorithms, suitable for various types of robots. On

rough terrain, the planned trajectory must verify several validity constraints : stability

of the robot, mechanical limits and collision avoidance with the ground. Our approach

relies on a static and kinematic model of the robot. E�cient geometric algorithms have

been developed, taking advantage of each vehicle's speci�cities. Motion planning relies

on incremental search in the discretized con�guration space and uses e�cient heuristics

based on terrain characteristic to limit the size of search space. Simulation results present

trajectories planned in a few seconds. The second part takes into account uncertainties

to improve trajectory robustness: uncertainties on the terrain model and the position of

the robot. The adaptation of the previous algorithms allow to �nd robust trajectories,

without excessive time increase.

Key words: trajectory planning, mobile robots, rough terrain, uncertainties

1. INTRODUCTION

Autonomous navigation on natural terrains is a complex and challenging problem with

potential applications ranging from intervention robots in hazardous environments to

planetary exploration.

Success of Sojourner rover mission on Mars gave a new fervor to planetary exploration

with robots. Future exploratory missions will include more autonomous for complex

tasks : pick up samples, long range displacements, etc. To perform such tasks on out-

door terrain, especially for planetary exploration, a high level of autonomy is required

because the robot travels long distances without human intervention. For example the

future mars rovers can only communicate twice per day and must perform tasks between

them equivalent in distance to the entire Sojourner mission. In this context autonomous

navigation on natural terrain is still a complex and challenging problem .

Several systems for outdoor navigation have been developed. The Rocky robots [23]

from Jet Propulsion Laboratory can reach speci�ed positions, using a behavior control

approach [17, 11]. Nomad [1] from Carnegie Mellon University operated more than 200

kilometers using various navigation modes (principally teleoperation). Another system

from CMU, Navlab performed autonomous navigation on natural terrain [25].

When terrain is known the motion planning problem can be formulated as an opti-

mization problem [22]. The terrain is represented by a spline surface and the robot by a

point mass. The cost function optimized is function of path distance and traversability

measure.

An other approach used sensor information to incrementally replan optimal path with

partial information at the beginning. The sensor information update a grid-based terrain

model to �nd locally optimal path [24].

In [16], [27] the rover as to work in unknown natural terrain and the path planning is

an iterative sensor-based approach. Target waypoint are plan and simple sensor-motion,

1

motion-to goal or boundary-following ensure global convergence.

Simulated dynamic interaction have been studied in [4] without motion planning. Dy-

namic behaviours and interaction wheel-ground have been modelised in [18] [14] and used

in [7] for motion planning. Physical based model are also used with genetic algorithms

[10] to select actions sequence.

[26] compare genetic path planner with fuzzy description terrain to global optimization

planner with parametric terrain surface. A fuzzy approach with traversability index is

used in [21].

The adaptative navigation approach developed at LAAS within the framework of the

EDEN experiment [6] demonstrated autonomous short-range navigation in a natural en-

vironment gradually discovered by the robot. The approach combines various navigation

modes (re
ex, 2D and 3D) in order to adapt the robot behavior to the complexity of the

environment. The selection of the adequate mode is performed by a speci�c planning

level, the navigation planner ([15]), which reasons on a global qualitative representation

of the terrain built from the data acquired by the robot.

Motion safety is a crucial problem for any exploration task on known or unknown ter-

rain. It requires placement validity checking all along the trajectory. Accurate models

of the robot, the terrain and their interactions are necessary to guarantee validity, but

generally involve time-consuming computations. For example, an approximate cell de-

composition of the admissible con�guration space [9] [8] satisfying stability and mecanical

constraints can be build with expensive time.

The contribution of this paper is to propose e�cient algorithms for motion planning

on rough terrain [12] . It is a compromize between global motion planner [22] but for

simple point robot description and appropriate �ne physical models [7] with long time

computing.

Figure 1: LAAS mobile robots

Our objective is twofold :

� performance time should be realistic, compatible with the requirements of explo-

ration missions. Robot placement and validity checking durations are improved,

and path search use e�cient heuristics based on the terrain characteristics. The

approach is based on precomputed models, exploiting the robot's kinematics and

the model of the terrain. This approach is illustrated on two types of robots, and

could be applied on other types.

2

� we look for robust trajectories, i.e. that remain safe in spite of uncertainties of real

world. Uncertainties on the terrain model due to sensor acquisition and on robot

placement due to imperfect robot control are introduced in the algorithms without

major modi�cation.

This paper is organized as follow. Section 2 presents the di�erent models and con-

straints taken into account for autonomous motion planning. Section 3 describes the

geometric algorithms for e�cient placement and constraint checking for two types of

mobile robot (see Fig. 1). The next section presents the path planning approach with

simulation results. The uncertainties on the terrain model and robot position can be

deal with the same method in section 5. The paper concludes with a discussion of ideas

for future work.

2. PROBLEM STATEMENT

Given the models of the terrain surface and the vehicle geometry, the problem is to

�nd a feasible motion between two con�gurations, while respecting a set of constraints

related to the safety of the motion.

2.1 Models

The terrain is described by ruled surface patches de�ned from an elevation map in z

associated with a regular grid in (x; y). Elevation z at a point (x; y) is unique and is

computed from the elevations of the four points of the grid around it (see Fig.2) :

z(x; y) = f(z

(i;j)

; z

(i+1;j)

; z

(i;j+1)

; z

(i+1;j+1)

)

The model of the terrain is obtained by fusion of local maps built from 3D sensor

x

y

(x,y)

z

z

(i,j)
(i+1,j)

(i+1,j+1)

● ●
●

●

Figure 2: Model of terrain and elementary patch

data (e.g. range�nder [19]). This method provides an evaluation of uncertainty on the

elevation z. Uncertainty is given as an interval �z associated with each point of the grid.

