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ABSTRACT
Motivation: Motion is inherent in molecular interactions.
Molecular flexibility must be taken into account in order
to develop accurate computational techniques for predict-
ing interactions. Energy-based methods currently used in
molecular modeling (i.e. molecular dynamics, Monte Carlo
algorithms) are, in practice, only able to compute local
motions while accounting for molecular flexibility. However,
large-amplitude motions often occur in biological processes.
We investigate the application of geometric path planning
algorithms to compute such large motions in flexible molecular
models. Our purpose is to exploit the efficacy of a geometric
conformational search as a filtering stage before subsequent
energy refinements.
Results: In this paper two kinds of large-amplitude motion are
treated: protein loop conformational changes (involving pro-
tein backbone flexibility) and ligand trajectories to deep active
sites in proteins (involving ligand and protein side-chain flex-
ibility). First studies performed using our two-stage approach
(geometric search followed by energy refinements) show that,
compared to classical molecular modeling methods, quite
similar results can be obtained with a performance gain of
several orders of magnitude. Furthermore, our results also
indicate that the geometric stage can provide highly valuable
information to biologists.
Availability: The algorithms have been implemented in
the general-purpose motion planning software Move3D,
developed at LAAS-CNRS. We are currently working on an
optimized stand-alone library that will be available to the
scientific community.
Contact: nic@laas.fr

∗To whom correspondence should be addressed.

1 INTRODUCTION
Interest in the computational analysis of molecular motions
is well known. Macromolecular flexibility remains the main
challenge for accurate docking approaches (Janin et al., 2003)
or for studying molecular pathways (e.g. protein folding,
structural rearrangements). Classical biomolecular modeling
methods (Leach, 1996) are too computationally expensive
for generating large motions while accounting for molecular
flexibility. Molecular dynamics simulations are, in practice,
applicable to computing motions in the time range of nano-
seconds. Techniques based on Monte Carlo algorithms enable
the computation of larger motions, but they are also constric-
ted. In practice, the two limiting factors of these methods are
the high cost for energy computation and their strong tendency
to fall in the local minima of the energy landscape.

Motion planning algorithms (Latombe, 1991) originally
developed in robotics are efficient tools for exploring con-
strained spaces. While these techniques have recently been
extended to explore molecular force fields, our aim is to
exploit the efficacy of a geometric treatment of molecular
constraints in order to better handle the complexity of large
amplitude motions and flexible molecular models. Such geo-
metric treatment is already applied in several other works.
For example, the geometric complementarity of molecular
surfaces is a widely used criterion to predict protein–ligand
or protein–protein interactions (Kuntz et al., 1982; Rarey
et al., 1996; Jackson et al., 1998), especially in rigid dock-
ing approaches. Moreover, techniques for the conformational
sampling of protein segments (Moult and James, 1986;
DePristo et al., 2003; Lei et al., 2004) often apply geometry-
based approaches to the loop closing problem and to atom
overlap detection.

The driving idea of our approach is to separate the con-
formational search in two stages aiming to highly speed
up the computation. The first stage consists in a geometric
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filtering operated by motion planning techniques applied on
articulated hard sphere models. The second stage accounts for
the energy-based accuracy only for selected solutions found
at the previous stage. The interest of this geometric filtering is
that high-dimensional conformational spaces can be globally
explored in a continuous way.

Section 2 overviews motion planning techniques and dis-
cusses their recent applications to computational biology.
Section 3 describes the molecular models and Section 4 the
tailored robotics algorithms developed for the geometric fil-
tering stage of our approach. Classical molecular modeling
techniques are currently used for the energy refinement stage.
The approach is then applied to two general computational
problems in biology. Section 5 deals with the analysis of
protein loop mobility. Section 6 deals with the study of access-
ibility problems in protein–ligand interactions, considering
both the flexibility of the ligand and that of the protein side-
chains. Both studies show the efficacy of the approach for
problems involving large-amplitude motions which are poorly
treated by classical molecular modeling techniques. They also
highlight the potential usefulness of the geometric treatment
for guiding the rational design of proteins.

2 ROBOT MOTION PLANNING
Motion planning is a classical problem in robotics (Latombe,
1991). It consists in computing feasible motions for articulated
robots in workspaces cluttered with obstacles. In recent years,
motion planning techniques have undergone considerable
development and have been successfully applied to chal-
lenging problems in diverse application domains, including
computational biology.

