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Notes on Visibility Roadmaps and Path Planning

J.-P. Laumond, LAAS-CNRS, Toulouse, France

T. Siméon, LAAS-CNRS, Toulouse, France

Abstract

This paper overviews the probabilistic roadmap ap-
proaches to path planning whose surprising practical
performances attract today an increasing interest. We
first comment on the configuration space topology in-
duced by the methods used to steer a mechanical sys-
tem. Topology induces the combinatorial complexity of
the roadmaps tending to capture both coverage and con-
nectivity of the collision-free space. The we introduce
the notion of optimal coverage and we provide a proba-
bilistic scheme in order to compute what we called vis-
ibility roadmaps [26]. Reading notes conclude on re-
cent results tending to better understand the behavior
of these probabilistic path planning algorithms.

1 Introduction

The framework of this work lies in the tentative to
provide path planners working for large classes of me-
chanical systems. Such a generality is imposed by an
increasing number of path planning applications that
extend the robotics area where the research has been
initially conducted [19].

In our case, we are interested in providing CAD sys-
tems with path planning facilities in the context of
logistics and operation in industrial installations'. A
typical scenario is the following one. An operator has
to define a maintenance operation involving the moving
of an heavy freight. He has a CAD software including
all the geometric details and facilities to display the
plant together with catalogue containing lists of avail-
able tools to perform the maintenance task. He should

'This work is supported by the European Esprit Project
28226 MOLOG (http://www.laas.fr/molog).

choose suitable handling devices among cranes, rolling
bridges, carts. .. and validate his choice by simulating
the task within the CAD system. As the other facilities
offered by the CAD software, the use of path planners
should be as easy as possible. The operator does not
care about path planning algorithms.

Probabilistic path planners, and among them, prob-
abilistic roadmap algorithms appeared as a promising
route to face the constraints imposed by such a sce-
nario.

This paper does not contain new algorithms, new
theorems nor new original results. It constitutes a
set of remarks and working notes on probabilistic
roadmaps algorithms introduced at the beginning of
the 90’s [13, 25, 15] and now attracting numerous re-

search groups, including ours.

The first section starts from the beginning: it deals
with the controllability of mechanical systems inde-
pendently from any computational perspective. In the
next section we put emphasis on the choice of the meth-
ods used to steer a mechanical system from a configu-
ration to another one. The set of configurations reach-
able from a given configuration has various shapes de-
pending on the considered steering method. Paving
the space with reachable sets ask for combinatorial
topology issues which are discussed. The roadmaps
induced by such pavements capture both coverage and
connectivity of the space and allow to apply a retrac-
tion approach to path planning. At this stage, we in-
troduce the notions of optimal coverage and visibil-
ity roadmaps. Section 4 addresses the computational
point of view: probabilistic algorithms are today the
only effective way to pave the space with reachable
sets. After presenting the principle of the probabilistic



roadmap algorithms we show how visibility roadmaps
may be computed. An interest of the algorithm lies
in its control. Another one is the small size of the
computed roadmaps. The work related to probabilis-
tic roadmap algorithms is reported and commented in

Section 5.

2 Controllability and C'S topology

Consider the
mechanical systems displayed in Figure 1 together with

Examples of mechanical systems

examples of collision-free paths. Modeling a mechan-
ical system in the context of path planning addresses
two issues.

The first one deals with the placement constraints.
We should identify the configuration space CS of the
system, i.e. a minimal set of parameters locating the
system in its workspace. This is an easy task for the
robot arm, the mobile robot and the rolling bridge,
The sys-
tem constituted by the two holonomic mobile robots

all of them being open kinematic chains.

manipulating an dumbbell is a closed kinematic chain.
The placement parameters of both robots are linked by
equations modeling the grasping of the dumbbell and
giving rise to holonomic constraints. For this special
example it is possible to select five independent pa-
rameters defining the configuration space properly, the
other placement parameters being deduced by explicit
equations involving only the five independent parame-
ters. For more general closed loop chains, characteriz-
ing C'S properly is not an easy task.