Section 5 presents how uncertainty is handled in our approach. We consider wheel-driven

mobile robots whose articulated chassis and/or suspensions allow to adapt their shape

to the terrain irregularities. Given a local frame R

robot

�xed on the body of the robot,

the con�guration of the robot (with refer to a global frame on the terrain) is de�ned by

(6 + n) parameters :

� the position/orientation of R

robot

(6 parameters) ;

� n parameters corresponding to the joints and suspensions of the robot.

3

However these parameters are not independent. On the assumption that the robot ve-

locity is low and the terrain is not deformed by the vehicle, the placement of the robot

on the terrain is de�ned by :

p = (q; r(q))

where the con�guration q(x; y; �) represents the horizontal position/heading of the robot

in the global frame, and r(q) are the parameters associated to the values of the joints or

suspensions and the vertical position ofR

robot

. The dependencies between the parameters

of r and q come from the contact relations between each wheel and the terrain. The search

space is thus reduced to the three dimensional con�guration space CS = (x; y; �).

2.2 Constraints

In order to guarantee the safeness of the placements, some validity constraints are

de�ned :

� stability of the robot ;

� collision avoidance between the body of the robot and the terrain ;

� mechanical constraints expressing that the contact between the wheels and the

terrain can be maintained without exceeding the limits of the articulations and

suspensions.

We denote by C

free

the subset of CS where the validity constraints are veri�ed.

To take into account motion without sliding a kinematic constraint is applied on the

direction of the robot's velocity.

2.3 Motion planning

The motion planning problem can be classically formulated as the problem of �nding

a path connecting two given con�gurations and lying in C

free

and must also verify the

kinematic constraint.

This paper presents the motion planner developed at LAAS and adapted to various

types of robots.

3. GEOMETRIC ALGORITHMS FOR EFFICIENT PLANNING

In this section we present some algorithms related to robot placement and validity

tests. Since these functions are much used during planning, we must pay a particular

attention on their duration. In that aim, speci�c algorithms adapted to the geometry of

the robots have been developed.

3.1 Robot placement

Given the con�guration q(x; y; �), the placement function determines the elevation of

R

robot

's origin and the values of the passive joints and suspensions of the robot. Due

to the terrain irregularities, this determination is not obvious. An analytical solution

of placement would be time-consuming. Consequently, iterative algorithms have been

developed in order to provide a good approximate placement within short time.

3.1.1 Example of a rigid body

4

Model of the robot The body of the robot is modeled by a polyhedron R. We de�ne a

local frame R

robot

= (G;~u;~v; ~w), where G is the gravity center of the robot, and (~u;~v; ~w)

are respectively its longitudinal, lateral and vertical axis (see Fig. 3).

v
w

u
G

M
0

v
juj

wo

lj

s

Figure 3: Model of the robot

The n wheels are attached to R by passive suspensions which are modeled by springs.

We assume that, when all the springs are in their steady state, the wheels belong to

the same plane P

S

perpendicular to w axis, at height w

0

in the local frame. Then, the

coordinates of wheel j are (u

j

; v

j

; w

0

+ l

j

) where u

j

and v

j

are some �xed values related

to the geometry of the robot, and l

j

is the algebraic extension of the spring (l

j

= 0 being

its natural length). That means that the springs always keep a vertical orientation in

the robot's frame.

Placement The position of the robot's body is de�ned by the 6-dimensional vector

p(x; y; z; �; �;), where (x; y; z) are the coordinates of point G, and (�; �;) are respec-

tively the horizontal orientation of u axis, the roll angle and the pitch angle.

The placement of the robot results from its weight and the reaction of the ground exerted

through the springs. The static equilibrium state is reached when the total energy of the

robot is minimized. In the following, we consider a simple energy function, including only

the compression energy of the springs: E =

P

n

j=1

kl

j

2

where k is the sti�ness coe�cient

of the springs.

Moreover, we only consider the placements which keep all the wheels in contact with the

terrain. Let us denote by L

j

(p) the function which associates to a given value of the

vector p, the value of the spring extension l

j

such that the wheel j is in contact (without

intersecting) with the terrain (see Fig. 4). We denote by C

j

the contact point between

wheel j and the terrain.

Therefore, the energy can be expressed as a function of the placement E(p) =

P

n

j=1

kL

2

j

(p)

and for a given con�guration q(x; y; �), the remaining parameters of vector p result from

the minimization of this function. Vector (z(q); �(q); (q)) is the solution of:

min

z;�;

n

X

j=1

L

2

1

(p) (1)

The spring extensions l

j

(q) are obtained from the evaluation of the functions L

j

(p) for

the computed placement.

AlgorithmPlace robot(x; y; �) allows to compute e�ciently an approximate placement.

The method consists in applying iteratively a least square algorithm to improve an initial

estimation of the parameters z,� and .

5

u

w

w0

L2(p)

L3(p)

L1(p)

Figure 4: De�nition of L

j

(p)

Each iteration i is aimed to decrease the value of energy E(p

i

). Let z

i

,�

i

and

i

denote the value of the placement parameters at the beginning of iteration i. For the

corresponding placement p

i

, the algorithm L

j

(p

i

) allows to compute the value E

i

= E(p

i

)

and the n contact points C

j

between the wheels and the terrain. The least square method

is then used to obtain the equation of the plane P

i

which minimizes the quadratic mean

of the distances to the points C

j

(step 10.). The new values of the placement parameters

are deduced from this cdplane: �

i

and

i

are computed such that the axis ~w of R

robot

coincides with the plane normal (step 11.). z

i

is computed such that all the wheels contact

this plane for a null deformation of the springs (see Fig. 5).