2.1 Sampling-based motion planning algorithms
Sampling-based motion planners have been designed for
exploring constrained high-dimensional spaces. Most of them
are variants of the probabilistic roadmap (PRM) approach
(Kavraki et al., 1996). The basic principle of PRM is
to compute a connectivity graph (the roadmap) encoding
representative feasible paths in the search space (e.g. the
molecular conformational space). Nodes correspond to ran-
domly sampled points that satisfy feasibility requirements
(e.g. collision-freeness) and edges represent feasible subpaths
computed between neighboring samples. Once the roadmap
has been constructed, it is subsequently used to process mul-
tiple motion queries or to determine ensemble properties of
mobility.

Variants of the PRM framework have been designed for
solving single-query problems without preprocessing the
complete roadmap. For example, the rapidly-exploring ran-
dom trees (RRT) algorithm (LaValle and Kuffner, 2001)
expands random trees rooted at the query positions and advan-
cing towards each other through the use of a greedy heuristic.
Such variants are well suited to highly constrained problems
for which the solution space has the shape of a long thin

tube. Whereas contructing a roadmap within the tube would
require a high density of samples, the random tree variant
benefits from the shape of the tube to naturally steer the
expansion.

2.2 Applications to computational biology
Recently, PRM-based algorithms have been successfully
applied to study molecular motions involved in biological pro-
cesses such as protein–ligand interactions (Singh et al., 1999;
Apaydin et al., 2004), protein folding (Amato et al., 2003;
Apaydin et al., 2002) and also RNA folding (Tang et al.,
2004). The main difference in the molecular adaptation of
the PRM framework is that the binary collision detection,
used in robotic applications, is replaced by a molecular force
field. Sampled conformations are accepted on the basis of their
potential energy and roadmap edges are weighted according to
their energy cost. Although the framework is general enough
to use any molecular force field, the techniques above gener-
ally consider simple potentials (including van der Waals and
electrostatic terms) for the sake of efficiency.

The major strength of these sampling-based techniques
is their ability to circumvent the energy trap problem
encountered by classical simulation techniques, which waste
a lot of time trying to escape from the local minima of the
molecular energy landscape. Singh et al. (1999) and Apaydin
et al. (2004) showed promising results from the study of bind-
ing sites for flexible ligands, assuming a rigid model of the
protein to limit the dimension of the conformational space.
Protein flexibility, which plays an important role in protein–
ligand interactions however, is considered for protein folding
applications using simplified models such as articulated back-
bone with bounding spheres for the side-chains (Amato et al.,
2003) or a vector-based approximation of secondary structure
elements (Apaydin et al., 2002).

Apart from our previous work on long protein loop con-
formational studies (Cortés et al., 2004), RRT-like meth-
ods have never been applied to computational biology
problems.

3 GEOMETRIC MODELING
This section describes the geometric constraints considered by
our approach to translate the driving forces affecting molecu-
lar motions. It then presents the molecular models handled by
the motion planning algorithms.

3.1 Geometric view of molecular constraints
3.1.1 Molecular degrees of freedom Molecular mechanics
force fields consider bonded and non-bonded atomic interac-
tions separately. Bonded interactions concern the variation in
the relative position of bonded atoms which is usually given in
internal coordinates: bond lengths (stretching), bond angles
(bending) and dihedral angles (torsion). Slight variations in
bond lengths and bond angles from their ideal values produce
a large increase in energy. Due to the stiffness of these two
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terms, both parameters are generally kept constant and the
molecular chain is considered as an articulated mechanism
with revolute joints modeling bond torsions.

3.1.2 Loop closure constraints In many studies, the global
molecular architecture is known and only segments of
the molecular chain (loops and unstructured segments not
involved in the secondary elements) are possible flexible ele-
ments. The first and last atoms of these flexible segments
must remain bonded to the fixed neighboring atoms in the
chain. Thus, kinematic loop closure constraints are introduced
in the molecular chain. They reduce the subset of feasible
conformations of the articulated molecular model. Similar
constraints also appear in cyclic molecules and in the presence
of disulphide bonds.

3.1.3 Main repulsive constraints For non-bonded interac-
tions, the repulsive part of the van der Waals term is the most
important contributor. A large amount of energy is required
to get two non-bonded atoms significantly closer than the
van der Waals equilibrium distance. Thus, acceptable con-
formations must respect geometric constraints for steric clash
avoidance.