Second, we should consider the kinematic con-
straints. There 1s no special constraint for the robot
arm, any configuration parameter being a degree of
freedom directly controlled by a motor independently
from any other one. Any path in CS i1s admissible.
The same property holds for the coordinated path of
the two holonomic mobile robots. The control of the
rolling bridge may impose special constraints, like mov-
ing a degree of freedom at once. In that case the only
admissible paths in C'S are Manhattan paths. The
motion of the mobile manipulator is submitted to the
constraint of rolling without sliding. This is a nonholo-
nomic constraint that affects the range of admissible
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paths, but not the dimension of the reachable configu-
ration space.

Figure 1: Fzamples of mechanical systems and collision-

free paths.

Controllability All the previous systems are small-
time controllable: starting from any configuration, the
set of configurations reachable before any given time
contains a neighborhood of the starting configuration.



Notes on Visibility Roadmaps and Path Planning

Let us translate this property in geometric terms: the
set of configurations reachable by all the admissible
paths not escaping a given neighborhood of the starting
configuration contains a neighborhood of the starting
configuration (Figure 2).

Figure 2: Small-time controllable systems: the domain
reachable without escaping a given neighborhood contains

a neighborhood of the origin.

Small-time controllability plays a central role in ob-
stacle avoidance. Indeed, for small-time controllable
systems, any collision-free path in 'S may be approx-
imated by a finite sequence of collision-free paths re-
specting the kinematic constraints. In other words,
there exists an admissible collision-free path between
two configurations if and only if both of them lye in the
same connected component of the collision-free config-
uration space? C'Sfree. This means that the knowledge
of the connected components of C'Sy,c. is sufficient to
prove the existence of an admissible collision-free path
between two given configurations. The route is open to
devise deterministic and complete algorithms to solve
the path planning problem.

The small-time controllability property does not
hold for any system. A car moving only forward is
locally controllable (the reachable set from a configu-
ration contains a neighborhood of the configuration).
It is not small-time controllable and deciding on the
existence of an admissible collision-free path is still an
open problem for this system.

Complexity Small-time controllability allows to for-
get the kinematic constraints to decide on the existence

2Configurations touching an obstacle are not considered
as collision-free. C'S¢rce is an open domain in C'S.

of an admissible path in C'S¢,c.. Nevertheless the kine-
matic constraints affect the combinatorial complexity
of the admissible paths. Consider that 'Sy, is re-
duced to a long straight-line tube. Moving within the
tube is easy for the robot arm: a single straight-line
path is sufficient. Depending on the orientation of the
tube in C'Sf,ce, the same task will be more difficult
for the rolling bridge: the number of elementary pieces
of the Manhattan paths may grow linearly when the
width of the tube decreases. Tt will be even more diffi-
cult for a nonholonomic robot: the number of elemen-
tary pieces of admissible paths may grow exponentially
with its degree of nonholonomy when the width of the
tube decreases (e.g., the number of maneuvers required
to park a car along a sidewalk varies quadratically with
the inverse of the free space size).

3 Steering methods, wvisibility and

roadmaps

Steering methods The decision part of the path
planning problem (existence of a path) depends only
on the controllability of the considered system. Now,
to solve the problem completely (compute a path) we
have to devise effective ways to steer the system. What
we call a steering method is a procedure computing an
admissible path between any two configurations in the

absence of obstacles®.

Any steering method respecting the kinematic con-
straints of the system is not necessarily a good one with
respect to obstacle avoidance. For instance, a steering
method for a car moving only forward applies also to a
car moving both forward and backward. Nevertheless
it is impossible to park a car by using only forward
motions. A steering method induces a topology in C'S
that should account for the topology induced by the
controllability property of the mechanical system. A
steering method accounting for small-time controllabil-
ity should verify the property illustrated in Figure 2. It
is said to be stc. Devising stc steering methods is not
necessarily a trivial problem (especially for nonholo-
nomic systems). Moreover the choice is not unique. It

®In the path planning literature, authors usually refer to
the notion of local methods.



may affect the combinatorial complexity of the path

planning algorithm.