1: Place robot(x; y; �)

2: i := 0

3: z

0

:= z

terrain

(x; y);�

0

:= 0;

0

:= 0;

4: p

0

:= (x

G

; y

G

; �; z

0

; �

0

;

0

);

5: 8j 2 [1;n]; L

j

(p

0

)) C

j

6: E

0

:=

P

n

j=1

kL

j

2

(p

0

);

7: repeat

8: i := i + 1;

9: determination of P

i

from C

j;j2[1;n]

;

10: determination of z

i

; �

i

;

i

) p

i

;

11: 8j 2 [1;n]; L

j

(p

i

)) C

j

12: E

i

:=

P

n

j=1

kL

j

2

(p

i

);

13: until E

i

< E

i�1

14: Return(p

i�1

; L

j

(p

i�1

));

Convergence is not guaranted for Place robot but the algorithm give good result in

practice. On very irregular terrain the placement is not correct, but in this case the

placement is impossible because all wheels are not in contact with the terrain.

3.1.2 Example of an articulated chassis

Model of the robot. Let us consider a three-axle articulated robot (see Fig.6). We

de�ne a local frame R

robot

(M;~x; ~y; ~z) where M is the center of the middle axle, ~x is the

longitudinal axis of the robot and ~z the vertical axis. Each axle is articulated around

the ~x-axis; '

<axle>

is the roll angle of an axle, measured with respect to the horizontal

~y-axis. The axles are linked by two rigid bodies articulated around the ~y-axis;

F

and

R

are the pitch angles of the front and the rear body, measured with respect to the

6

u

w

C1

w0

C2

C3

i

i

i−1

w

u

i−1

Gi−1

Gi

Figure 5: Iterative computation

horizontal ~x-axis.

z

ψ
ψ

ϕ

y

x

z

z M

M

R
FM

M

Figure 6: Model of an articulated robot

For this locomotion system, con�guration q = (x

M

; y

M

; �) and the other placement

parameters of r are the roll angles '

F

; '

M

; '

R

of the axles, the pitch angles

F

;

R

of

the bodies and the elevation z

M

of the middle axle. As mentioned earlier, the role of the

placement algorithm is to compute the vector r(q) associated with a given con�guration

q. After considering the case of a single axle, we show how this basic algorithm can be

used for the placement of the chassis.

Placement of a single axle. Given the (x; y) position of the axle center and its

orientation �, the placement basically consists in �nding the ' angle for which the right

and left wheels, W

r

and W

l

have the same vertical distance to the terrain (afterwards,

the elevation z of the center is easily deduced).

Let dist = F (') be the distance fromW

l

to the terrain when W

r

is put in contact. Then

we have:

F (') = 2l sin' � (z

l

(')� z

r

(')) (2)

where z

l

('); z

r

(')) are the elevations of the wheels contacting the terrain for the xy-

positions of their center associated with the angle ' (see Fig. 7). The placement is

obtained for the solution '

sol

of the equation F (') = 0. This equation cannot be solved

analytically since z

l

('); z

r

(') closely depend on the terrain geometry. However one can

7

dist

∆ z

α

z
y

ϕ
2l

z

z

l

r

Figure 7: Placement of an axle

remark that for the case of a
at terrain having a slope �, we would have:

z

l

(') � z

r

(') = cos' tan� (3)

and that the solution '

sol

would equal the slope �. The algorithm Place axle(x; y; �)

presented below uses this remark to iteratively re�ne an approximation of '

sol

. At it-

eration i, evaluating z

l

(') � z

r

(') for a value '

i

and applying Eq. 3, allows to get

the slope � which would be the solution for a planar approximation of the terrain

(step 6). The next value '

i+1

is computed from '

i

and � such that the line passing

through (�; F (�)) and ('

i

; F ('

i

)) cuts the horizontal axis (F (') = 0) at '

i+1

(step

9).

1: Place axle(x; y; �)

2: i := 0; '

0

:= 0;

3: dist

0

:= F ('

0

);

4: while dist

i

> " do

5: fevaluation:
at terraing

6: � := atan2((z

l

('

i

)� z

r

('

i

))= cos'

i

);

7: dist

�

:= F (�);

8: fcomputation of '

i+1

g

9: '

i+1

(�; dist

�

; '

i

; dist

i

);

10: dist

i+1

:= F ('

i+1

);

11: i := i + 1;

12: end while

13: return '

sol

:= '

i

; z

sol

;

Tests performed [12] on highly irregular terrains show that function F (') varies very

smoothly and that the risk of local minima is very limited between ' = 0 and the

solution '

sol

. In many cases, the solution is obtained after one iteration.

Placement of the chassis. The placement consists of three steps: the middle axle is

�rst placed by using the algorithm presented above. The parameters of the front and

rear axles (elevation z and angles ' and) are then determined by another algorithm

based on the same principle, but adapted in order to introduce the link with the middle

axle as an additional constraint.

8

Consider the case of the front axle (the placement of the rear axle is exactly the

same). Knowing the elevation z

M

of the middle axle, we can compute, for a given value

of parameter

F

, the coordinates (x

F

; y

F

; z

F

) of the front axle's center F . Applying

Place axle(x

F

; y

F

; �) determines '

F

and the elevation z of F when the front axle is

placed on the terrain, regardless of the link with the middle axle.

Let G(

F

) = z

F

� z denote the di�erence between both elevations. The constraint im-

posed by the link is veri�ed for the solution of G(

F

) = 0. The values of the parameters

F

and '

F

are computed successively by an iterative algorithmPlace other axle simi-

lar to the previous one. Each iteration �rst evaluates

i+1

regardless to the link with the

middle axle: � is determined from z, z

M

and the distance d between both axles. Then

we compute

i+1

such that the line passing through (�;G(�)) and (

i

; G(

i

)) cuts the

horizontal axis (G() = 0) at

i+1

.