3.1.4 Main attractive constraints Conversely, two import-
ant attractive interactions are responsible for the globular
shape of macromolecules and strongly participate to molecu-
lar docking: the hydrophobic interactions and the hydrogen
bonds. They restrain the relative locations of the involved
atoms and, therefore, imply geometric (distance/orientation)
constraints on the molecular model.

3.2 Geometric molecular model
Our algorithms deal with all-atom models of molecules, which
are considered as articulated mechanisms with atoms rep-
resented by spheres. Groups of rigidly bonded atoms form
the bodies and the articulations between bodies correspond to
bond torsions. A cartesian coordinate frame is attached to each
group. The relative location of consecutive frames is defined
by a homogeneous transformation matrix, which is a func-
tion of the rotation angle between them. We follow a method
similar to that of Zhang and Kavraki (2002) to define such
frames and matrices between rigid groups. Figure 1 shows
the mechanical model for an amino acid residue.

Our modeling can also take advantage of a known secondary
structure. In this case, the rigid secondary structure elements
(alpha helices and beta sheets) are modeled as rigid groups of
backbone atoms with articulated side-chains. Since second-
ary structure elements are fixed in the model, loop closure
constraints are introduced in the in-between segment. Similar
closure constraints can also be introduced in the model of a
molecule to consider non-bonded interactions, such as hydro-
gen bonds, that impose the spatial proximity between some
atoms of the protein.

Fig. 1. Mechanical model of an amino acid residue (phenylalanin).
It is composed of five rigid bodies, classified in:

— backbone rigids: Rb1 = {N}, Rb2 = {Cα , Cβ}, Rb3 = {C, 0};
— side-chain rigids: Rs1 = {Cγ }, Rs2 = {Cδ1, Cδ2, Cε1, Cε2, Cζ }.

The rotations between rigid atom groups are φ and ψ for the
backbone, and γ1 and γ2 for the side-chain.

4 ALGORITHMS
In this section, we describe the motion planning algorithms
developed for the geometric filtering stage of our approach.
The conformational space is divided into feasible and forbid-
den regions. The feasible regions are defined as the subset
of conformations avoiding steric clashes between the atoms
of the articulated model, while satisfying the kinematic clos-
ure constraints associated with the loops and hydrogen bonds
of the model. The main algorithm fulfills the conformational
space exploration. Two principal functions called into this
algorithm concern the sampling of points in the search space
(i.e. conformational sampling) and the avoidance of steric
clashes (i.e. collision detection).

4.1 Conformational space exploration
Conformational search is performed using a sampling-based
motion planning technique. Molecular motions are in general
extremely constrained mainly due to steric clashes and loop
closure constraints. Therefore, we based our algorithm on
RRT-like incremental search techniques (LaValle and Kuffner,
2001) that have been successfully applied to explore highly
constrained spaces in other application domains such as
mechanical disassembly.

The basic principle is to incrementally grow a random tree
rooted at the initial conformation qinit to explore the reach-
able conformational space and find a feasible path connecting
qinit to a goal conformation qgoal. At each iteration, the tree
is expanded toward a randomly sampled conformation qrand.
This random sample is used to simultaneously determine the
tree node to be expanded and the direction in which it is to
be expanded (Fig. 2). The nearest node qnear in the tree to
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Fig. 2. Expansion of a search tree using an RRT-based algorithm.

Algorithm 1: Construct_RRT

input : the root qinit , (optional) the goal qgoal

output : the tree τ , (optional) the path ρ

begin
τ ← InitTree(qinit);
while not StopCondition(τ , qgoal) do

qrand ← SampleConformation();
qnear ← NearestNeighbor(τ , qrand);
qnew ← ExpandTree(qnear, qrand);
if not Similar(qnear, qnew) then

AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);

ρ ← ExtractPath(τ , qinit , qgoal);

end

the sample qrand is selected and an attempt is made to expand
qnear in the direction of the straight path to qrand. The key idea
of this expansion strategy is to bias the exploration toward
unexplored regions of the space. Hence, the probability that
a node will be chosen for an expansion is proportional to the
volume of its Voronoi region (i.e. the set of points closer to this
node than to the others). Therefore RRTs are biased by large
Voronoi regions to rapidly explore before uniformly covering
the space.