This section aims to illustrate the importance of this
choice through two examples of stc steering methods
for a point moving on a plane. Both induce the same
topology in C'S. We will see that they differ by the
combinatorics of the pavements induced on CS¢ree.

The first one (Steer;,) consists in computing a
The sec-

Two points being given,

straight-line segment between two points.
ond one is Steeryan.
Steer,,sn computes first an horizontal path from the
left point until the right point is reachable by a ver-
tical path. Both steering methods are symmetric and
stc. Figure 3a shows the structure of the sets of points
reachable with paths of fixed length.

A symmetric stc steering method Steer being given,
a configuration is said to be wisible from another one
if the path computed between them by Steer lies in
CStree. The set of configurations visible from a given
configuration constitutes its wvesibility set. The config-
uration is said to be the guard of its visibility set. Fig-
ure 3b shows visible sets of the same configuration, in
the same environment, for both Steer;;,, and Steer,,, 41, .

a: Reachable sets with paths of fixed length.

b: Visible sets in the presence of an obstacle

(grey domains are not reachable).

Figure 3: Visible sets of a configuration with Steeryin (left)
and Steerman (right).
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Covering CSt,.. with visibility sets Let us con-
sider a small-time controllable system together with a
stc steering method. A set of guards is said to be cov-
ering C'Sgree if any configuration in C'Sy,.. is visible

from at least one guard.

We address a first question: is there a finite set of
guards covering C'Sf,c. 7 The answer to this question
is difficult and there exists today no general result. It
depends on both the shape of 'S}, e and the consid-
ered steering method.

Let us illustrate the problem via four examples of
2-dimensional C'S¢ree (see Figure 4). First consider
Steer;,. For the cases of Figures 4a and 4b, we may
provide coverage of C'Sy,.., e.g., by putting guards suf-
ficiently close to convex vertices of the obstacles. The
cases 4c and 4d contain an obstacle whose boundary
piece is circular and tangent to a straight-line segment:
there is no way to provide a finite number of guards
covering C'Stree for the case 4c, while this is possible
for the case 4d (in this later example it is necessary to
put at least one guard on the dashed line).

Consider the same environments with Steer,,q,. Fi-
nite coverage exists for the cases 4e, 4g and 4h while it
does not exist for the case 4f.

Optimal coverage Now, we impose an additional
constraint. We wish to provide coverage such that any
guard does not see any other one. Withdrawing a single
guard does not provide coverage anymore. For that
reason we say that the set of guards provides optimal

coverage.

Clearly, the set of guards providing optimal coverage
1s not unique. Taking a combinatorial point of view, a
second question is: if there exists finite optimal cover-
age, are all the sets of guards achieving optimal cover-
age necessarily finite 7 The answer is “no” in general.

The answer is “yes” if we consider Steerj;,, and a
polygonal CS} ee: the maximal number of guards is
bounded by the number of straight-line segments*. The
[43

answer 1s

(Fig. 5).

no” if we consider a single circular obstacle

*Remark: computing the minimal number of guards
constitutes the classical art gallery problem [23].
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Figure 4: Finite coverage using Steery;,, exists for the cases
a, b and d. It does not for the case c. Finite coverage using
Steer,,an exists for the cases e, g and h. It does not for the

case f.

Figure 5: Steery;,,: Ewamples of optimal coverage with /
and 6 guards. The number of guards achieving optimal cov-

erage is not a constant number. It may be unbounded.

Also note that one cannot necessarily extract opti-
mal coverage from any given set of guards providing
coverage. More than that, finite coverage may exist
while finite optimal coverage does not. In the example

of Figure 6 finite coverage (with Steery;,,) necessarily
requires two guards on the dashed lines. It is impos-
sible to make one of them not visible from the other
one. Nevertheless this example may be considered as a
degenerated case since finite coverage requires guards
on a domain whose dimension is strictly lower than
the dimension of €Sy, (the probability to select such
guards randomly is null).