1: Place other axle(x

M

; y

M

; z

M

; �)

2: i := 0; '

0

:= 0;

0

:= 0;

3: dist

0

:= G(

0

);

4: while dist

i

> " do

5: fevaluation: no link with the middle axleg

6: � := atan2(

dist

i

+d:sin

i

d

);

7: dist

�

:= G(�);

8: fcomputation of

i+1

g

9:

i+1

(�; dist

�

;

i

; dist

i

);

10: dist

i+1

:= G(

i+1

);

11: i := i + 1;

12: end while

13: return

sol

; '

sol

:= '

i

; z

sol

;

Note that in this case, the evaluation of G(

F

) requires a call to the function Place axle

which is then used once for the initialization and twice for each step of the algorithm.

Again the solution is generally found in only one iteration.

Figure 8 shows an example of placement computed by the algorithm.

Figure 8: Example of placement

Placement optimization. The motion planner extensively uses the placement algo-

rithms when evaluating the validity of the elementary motions generated during the

search. Moreover the placement of the chassis requires itself several calls to the function

Place axle. The aim of this preprocessing step is to signi�cantly reduce the computa-

tional cost of the placement algorithmwhen used by the planner. It consists in slicing the

9

orientation parameter, and in computing two surfaces denoted S

'

(x; y) and S

z

(x; y) for

each slice �

i

. These surfaces respectively correspond to the roll angle and the elevation

of the axle when it is placed at position (x; y), with an orientation �

i

. Like the terrain,

both surfaces are represented by ruled surfaces patches de�ned from a elevation map in

' (or z) associated with a regular grid in (x; y). They are computed by applying the

function Place axle at every point of the grid.

The online placement of the chassis simply computes the ' (or z) parameter for a

position (x; y; �) of the axle, as follows:

� for � lying between �

i

and �

i+1

= �

i

+�� of the slicing, let S

i

'

and S

i+1

'

denote

the associated '-surfaces.

� '

i

= S

i

'

(x; y) and '

i+1

= S

i+1

'

(x; y).

� the roll angle ' is obtained by a linear interpolation: ' = ('

i+1

� '

i

)

���

i

�

i+1

��

i

+ '

i

Figure 9 presents a terrain model and the associate surfaces S

z

and S

'

at orientation

� = 0 and � = 90

�

(represented as terrain models).

z (θ = 0)

z(θ= 90)

ϕ(θ = 0)

ϕ(θ = 90)

Figure 9: Placement surfaces

Computation time of placement and preprocessing step are given in x4:3.

3.2 Validity constraints

We consider now the problem of checking whether a given con�guration q belongs to

C

free

or not. The placement parameters must verify the validity constraints : stability,

mechanical limits and collision avoidance.

3.2.1 Stability of the robot

Case of a rigid body. The robot does not tip-over, which requires that the projection

of its gravity center remains inside the convex hull of the projections of all the contact

points (called the support polygon). The shape of this polygon is clearly a function of

�, and of the lengths (l

j

)

j=1:::n

. However, we assume that the less stable position is

obtained when all the springs are the longest. The stability thus only depends on � and

10

Figure 10: Stability constraint

Figure 11: Mechanical constraints

 , and the subset S �]�

�

2

;

�

2

[

2

verifying this condition can be easily determined. Thus,

the stability constraint is veri�ed for a given q i�:

(�(q); (q)) 2 S

In order to avoid sliding, and to simplify constraint checking, a subset S

0

[��

max

; �

max

]�

[�

max

;

max

] � S is used.

Case of an articulated robot. The constraint used to check that some static sta-

bility conditions (e.g. no tip-over and absence of sliding) are satis�ed simply consists in

verifying that the global roll and pitch angles of the robot do not exceed some prede�ned

stability limits (see Fig. 6).

The global roll angle of the robot is de�ned by the average of the three roll angles of the

axles.

�

�

�

�

'

F

+ '

M

+ '

R

3

�

�

�

�

< '

StabMax

The global pitch angle is de�ned by the angle between the horizontal plane, and the line

going through the centers of the front/rear axles. The pitch stability constraint is:

StabMin

<

R

�

F

2

<

StabMax

3.2.2 Mechanical constraints

Case of a rigid body. Let L

max

be the maximal deformation allowed for the springs.

A con�guration q is safe i�:

8j 2 [1; n]; jl

j

(q)j < L

max

11

Figure 12: Collision

Case of an articulated robot. The mechanical constraint correspond to angular

limits for the relative angle between two successive axles

j'

M

� '

R

j < '

max

and j'

M

� '

F

j < '

max

and for the angle made by the two bodies (concave or convex con�guration of the robot)

Min

<

F

+

R

+ � <

Max

3.3 Collision detection

The last validity constraint guarantees that, except the wheels, the other parts of the

locomotion system do not collide with the terrain irregularities.

3.3.1 Hierarchical model of the terrain

In order to e�ciently check the collision between the robot and the terrain, we con-

struct a hierarchical model (a quadtree) from the model of the terrain (see Fig. 13).

The root of the quadtree is the cell corresponding to the whole terrain, and it is recur-

sively subdivided into four smaller cells. To each of these cells, we associate the mean

plane to the points of the corresponding part of terrain (with least square method),

and the minimal and maximal distance to this plane. Thus a cell can be represented by

a parallelepiped which upper and lower faces are parallel to the mean plane (see Fig. 14).

Subdivision stops in the following cases :

� when the size of the cell is equivalent to the dicretization of the terrain grid ;

� when the height h of the cell (i.e. the di�erence between the maximal and the

minimal distance to the plane) is lower than a given limit h

0

.

An advantage of this method is that the cells are not systematically subdivided : in

smooth areas (even with slope), the structure remains compact.

3.3.2 Collision checking

The quadtree is used to detect collision between polygonal faces and the terrain. This

test is thus performed several times with the faces that represent the body of the robot.