Algorithm 1 gives the pseudocode for the RRT construc-
tion. The random conformations computed by the function
SampleConformation can simply follow a uniform dis-
tribution over the space, as originally proposed for RRTs.
We, however, prefer a more sophisticated sampling scheme
recently introduced by Yershova et al. (2005). By lim-
iting the uniform sampling inside domains dynamically
computed around the explored regions, this variant was
shown to outperform original RRTs on many constrained
problems. Furthermore, the conformational sampler handles
the presence of kinematic loop closure constraints (Cortés and
Siméon, 2004) using the technique summarized in Section 4.2.

The function ExpandTree extracts the feasible portion
of the path segment connecting qnear to qrand. The extremity
qnew of the feasible subpath is computed by checking the
satisfaction of the loop closure constraints and also the
collision-freeness along the path segment. The overall per-
formance of the RRT search strongly relies on the use of fast
collision detection techniques. We use an efficient algorithm
recently described by Ruiz de Angulo et al. (2005) and
summarized in Section 4.3.

When the RRT search is performed to compute a feasible
path connecting qinit to a goal conformation qgoal, the expan-
sion process is iterated until the current expanded node qnew
can be connected to qgoal, or a stop condition estimates that
no solution exists. In the absence of a specified goal, the same
algorithm can be used to encode within the computed tree
a representative subset of feasible paths and conformations
reachable from qinit.

4.2 Loop conformational sampling
Molecular conformations satisfying loop-closure constraints
are sampled based on the general technique called random
loop generator (RLG) (Cortés et al., 2002). Its application to
protein loops is discussed by Cortés et al. (2004). RLG relies
on a decomposition of the closed-chain mechanism. The kin-
ematic chain corresponding to the loop backbone is divided
into an active and a passive subchain. The passive subchain
is a backbone portion involving six rotational bonds. The
parameters (dihedral angles) of the active subchain are pro-
gressively sampled using a simple geometric algorithm that
notably increases the probability of obtaining a conforma-
tion that satisfies loop closure. Once the active subchain has
been sampled, the conformation of the passive one is com-
puted by a general 6R inverse kinematics method (Renaud,
2000), which is an improved variant of the method proposed
by Manocha and Canny (1994). RLG performs efficiently with
long protein loops, which are a challenge for most other related
techniques.

The loop conformational sampler also considers distance
constraints between different elements of the closed chain.
Such constraints enable to account for the presence of back-
bone hydrogen bonds, which particularly affect the motion
of some loops, hairpin loops for example. Loop conforma-
tions are sampled such that the distance between N–O atom
pairs involved in hydrogen bonds remains within a given
range.

The algorithm optionally integrates collision detection into
the progressive sampling process. Each time a dihedral angle
is generated, overlaps between atoms in the corresponding
rigid group and the rest of the protein are checked. The value
is only kept if no collision exists. Conformations computed in
this way simultaneously satisfy loop-closure and steric clash
avoidance. This combined procedure is more efficient than
that consisting of closing the loop first and then checking for
collisions.
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4.3 Collision detection
Performance requirement of collision detection within motion
planning algorithms is especially important for molecular
applications because of the quadratic cost of enumerating all
non-bonded atom pairs in models with thousands of atoms.
For this purpose, we have developed a tailored algorithm
BioCD (Ruiz de Angulo et al., 2005) for efficient self-collision
and distance computations in highly articulated molecular
models. BioCD uses, like Lotan et al. (2002), hierarchical data
structures that approximate the shape of the protein at success-
ive levels of details, allowing the number of interacting pairs
tested for collision to be significantly reduced. However, while
the former algorithm was designed for Monte Carlo searches
which only slightly change at each step a few randomly selec-
ted degrees of freedom (DOF), BioCD is more adapted to our
sampling-based motion planning scheme in which much lar-
ger sets of DOF are simultaneously and arbitrarily modified
during conformational space exploration.

BioCD is inspired by the dual kd-tree traversal algorithms
initially developed for n-point correlation problems in statist-
ical learning (Moore et al., 2001). The algorithm maintains
two levels of bounding volume hierarchies grouped according
to spatial proximity. The first level organizes the rigid parts of
the articulated model according to the selected DOF while the
second level organizes the atoms inside each rigid part of the
first level. Such a data-structure can be efficiently tested for
collision and also updated at a moderate cost. Experimental
tests performed with BioCD show its efficacy in processing
thousands of collision tests per second on articulated protein
chains with hundreds of DOF (Ruiz de Angulo et al., 2005).