Figure 6: Steer;;,: Finite coverage may exist while finite

optimal coverage does not.

Capturing CSf.. connectivity from coverage
In this section we show that coverage induces connec-
tivity. Let Steer be a symmetric stc steering method in
CStree. Consider a given (finite or not) set of guards
achieving coverage of CSfree together with a (finite
length) path. The path is covered. Visibility sets are
open sets. The path being a compact set, there is a
finite number of guards whose visibility sets cover that
path®.

This property means that it is always possible to
build a (finite or not) undirected graph accounting for
the connectivity of C'Sf,... Two guards are connected
if they are visible by Steer. At this level there does not
exist necessarily a one to one mapping between the
connected components of the graph and the connected
components of C'S¢,... Nevertheless, it is always pos-
sible to complete the graph. When two guards belong
to the same connected component of C'St,.. but not to
the same component of the graph, and when their visi-
bility sets intersect, we chose a configuration in the in-
tersection set and we add it as a new node to the graph.
Such a new configuration does not increase coverage,

This gives rise to a notion of complexity of a path with
respect to a given set of guards: the complexity of a path is
the minimal number of guards necessary to cover the path.



it just makes the number of connected components of
the graph decreasing. It is called a connector.

By this way, 1t is always possible to build a graph
capturing the connectivity of C'Sf,cc, 1.e. such that
there is a one-to-one mapping between the connected
components of the graph and the connected compo-
nents of C'S}yce.

Everything is now in place to define a retraction
method solving the path planning problem. The re-
traction function applied to a configuration just con-
sists in selecting a guard seeing it. This is a well defined
function since the set of guards covers C'Sf,c.. Finally
some starting and goal configurations being given there
exists an admissible collision-free path between them if
and only if their retractions belong to a same connected
component of the graph. The continuous dimension of
the path planning problem is then transformed into a
computational one.

The graphs above have been introduced in path plan-
ning literature with a computational point of view and
especially with a probabilistic one. Indeed computing
such roadmaps with complete deterministic algorithms
is a difficult problem: for given C'Sy,.. and Steer, we
do not know a priori if there exists finite coverage, and
even if there exists, we do not know how to compute one
of them in a deterministic way. The probabilistic ap-
proaches relax the completeness property and tend to
cover C'Syree at the best. Experiences show that they
behave well for practical problems. This is the key of
the success of the so-called probabilistic roadmaps.

When considering optimal coverage, the roadmap
resulting from the construction above is a bipartite
graph: the connector nodes are adjacent only to guard
nodes and, from the definition of optimal coverage, a
guard cannot see any other guard. Such roadmaps have
been recently introduced as visibility roadmaps in [26].

The following section overviews probabilistic algo-
rithms to compute roadmaps.

4 Probabilistic visibility roadmaps

Computing probabilistic roadmaps Consider a
small-time controllable mechanical system. Comput-

ing a probabilistic roadmap for the system requires a
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collision checker and a symmetric stc steering method
Steer that accounts for the kinematic constraints of the
system.

The basic version of a probabilistic roadmap algo-
rithm generates configurations randomly. As soon as
a collision-free configuration is found, it is added as
a new node to the graph. Then the algorithm checks
if the current configurations previously generated are
visible by Steer from the new configuration. Each time
one of them is visible, a new edge is added, otherwise
the new node creates a new connected component. A
less expensive version consists in restricting the con-
nectivity test to connect the new configuration to only
one node for each connected component of the current
graph. In that case, the resulting graph is a tree.

The more time consuming step of the algorithm is
the call of Steer. Indeed the power of the algorithm
is to avoid the compution of the visibility domains.
Checking whether a configuration is visible from an-
other one is done by checking if the path computed by
Steer between them is collision-free. The number of
calls to Steer then appears as a critical parameter that
measures the combinatorial complexity of the construc-
tion.