The following procedure is recursively applied, starting from the root of the quadtree :

12

Figure 13: The hierarchical model (levels 1,2,4,6)

� if the polygonal face P does not intersect the parallelepiped associated to a given

cell, then we are certain that P does not collide with the terrain (face a on Fig.14) ;

� similarly, when P intersects both upper and lower face of the parallelepiped we can

directly conclude the existence of a collision (face b on Fig.14) ;

� otherwise, we need to consider a �ner approximation of the terrain by analyzing

the four descendant of this node.

When a leaf of the quadtree is reached and does not allow to conclude, a more expensive

test with the corresponding patch surface is applied.

b

a

Figure 14: Collision between faces and a cell

Collision is checked with the lower faces of the polyhedron representing the robot's

body and/or axles (see Fig.15)

Figure 15: Collision of an axle with the terrain

13

4. PATH PLANNING

4.1 Principle

The planning principle was originally proposed in [2]. The idea is to build incrementally

a graph G of discrete con�gurations in C

free

. These con�gurations can be reach from q

i

by applying sequences of elementary controls during a short time interval.

The con�guration space is decomposed into an 3D-array of small cells of equal size and a

node of the graph represents a CS cell. Each arc of the graph corresponds to a trajectory

portion between two nodes, obtained by applying a given control. These controls are line

segment or arc of circle of minimal radius for the robot in the plane (x; y). The discrete

values of the linear and angular velocity v and ! are :

(v; !) 2 f�V

lin

; V

lin

g � f�
; 0;
g

These controls respect the non-holonomic constraint in the plane and represent a good

approximation on the rough surface.

In order to limit the size of the graph each new cell is marked and one node is at

most generated in each cell. Figure 16 details the successors developed by applying the

●

●

●

●

✕

✕
✕

Obstacle
of CS

q2

q3

q1

q

Figure 16: Incremental graph

controls from the node q. A node is created when a new cell is reached, and if the cell

has not been visited yet and the portion of trajectory veri�es the validity constraints.

For example in the �gure 16, only the nodes q1, q2 and q3 are created from node q.

To guarantee the trajectory validity, the constraints are tested at discrete con�gurations

along each portion of trajectory.

4.2 Graph search

We use a classical A

�

algorithm to search the graph G. Search starts at node q

init

,

and nodes are recursively developed until q

goal

is reached. For each node created, two

features are evaluated :

� the cost of the path from q

init

to the current node ;

� the heuristic function : estimate of the cost from the current node to q

goal

.

The node with the best value cost+ heuristic is developed �rst. The heuristic based on

terrain characteristics avoid creation of great number of nodes.

14

4.2.1 Arc cost

The cost assigned to the arc connecting two adjacent nodes is computed from the

distance between the two con�gurations associated to these nodes. This distance is

weighted in order to penalize the dangerous con�gurations, i.e. con�gurations for which

the placement parameters (angles �(q) and (q) or some of the links) are close to their

limits. Therefore, the minimum-cost trajectory is a compromise between the distance

crossed by the robot and the security along the trajectory.

4.2.2 Search guidance

The choice of a good heuristic function is very important to limit the graph develop-

ment. In our problem, the terrain characteristics must be taken into account in order to

give a good approximate of the path cost between a node and the goal.

Cost bitmap for each point of the terrain grid, the slope and the roughness of a

circular domain centered at this point with a radius related to the size of the robot is

evaluated. From these values we deduce the local cost of the terrain, rough estimation

of the di�culty for the robot to cross the domain (see Fig. 17).

Figure 17: The terrain model and its associated cost bitmap

Potential bitmap The potential bitmap is computed by using a classical wave propa-

gation technique which integrate the cost across the bitmap, starting with a null potential

at the goal position of the robot. Propagation is done in priority for the pixels whose

combination (cost+potential) is the lowest. This guarantees a compromise between path

length and local cost of the terrain.

Heuristic function For a con�guration q(x; y; �), the heuristic H(q) is computed, as

in [3], by a linear combination of the potential evaluated at two control points of the

robot.

Close to the goal the Reeds and shepp curves [20] are used to take into account the

goal orientation.

Figure 18: The initial/goal con�gurations on the terrain and the potential bitmap

15

Figure 19: motion planning with various search guidances

4.3 Results

Figure 19 presents the trajectories found for the problem of Fig. 18, and the nodes

developped for each case. Three di�erent heuristic functions have been used to guide the

search.

First, a simple strait-line distance heuristic (top). This guidance is not e�cient for rough

terrain, because of the validity constraints, and many nodes are created before the goal

is reached. The number of nodes, placements and the computation time is given in the

following table.

The two other examples (middle and bottom on Fig. 19) correspond to a search guidance

with potential bitmap. The latter includes an additional guidance that takes into account

the robot's orientation when it is closed to the goal. The number of nodes and the

computation time show that this guidance is much more e�cient than the simple strait-

line distance guidance.

top mid bot

Nodes created 33004 2278 775

Nodes developed 30579 1583 413

Placements 80885 5425 1757

Time (sec.) 125.1 4.47 1.83

Figure 20 presents the results of preprocessing on various terrains. Computation time is

linear with the size (number of points) and quadratic with the resolution of the terrain.

Tests have been performed �rst for a given resolution (25cm between two consecutive

points), and then for a given size of terrain (20000 points).

4.4 Smoothing

16

0
5

10
15
20
25
30
35
40
45

10000 20000 30000 40000

T
im

e
(s

)

Terrain: number of points

total
axle placement

cost
quadtree

0
5

10
15
20
25
30
35
40
45

0.1 0.2 0.3 0.4
Resolution (m)

total
axle placement

cost
quadtree

Figure 20: Preprocessing: computation time

Figure 21: Trajectory smoothing

The �nal trajectory is a sequence of elementary motions, segment and arc of circle,

and many oscillations are due to control change between them. We decide to smooth the

trajectory by computing a Reeds and Shepp curve [20] between random closed con�gura-

tions on the trajectory (the number of change control is limited). If the Reeds and Shepp

curve is valid it replaces the old portion and decrease the number of controls change.