The next sections discuss two applications of this planning
technique to problems involving large molecular motions.
They also demonstrate the ability of the approach to handle
efficiently articulated models with many DOF.

5 PROTEIN LOOP MOBILITY
Loops are irregular portions of proteins. Such ‘irregularity’
makes structure prediction difficult and therefore, currently
available techniques often fail when applied to long loops
(Tramontano et al., 2001). Indeed, surface loops can, in many
cases, undergo significant conformational changes and adopt
a variety of energetically favorable conformations. The main
interest in studying loop conformational changes is due to
their importance in protein interactions. For instance, they can
adapt the surface topology of antibodies for antigen recog-
nition (James et al., 2003) and play a key role in catalytic
mechanisms (Osborne et al., 2001). Despite the importance of
protein loops, very limited tools are available to analyze their
mobility. Energy-based approaches are only applicable (in
practice) to the computation of slight conformational changes.
For larger motions, simpler computational approaches have
to be designed. As far as we know, only the recent technique
ROCK (Lei et al., 2004) is able to generate such loop motions

Fig. 3. Geometrically feasible conformational change of the ‘thumb’
hairpin loop of xylanase from Thermobacillus xylanilyticus.

in reasonable computing time. The results presented below
show the good performance of our algorithm for studying the
mobility of protein loops.

5.1 Mobility of a specific loop of xylanase
We studied endo-β-1,4-xylanase (EC 3.2.1.8) from
Thermobacillus xylanilyticus (XTX) aiming to optimize
the conversion of cereal co-products into bio-ethanol fuel.
The architecture of XTX1 is similar to a right hand, where the
thumb is a long hairpin loop (Fig. 3). In this protein, the
corresponding amino acid sequence spans from 107 to 125.
Although maintained by a network of hydrogen bonds, this
loop is suspected to be very flexible, like in other xylanases
(Muilu et al., 1998). An open loop conformation may allow
an easier access of the substrate (xylan) to the catalytic
pocket. Once the xylan is inside the main crevice, a closed
conformation of this loop could complete the full docking.

In a previous molecular modeling study of XTX loop, a
modified simulated annealing procedure was used to sample
conformations while considering hydrogen-bond networks
(HBN) that maintain the hairpin structure of the loop. The pro-
cedure can be summarized as follows. The initial dynamics
simulations were performed at 500 K with a CFF91 force field
from Accelrys, maintaining constraint distances (around 3.2
Å) between non-hydrogen atoms supposed to be involved in
hydrogen bonds. Then, sets of conformations chosen regularly
along the high temperature trajectories were progressively
and slowly cooled and minimized (>10 000 iterations). At
the final minimization step, the distance constraints were
removed. Only low energy conformations were selected and
then clustered in several (10) low energy regions. Several pos-
sible HBN (from known structures of similar anti-parallel

1Known from personal communication. Structures of other xylanases of the
same family are available (de Lemos et al., 2004).
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beta-sheet loops) were tested. Results showed that signific-
antly different low energy conformations of the ‘thumb’ loop
are possible. However, the method has prominent drawbacks.
Firstly, it is computationally too expensive. A complete set
of calculations (dynamics + minimization) for a given HBN
needed >10 h on an SGI computer with MIPS R14000 pro-
cessor. Consequently, the whole study required several days.
Besides, the method is unable to determine whether a con-
tinuous loop motion exists between two different feasible
conformations.

5.2 Results
5.2.1 Conformational sampling Our first experiments
with XTX aimed to validate our approach in relation to the
classical molecular modeling method commented upon above.
The considered articulated loop model involves 68 DOF (42
for the backbone and 26 for the side-chains). Sets of con-
formations satisfying loop closure and steric clash avoidance
were computed for the different HBN by the conformational
sampling algorithm (Section 4.2). Then, a simple energy
minimization was performed. The method is very fast: 10
significantly different conformations are generated in some
seconds or at most in some minutes, depending on the dif-
ficulty of satisfying a given HBN (on a PC with an Intel
Pentium M 1.8 MHz processor). Since geometrically feasible
conformations already satisfy some strong constraints, their
energy minimization is also very fast, requiring about a minute
per conformation. As shown in Figure 4, this minimization
only produces a slight deformation of the loop conformation
(RMSD < 1 Å). Notably, the energy values are in general very
similar to those obtained by the classical modeling method.
The whole computations takes <1 h instead of several days
required without the geometric filtering stage.