Computing probabilistic visibility roadmaps
The general principle above should be adapted to com-
pute visibility roadmaps. We have seen that visibil-
ity roadmaps are bipartite graphs with two classes of
nodes: the guards and the connectors. When a new
collision-free configuration is (randomly) found, three
cases may arise:

1. either it is not visible from any existing guard:
then it is added as a new guard to the graph (it
creates a new connected component),

2. or it is visible by guards belonging to separate con-
nected components of the current graph: then it is
added as a new connector and the corresponding
connected components are merged by adding the
edges between the new connector and the guards
seeing it,

3. otherwise it is visible only by guards belonging to a
same connected component and then it is rejected.
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From a practical point of view, we have proposed
a variant of the algorithm [26] allowing connectors to
increase coverage of C'Sf,c.: connectors are added to
the list of the guards. By this way covering C'S},c. is
faster.

Comparison Figure 7 shows two examples of
roadmaps computed for the same environment (polygo-
nal C'Syypee with Steery;, ) with the same list of 250 ran-
dom configurations. The first one is a basic roadmap.
The second one is a visibility roadmap. In both cases
the trees cover C'Sy,.. and capture its connectivity.
On this example, the visibility roadmap algorithm ran
6 times faster than the basic roadmap algorithm.

Figure 7: A basic roadmap and a visibility roadmap.

This simple example suggests a better performance
of the visibility roadmap algorithm. They both cover
and capture the connectivity of C'St,ce. The difference
between the performances is due to the fact that visi-
bility roadmaps keep a number of nodes smaller than
basic roadmaps. The number of calls to Steer in the
main loop of the algorithm is then smaller. This is
illustrated on Figure 8.

However we do not succeed in proving formally a
better behavior. Visibility roadmap algorithms may
fail (in probability) in capturing the connectivity of
CSfree. Guards may induce artificial narrow passages
as shown in Figure 9. In that case, the probability
to put a connector belonging to visibility sets of both
guards is very low. With the same random sampling
of C'Stree, the visibility roadmap will certainly fail in
capturing the connectivity of the space, while the ba-
sic roadmap will certainly succeed. Nevertheless, this

Figure 8: FEzample of CS¢ree with two connected comn-
ponents. Any new collision-free configuration should be
checked to know if it belongs to both connected components
of CSfreec. Checking this is much more expansive in the
case of the basic roadmap (right) than in the case of the

visibility roadmap (left).

behavior may appear as a side-effect of the algorithm,
since the probability to fall in this special case is clearly
low (see [24] for details).

Figure 9: A possible side-effect of the visibility roadmaps.

Control of the algorithm A critical problem of the
probabilistic algorithms is first to stop them, and sec-
ond to get some information about the quality of the
roadmap in terms of both coverage and connectivity.
The structure of the visibility roadmap algorithm al-
lows to control the quality of the roadmap in term of
coverage.

We have seen that the algorithm consists in reject-
ing the configurations which are reachable only from
nodes belonging to a same connected component of
the roadmap. Therefore the expansion of the visi-
bility set of a connected component of the visibility
roadmaps may be a priori slower than those of the basic
roadmaps. However, in addition to the computational
gain discussed above, rejecting those configurations has
an advantage: the number #try of failures in adding a
new guard to the visibility roadmap allows to compute
an estimation of the volume of the free-space remain-
ing non covered. We model the percentage of the non
covered free-space as the inverse of the number of fail-



ures before adding a new guard. The plain curve in
Figure 10 shows the evolution of this estimated per-
centage of the covered free-space. The horizontal axis
represents the number of guards, while the vertical one
— %) For the dotted curve the vertical
axis represents the real percentages of the covered free-

represents (1

space (the curve is monotonic and increasing). The es-
timated percentage converges to the real one when the
number of guards increases.