Figure 21 represents a trajectory before and after the smoothing. Each robot drawing is

associated with a di�erent control. The number of controls decreases from 40 to 13.

5. UNCERTAINTY CONSTRAINTS

5.1 Uncertainties on the terrain model

The uncertainties can be propagated through the di�erent steps of the terrain modeling

in order to produce an elevation map with an error interval associated with each eleva-

tion of the grid points. The terrain is therefore represented by two surfaces (T

min

; T

max

)

corresponding to the envelopes obtained from the minimal/maximal elevations. The

problem is to guarantee that the validity constraints imposed to the planner are satis�ed

for whatever terrain lying between both envelopes.

5.1.1 Robot placement

The placement of the robot is now de�ned by a vector (q;�r(q)) where �r represents, at

con�guration q, the possible intervals for the joints values. These intervals are computed

by applying the algorithms described in x3:1:2 for the wheels placed either on the lower

or upper envelopes:

� The minimal (resp. maximal) elevation of an axle is obtained when both wheels

are placed on T

min

(resp. T

max

).

� The minimal value of '

<axle>

is obtained when the left wheel is placed on T

min

and the right one on T

max

(conversely for the maximal value).

17

� The minimal values of

F

and

R

are computed for the middle axle (both wheels)

placed on T

min

and the other axles on T

max

(conversely for the maximal value).

The preprocessing step (cf. x) is performed four times, placing the right and the left

wheel on T

min

or T

max

.

zmax zmin ϕmax ϕmin

Figure 22: Placement intervals of an axle

For each slice �, surfaces S

zmin

;S

zmax

; S

'min

and S

'max

represent the bounds on the

parameters as functions of the (x; y) position.

During the online placement of the chassis, the middle axle parameters �z

M

and �'

M

are directly obtained from the precomputed surfaces. The function Place other axle

is then applied to these surfaces to compute the parameter intervals �'

F

, �

F

and

�'

R

;�

R

for the front and rear axles.

5.1.2 Validity constraints

The constraints are checked in the worst case situation obtained from the bounds of

the placement intervals.

Stability: The global roll angle is checked for the extreme values of '

<axle>

:

MAX

�

�

�

�

�

�'

<axle>min

3

�

�

�

�

;

�

�

�

�

�'

<axle>max

3

�

�

�

�

�

< '

StabMax

(4)

The minimal global pitch angle is obtained when the rear axle is placed on T

max

and

the front one on T

min

(and conversely for the maximal value). This value may also vary

as a function of the middle axle placement. However, we assume that this variation is

small and the middle axle is placed on T

min

. Let

Rtermin

(resp.

Ftermin

) denote the

pitch angle computed for the middle and rear (resp. front) axles placed on T

min

. Then

we have:

StabMin

<

Rmin

�

Ftermin

2

and

Rtermin

�

Fmin

2

<

StabMax

Mechanical constraints: The angular limit between two successive axles is checked

when the roll angle of one is maximum and the other minimum:

MAX(j'

Mmin

� '

Rmax

j; j'

Mmax

� '

Rmin

j) < '

max

(5)

MAX(j'

Mmin

� '

Fmax

j; j'

Mmax

� '

Fmin

j) < '

max

(6)

and the minimal angle formed by the bodies is attained for the minimum value of both

pitch angles (conversely for the maximum):

Min

<

Fmin

+

Rmin

+ � and

Fmax

+

Rmax

+ � <

Max

18

Collision Concerning the collision checker, the worst case corresponds to a placement

of the robot on T

min

and a test of intersection with T

max

. Consequently, only one

hierarchical model corresponding to T

max

is computed.

5.2 Uncertainty on the Robot Position

The robustness to the control errors is achieved by imposing the validity of a con-

�guration domain around the planned trajectory. To guarantee the validity of the do-

main, we introduce the notion of neighborhood N (q) induced by two parameters (�;��):

at any con�guration q, the robot may be translated by a distance � from its posi-

tion (x; y), with an orientation � � ��. The free con�guration space is now de�ned

as C

0

free

= fq 2 CS = N (q) � C

free

g. A con�guration q is declared valid, only if all the

con�gurations of its neighborhood satisfy the validity constraints.

This approach guarantees a corridor of validity along the trajectory (see Fig. 23).

q

q

q

i

f

+
- ∆θ

ρ

Figure 23: Validity corridor along the trajectory

5.2.1 Robot placement For the placement, we have to compute the vector interval

�r(q) giving the limits of the parameter values for any con�guration of N (q). The

method proposed to solve this problem consists in transforming the position uncertainty

into uncertainty on the placement of an axle, in order to use the precomputed surfaces

of placement S

'

and S

z

.

The placement of an axle is de�ned by the position (x; y) of its center and its orientation

�. Since the frame R

robot

is linked to the center of the middle axle, the placement of this

axle depends on the neighborhood N (q) induced by (�;��). Moreover, the placements

of front and rear axles depend on di�erent neighborhoods N

F

(q) and N

R

(q) because of

the links between these axles and the middle one (see Fig. 24).

The placement parameter intervals �z, �' of each axle could be obtained by search-

ing for the minimal and maximal values of these parameters in surfaces S

z

and S

'

, on

the corresponding neighborhoods. However this method may induce two main problems :

� The extreme values of z and ' for each axle does not generally correspond to the

same con�guration of the robot (in N (q)). The computation of �

F

and �

R

without considering the links between the axles may induce an overconstraint.

� During motion planning, numerous placements are performed along the portions

of trajectory. As the distance between two successive placements is short, the

corresponding neighborhoods N (q) overlap (see Fig. 25 (a)). This overlapping

corresponds to con�gurations whose validity is tested several times while one test

is su�cient.