5.2.2 Loop pathways and mobility analysis Next, we
applied the motion planning algorithm (Section 4.1) to model
the conformational change continuity, yielding a more accur-
ate study of xylanase loop mobility. The tests showed the
feasibility of a continuous loop motion from the crystallo-
graphic conformation to a conformation inside the crevice.
The geometric path illustrated in Figure 3 was computed in
<1 min.

In a further study, we applied the exploration algorithm
to compare the mobility of the thumb loop in native XTX
and in a mutant with two deletions: Tyr-111 and Thr-121.
Experimentally, this mutant presents no activity. Tests were
carried out with different HBN. In all cases, the mutated loop
presented a much more restricted mobility in the crevice com-
pared to the native one. Figure 5 shows the possible loop
motions computed for the HBN represented in Figure 6. The
two search trees (RRT) contain 5000 nodes and their con-
struction required <1 h on a standard PC. These tests tend
to confirm the impossibility for this mutated loop to go deep
inside the crevice to fix the ligand for the catalytic action. This

Fig. 4. Geometrically feasible random conformation of the xylanase
loop (blue/dark), and low energy conformation obtained from it by
simple minimization (pink/clear). Both conformations are very close,
the backbone RMSD is 0.67.

Fig. 5. Graphic representation of the loop mobility computed for
native (left) and mutated xylanase (right). The small frames (in black)
display positions reachable by the Cα atom of the middle residue in
the loop. The native loop can move toward the crevice while the
mutated loop only undergoes slight conformational changes.
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Fig. 6. HBN for the native/mutated loop of XTX. The HBN help to
maintain the hairpin-like loop structure.

could explain the absence of activity experimentally observed
for this mutant.

6 PROTEIN–LIGAND ACCESSIBILITY
Today, integrating protein flexibility in receptor-ligand inter-
actions remains a challenge for accurate computer-aided drug
design. Besides, the recent methods proposed for flexible
docking (Carlson, 2002) mostly address the local aspect of
the problem and compute the binding conformation of the
ligand without considering the access pathway. The active
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site of many enzymes is located at the bottom of a deep nar-
row cavity. In such cases, it is reasonable to consider that the
docking of the ligand to the binding pocket is influenced by
the difficulty of accessing the active site, which affects the
enzyme–ligand affinity. Computing motions as large as that
of a ligand entering from the protein surface to a deep active
site remains computationally very expensive for energy-based
modeling methods. We present below the results obtained
with the proposed two-stage approach for studying the enan-
tioselectivity of an enzyme presenting such a deep catalytic
pocket.

6.1 Study of lipase enantioselectivity
The active site of the Burkholderia cepacia lipase (BCL) is
located at the bottom of a narrow 17 Å deep pocket. This lipase
is used for the kinetic resolution of racemic 2-substituted
carboxylic acid in a transesterification reaction. Recently, a
classical approach involving the modeling of the R and S tet-
rahedral intermediates of the reaction failed to explain the
enzyme enantioselectivity (Guieysse et al., 2003). Thus, a
molecular modeling procedure based on pseudo-molecular
dynamics simulation under constraints was employed to
model the trajectory of each enantiomer from the active site
to the protein surface. Figure 7 shows the trace of the tra-
jectory of one of the enantiomers. Interestingly, the energy of
the enzyme/enantiomer interaction along the trajectory was
found to be always lower for the preferred enantiomer which
is in agreement with the experimental results of kinetic resol-
ution. Consequently, molecular modeling of each enantiomer
trajectory may be very helpful in understanding the enzyme
enantioselectivity and very useful for its prediction. However,
the modeling protocol designed by Guieysse et al. (2003)
has several drawbacks. First, it does not enable automatic
modeling because the manual correction of several side-chain
orientations is required to remove the steric conflicts between
the protein and the ligand along the trajectory. Besides, it is
very time-consuming. Several days are required to generate
one trajectory.