Guards achieve good coverage when the curve be-
comes horizontal. Such behavior may be detected
within the algorithm by looking at the evolution of
the number #try. The algorithm stops when #iry
becomes constant (in probability). Of course we may
also bound #try by a huge integer (a detailed version of
the algorithm appears in [26]). In both cases, when the
algorithm stops we get an estimation of the percentage

of the non covered free-space volume.

Coverage percentage

,,,,, Real coverage
— Coverage estimated by 1-

1
#try

# guards

Figure 10: Convergence of the wvisibility roadmap algo-
rithm for a free flying body.
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5 Reading notes and comments

Probabilistic roadmaps have been introduced at the be-
ginning of the 90’s at both Stanford and Utrecht Uni-
versity [13, 25, 15]. PhD Thesis of L. Kavraki [12] and
P. Svestka [27] state with details the seminal founda-
tions of these new algorithms together with the first
experimental results which are at the origin of their
success. In this section we comment on several issues
tending to understand their behavior on the basis of
recent published papers.

Devising adequate steering methods In our pre-
sentation, we assumed that the considered steering
methods are both symmetric and stc. The symme-
try property allows to compute undirected roadmaps,
while the stc property guarantees the convergence of
the probabilistic algorithms.

Devising stc steering methods is not necessarily an
easy task especially when we consider nonholonomic
systems. An overview on this aspect may be found
in [21].

In his PhD thesis P. Svestka relaxes the stc property.
He shows that the steering methods may verify the fol-
lowing topological property: the set of configurations
reachable by paths lying in an arbitrarily constrained
domain contains a neighborhood in that domain (and
not necessarily a neighborhood of the starting config-
uration as for the stc property). This property is im-
portant because it opens the range of applications to
some locally controllable systems. Indeed the property
holds for a car moving forward which is locally control-
lable but not small-time controllable. Due to the drift
usually present in that kind of systems, the roadmap
can no more be an undirected graph.

Algorithm analysis Capturing the connectivity of
geometric spaces by sampling techniques is related to
the percolation problem is statistical physics [11]. This
problem asks deep and challenging questions in math-
ematics. Analyzing the probabilistic roadmap algo-
rithms is a difficult problem. Several authors, mainly
around Latombe’s team, gave pertinent insights on this

i1ssue.
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The notion of e-goodness is introduced in [5]. It is
related to the coverage property. CS},cc is e-good if
the volume of the visibility set of any configuration in
C'Stree is greater than some fixed percentage (1 —e¢) of
the total volume of C'St,c.. The authors prove that if
C'Stree is e-good the probability that a (basic) roadmap
does not cover C'S¢,¢. decreases exponentially with the
number of nodes. Moreover the number of nodes in-
creases moderately when € increases. Notice that the
notion of e-goodness is not strictly related to the exis-
tence of a finite set of guards achieving coverage. In-
deed, for the cases illustrated in Figures 4a, 4b, 4¢g and
4h, CSfree 1s €-good, while it is not for the cases 4c,
4d, 4e and 4f. Finite coverage may exist for non e-good
spaces. Moreover the number of guards achieving opti-
mal coverage may be unbounded even for e-good spaces

(Fig. b).

The notion of expansiveness introduced in [§] deals
with connectivity. The proposed model is rather tech-
nical. It deals with the notion of narrow passages in
CSfree and the difficulty to go through them. It is
shown that for expansive C'Sf.c. the probability for
a (basic) roadmap not to capture the connectivity of
CSfree decreases exponentially with the number of
nodes.

The clearance of a path is also a pertinent factor.
In [14] a bound on the number of nodes required to
capture the existence of a path of given clearance is
provided. This bound depends also on the length of
the path. In [28] the dependence on the length is re-
placed by the dependence on the number of visibility
sets required to cover the path. Again the probability
to fail in capturing the existence of a path decreases
exponentially with the number of roadmap nodes.

Finally, the dependence on the dimension of CS is
discussed in [10].