19

θ

Axle
Front

Axle
Middle

x

y

ρ
ρ

∆θ

Figure 24: Neighborhoods on middle and front axle

q

q

i

f

(a)

q

qf

i
q +

- ∆θ2ρ

(b)

Figure 25: Uncertainty domains

A new domain of uncertainty is de�ned, taking into account these considerations. It

corresponds to a segment normal to the trajectory and to an angular variation ��� (see

Fig. 25 (b)). Thus overlapping is limited, and the validity tests of the con�gurations in

the corridor are preserved in most of cases. Another advantage of this domain is that

the e�ects of the overconstraint are reduced.

From this domain we deduce the neighborhoods N

0

on each axle. A single type of

neighborhood is used for the three axles (see Fig. 26). The dimensions 2�x; 2�y; 2��

correspond to the union of the neighborhoods of the axles.

Middle

x

y
y

θ

Front
x

Axle

Axle

∆

θ

∆

∆2

2

2

Figure 26: Modi�ed neighborhoods on middle and front axle

The preprocessing step consists in computing the placement parameters z and ' of

an axle all over the terrain for various orientations. As the neighborhood N

0

is the

same for each axle, computation of the parameters intervals �z and �' is included in

20

preprocessing:

� for each slice �

i

, placement parameter surfaces S

'

and S

z

are computed;

� for each slice �

i

, surfaces S

' min

, S

' max

and S

z min

and S

z max

represent the

min=max values of the parameters on the neighborhood N

0

around each point of

the terrain.

Afterwards, the online processing of the robot placement is obtained from these surfaces

as presented in x5:1:1 for uncertainty on the terrain model.

5.2.2 Validity constraints The validity of a placement interval (q;�r(q)) is checked

on the same way as for uncertainty on the terrain model, excepted for collision checking.

Collision detection must take into account all the possible positions of the chassis ac-

cording to the uncertainty domain. At this aim, new faces are de�ned, representing the

inferior boundaries of the chassis elements when the robot con�guration belongs to the

uncertainty domain. Intersection of these faces with the terrain correspond to collisions

(cf. x3:3:2).

5.2.3 Combining uncertainties Uncertainties on the terrain model and the robot

position can be considered simultaneously with this method. This only a�ects the pre-

processing step. First, terrain uncertainty is considered : axle placements on T

min

, T

max

determine the surfaces S

' min

, S

' max

, S

z min

and S

z max

. Then these surfaces are

respectively used to determine S

0

' min

, S

0

' max

, S

0

z min

and S

0

z max

, the new surfaces

of min=max parameters that account for position uncertainty.

5.3 Path planning

Path planning is not di�erent with or without uncertainty, because uncertainty models

are integrated in the placement models and functions. It is however interesting to adapt

the search guidance to the presence of uncertainty.

5.3.1 Search guidance

The cost bitmap is modi�ed in order to penalize high uncertainty areas of the terrain:

elevation variation �z is now considered to compute the local slope and roughness of the

terrain, increasing the cost of high-uncertainty areas. Wave expansion of the potential

bitmap thus guide the robot away from these areas.

As information of the cost/potential bitmap is a 2D one, we can only consider position

uncertainty of the robot (i.e. translation � around the position (x; y) of the robot). To

account for that in the search guidance, a growing of the cost bitmap is performed: each

point of the bitmap takes the maximal value of the cost on the circular domain (radius

�) around it. Then the potential bitmap is computed as usual.

Both types of uncertainty can easily be combined for search guidance, applying the

growing action to the cost bitmap that accounts for terrain uncertainty.

5.4 Results

Figure 27 shows the planned trajectories between two con�gurations on a terrain (left).

Without uncertainty, the robot passes through the gorge to reach the goal (center) . The

last picture (right) shows the trajectory found with uncertainty. Uncertainty on the

robot position (� = 30cm;�� = 40

�

) and uncertainty on the terrain (obstacles appear

on the terrain) lead to a di�erent trajectory, avoiding the gorge.

Preprocessing time increases when uncertainties are taken into account (12 sec. without

21

uncertainty, 72 sec. with), but then the trajectory is found as rapidly in both cases (a

few seconds).

Figure 27: Path planning with uncertainty

6. CONCLUSION

In this paper, we considered the problem of planning safe motions for a robot moving

on rough terrains. The main problem in these environments is the interaction between

the robot and the terrain. Motion planning require numerous placements and validity

checking, and these actions become di�cult when the robot geometry and the terrain

characteristics are considered accurately.

Two directions have been studied to solve this problem. First we developped e�cient

algorithms of placement and collision checking, relying on precomputed speci�c geomet-

ric models. Then we proposed heuristics relying on the terrain geometry to limit the

exploration of search space, and consequently limit the number of placement/validity

computations.

With this approach, trajectory planning is performed in a few seconds despite the ac-

curacy of the models. Moreover, the approach can be suited to various types of robots,

modifying the speci�c parts of the geometric algorithms.

To improve the robustness of the trajectory, uncertainties on the terrain model and the

position of the robot have been considered. For a given con�guration of the robot, the

placement parameters become intervals of values, integrating uncertainties. Validity is

then checked in the worse situation. Heuristic also accounts for uncertainties, in order to

keep an e�cient search. Therefore the adaptation of the algorithms allow to �nd robust

trajectories, without excessive time increase.

Another extension of this approach has been presented in [13] to improve the robustness

of the motion in long-range displacements. It consists in exploiting additional information

from environment sensors (e.g. cameras). We consider regions of the terrain where

natural landmarks are visible, solving the problem of cumulative errors. A �rst step

based on simpli�ed models determines a 2D trajectory called path. Then a 3D trajectory

is planned along the path. It is a sequence of trajectories, alternately verifying or not

the visibility of landmarks.

Recent work [5] use geometric constraints on articulated robot to compute elementary

motion on rough terrains.