6.2 Results
6.2.1 Ligand pathways Our incremental search planner
was used to compute geometrically feasible paths of articu-
lated (R,S)-enantiomers, while also considering the flexibility
of 17 side-chains in the catalytic pocket of BCL. The model
contains a total of 68 DOF (11 for the ligand and 57 for the
protein side-chains). Paths were computed for several couples
of (R,S)-2-halogenophenyl acetic acid ethyl ester (referred to
as ph(X)Et) in BCL for which both experimental (in vivo)
results and in silico predictions are available. Computing
times ranged from seconds to several minutes for solving
the most constrained problems (Fig. 9). The first conclu-
sion of the study is that all the ligand paths computed by our
geometric approach are very similar to those obtained, after
several days of computation, by pseudo-molecular dynamics.

Fig. 7. Trajectory of a ligand ((R)-ph(Br)Et) accessing the active
site of Burkholderia cepacia lipase.

After a simple and fast energy minimization of intermedi-
ate conformations along the geometrically feasible paths, the
energy profiles are also very similar to the curves computed
by pseudo-molecular dynamics (Fig. 8).

6.2.2 Enzyme enantioselectivity We applied the motion
planner to compute geometric paths to the active site of BCL
for several enantiomer pairs. Significantly different comput-
ing times were observed for some of them. Figure 9 shows
the average times calculated over 50 runs of the planner. In
general, the computing time of sampling-based motion plan-
ning algorithms increases with the difficulty of the problem.
Thus, assuming that the topology of the catalytic pocket is bet-
ter adapted to the access of the preferred enantiomer, its path
should be computed faster than the path of the slow react-
ing one. Notably, results show a good correlation between
the ratio of the computing time necessary to find the path
of (R,S)-enantiomers and the experimental enantioselectivity
(Guieysse et al., 2003). Therefore, these results indicate that
the time spent by the planner may be useful information for
predicting the enzyme enantioselectivity.

6.2.3 Mutagenesis targets In addition, an analysis of the
set of computed paths enables a rapid localization of amino
acid residues constraining the access of the enantiomers and
is involved in the BCL discrimination of racemic compounds.
The histograms in Figure 10 display the enzyme atoms con-
straining the motion of the (R,S)-ph(Br,F)Et enantiomers in
four different portions of the path. It can be seen that the
(S)-ph(Br)Et enantiomer meets a higher number of atoms
restraining its access. This is totally consistent with comput-
ing time results. Therefore, this fast technique makes it very
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Fig. 8. Interaction energy along the most constrained portion of the ligand trajectory from the BCL active site. The distance is measured
between the barycenters of the catalytic amino acid and the ligand. The curves obtained by pseudo-molecular dynamics (left) are very similar
to those obtained by geometric motion planning followed by energy minimization (right). In both cases, the (S)-enantiomer displays a higher
interaction energy.
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Fig. 9. Diagram representing the average time for computing paths
for three pairs of enantiomers, (R,S)-ph(Br,Cl,F)Et. The computing
time ratio S/R correlates with experimental enantioselectivity.

easy to pinpoint those residues possibly involved in enanti-
oselectivity, thereby providing highly valuable information
for site-directed mutagenesis.

7 DISCUSSION
The basic idea behind our approach is that major constraints
affecting molecular motions have a geometric interpretation;
this can be properly and rapidly dealt with by adequate
tools such as robotics motion planning algorithms. The
approach applies sampling-based motion planners to flexible
molecular models as efficient conformational filters before
an energy refinement. This fast geometric filtering com-
putes energetically reasonable conformations and pathways
allowing us to drastically accelerate the highly expensive
computations of classical energy-based methods applied for

the refinement stage. The resulting performance gain is
particularly important to address problems involving large-
amplitude motions in high-dimensional spaces, for which
the applicability of energy-based approaches is limited. Fur-
thermore, as shown by the results above, a biological inter-
pretation can be directly made from geometrically feasible
molecular motions.

Two kinds of application have been presented. The first one
concerns the analysis of protein flexibility aimed at predict-
ing possible conformational changes in polypeptide segments.
The other application concerns problems of accessibility in
protein–ligand interactions. Although the later study only
involved protein side-chain flexibility, backbone flexibility
(treated in the first application) can also be considered by
the current algorithm.

Our geometric algorithms have been tested with several
molecules and the first results are highly promising. How-
ever, an in-depth study with a larger set of models remains to
be carried out. Currently, we are considering other examples
of protein–ligand interactions involving deep narrow cavities
and with available experimental results for a more rigorous
validation.

This work focused on the geometric level of the approach
while classical energy-based molecular modeling methods
were used for the second stage. Our aim is to develop new
techniques for this stage to better exploit the geometric path
information provided in the first filtering stage.
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