References

[1] D. Bapna, E. Rollins, J. Murphy, M. Maimone, W. Whittaker, and D. Wettergreen.

The atacama desert trek: outcomes. In Proc. IEEE International Conference on

Robotics and Automation, Leuven (Belgium), pages 597{604, 1998.

22

[2] J. Barraquand and J.C. Latombe. On non-holonomic mobile robots and optimal

maneuvering. Revue d'Intelligence Arti�cielle, 3(2):77{103, 1989.

[3] J. Barraquand and J.C. Latombe. Robot motion planning : a distributed represen-

tation approach. The International Journal of Robotics Research, 10(6):628{649,

1991.

[4] F. Ben Amar and Ph. Bidaud. Dynamic analysis of o�-road vehicles. In Proc.

International Symposium on Experimental Robotics, pages 363{371, 1995.

[5] D. Bonnafous, T. Sim�eon and S. Lacroix. Motion generation for a rover on rough

terrains. In IEEE International Conference On Intelligent Robots and Systems,

Hawaii (USA), October 2001.

[6] R. Chatila, S. Lacroix, T. Sim�eon, and M. Herrb. Planetary exploration by a mobile

robot: mission teleprogramming and autonomous navigation. Autonomous Robots,

2(4):333{344, 1995.

[7] M. Cherif. Motion planning for all-terrain vehicles:a physical modeling approach

for coping with dynamic and contact interaction constraints. IEEE transactions on

Robotics and Automation, 2(15):202{218, 1999.

[8] B. Dacre-Wright. Plani�cation de trajectoires pour un robot mobile sur un terrain

accident�e (in french). Th�ese de l'

�

Ecole Nationale Sup�erieure des T�el�ecommunica-

tions, octobre 1993.

[9] B. Dacre-Wright and T. Simeon. Free space representation for a mobile robot mov-

ing on a rough terrain. In Proc. IEEE International Conference on Robotics and

Automation, Atlanta (USA), pages 37{43, 1993.

[10] S. Farritor, H. Hacot, and S. Dubowski. Physics-based planning for planetary ex-

ploration. In Proc. IEEE International Conference on Robotics and Automation,

Leuven (Belgium), pages 278{283, 1998.

[11] E. Gat, R. Desai, R. Ivlev, J. Loch, and D.P. Miller. Behavior control for robotic

exploration of planetary surfaces. IEEE Journal of Robotics and Automation,

4(10):490{503, 1994.

[12] A. Hait. Algorithmes pour la plani�cation de trajectoires robustes d'un robot mobile

autonome sur un terrain accident�e (in french). PhD thesis, Universit�e Paul Sabatier,

Toulouse, France, 1998.

[13] A. Ha��t, T. Sim�eon, and M. Ta��x. Robust motion planning for rough terrain naviga-

tion. In IEEE International Conference On Intelligent Robots and Systems, Kyongju

(Cor�ee), pages 11{16, 1999.

[14] S. Jimenez, A. Luciani, and C. Laugier. Predicting the dynamic behaviour of a

planetary vehicle using physical modeling. In IEEE International Conference On

Intelligent Robots and Systems, Yokohama (Japan), pages 345{351, 1993.

[15] S. Lacroix, R. Chatila, S. Fleury, M. Herrb, and N. Simeon. Autonomous navigation

in outdoors environments: Adaptative approach and experiments. In Proc. IEEE

International Conference on Robotics and Automation, San Diego (USA), 1994.

23

[16] S. Laubach, J. Burdick, and L. Matthies. An autonomous sensor-based path planner

for planetary microrovers. In Proc. IEEE International Conference on Robotics and

Automation, Detroit (USA), 1999.

[17] L. Matthies, E. Gatt, R. Harrison, B. Wilcox, R. Volpe, and T. Litwin. Mars micro-

rover navigation : performance evaluation and enhancement. Autonomous robots,

2(4):291{311, 1995.

[18] Ch. Mil�esi-Bellier, Ch. Laugier, and B. Faverjon. A kinematic simulator for motion

planning of a mobile robot on a terrain. In IEEE International Conference On

Intelligent Robots and Systems, Yokohama (Japan), pages 339{344, 1993.

[19] F. Nashashibi. Perception et mod�elisation de l'environnement tridimensionnel pour

la navigation autonome d'un robot mobile. PhD thesis, Universit�e Paul Sabatier,

Toulouse, France, 1993.

[20] J.A. Reeds and L.A. Shepp. Optimal path for a car that goes both forwards and

backwards. In Paci�c Journal of Mathematics, vo.l 145, 1990

[21] H. Seraji. Traversability index: a new concept for planetary rovers. In International

Symposium on Arti�cial Intelligence, Robotics ans Automation in Space, Noordwijk

(Netherlands), pages 159{166, 1999.

[22] D. Shiller. Motion planning for mars rover. In First workshop on Robot Motion and

Control, Poland, June 1999.

[23] D. Shirley and J. Matijevic. Mars path�nder microrover. Autonomous Robots,

2(4):283{289, 1995.

[24] A. Stentz. Optimal and e�cient path planning for partially-known environments.

In Proc. IEEE International Conference on Robotics and Automation, San Diego

(USA), pages 3310{3317, 1994.

[25] A. Stentz and M. Hebert. A complete navigation system for goal acquisition in

unknown environments. Autonomous Robots, 2(2), 1995.

[26] M. Tarokh, Z. Shiller, and S. Hayati. A comparaison of two traversability based path

planners for planetary rovers. In International Symposium on Arti�cial Intelligence,

Robotics ans Automation in Space, Noordwijk (Netherlands), pages 151{157, 1999.

[27] R. Volpe, T. Estlin, S. Laubach, C. Olson, and J. Balaram. Enhanced mars rover

navigation techniques. In Proc. IEEE International Conference on Robotics and

Automation, San Francisco (USA), pages 926{931, 2000.

24