All these results are based on parameters character-
izing the geometry of C'St,c.. The knowledge of these
parameters would allow to control the algorithms. Un-
fortunately they are a priori unknown. As commented
in [10], “one could be tempted to use Monte Carlo tech-
nique to estimate the values of [such parameters] in a
given free space, and hence obtain an estimate of the

number of [nodes] needed to get a roadmap that ade-
quately represents [C'Spree]. But it seems that a re-
liable estimation would take at least as much time as
building the roadmap itself”. An idea could be to try
to estimate these parameters during the construction
of the roadmaps. This is the underlying principle to
control the visibility roadmap algorithm above. Gener-
alizing it to estimate the e-goodness, the expansiveness
of the spaces or to detect narrow passages seems to be a
promising issue to be investigated. The main challenge
is to not degrade the performance of the algorithm with
sophisticated computations.

On heuristics guiding probabilistic searches
The same challenge appears to improve the basic
roadmap algorithm behavior when facing difficult prob-
lems.

Capturing the connectivity of C'S,c. in the presence
of narrow passages is one of them. In such contexts a
first improvement has been introduced in [16]: the al-
gorithm concentrates the search around small isolated
components of the roadmaps. Another idea consists
in sampling C'Sy,c. with configuration close to the ob-
stacles. This can be done for free-flying systems by
analyzing the contact configuration space, and by sam-
pling contact subspaces defined by some geometric con-
straints like polyhedron vertex on polyhedron facet [3].

Contact space may be randomly sampled without
using any explicit constraints. In [7] the method gen-
erates a pair of configurations separated by a random
distance. When both configurations are either both
collision-free or both in the collision space, they are
rejected. Otherwise, the collision-free configuration is
kept.

Another way to capture narrow passages is to exploit
distance computations (an operation more expensive
than a simple collision-checking): in a first step, con-
figurations inducing small penetrations between bodies
are accepted; then they are progressively moved to fi-
nally be collision-free [9].

Sampling close to the obstacles i1s a good strategy
to capture the connectivity of narrow passages. Never-
theless it may induce undesirable side effects when the



space is not very cluttered: in the example shown in
Figure 5 sampling close to the obstacle requires more
configurations than sampling far from the obstacle.

Experiences conduced on the visibility roadmaps
show that the time gained by constructing small
roadmaps may be used to concentrate the search on
regions not connected to the roadmap. In other words,
for a given fixed running time, the visibility roadmap
algorithm will explore more space than the basic one.
Visibility roadmaps behave rather well to capture nar-
row passages even if they do not have been devised
to this end. The visibility roadmap algorithm runs
20 times faster than the basic roadmap algorithm to
capture the connectivity of C'Styc. in the example of

Figure 11 (see [26] for details).

o |
i
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Figure 11: Translating square (grey) with Steer;n: the

visibility roadmap algorithm (right) performs 20 times bet-
ter than the basic roadmap algorithm (left) in capturing the
connectivity of C'Stree.-

By definition,
stc steering methods verify the topological property il-

On the choice of steering methods

lustrated in Figure 2. This means that any path com-
puted with a given method may be approximated by
sub-paths computed with another one. Nevertheless
we have seen that the combinatorics of a roadmap de-
pends on the considered steering method. Depending
on the shape of C'Sf,ce a steering method may per-
form better than another one. In Figure 12 we can see
that, for the same example of environment, Steer;;,, in-
duces a smaller roadmap than Steer,,,,. Moreover
the construction of the roadmap is much faster with
Steer;;, than with Steer,,,,. However such a behav-
1or is specific to the example. In the case of the rolling
bridge in Figure 1, our experiments show a performance
gain of 10 when using Steer,,q, instead of Steer;;,.
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This is a consequence of the special geometric struc-
ture of the workspace to be explored by a rolling bridge.
Steer,,qn 1s more suitable than Steery;, in that case.

Figure 12: Two visibility roadmaps computed with
Steeriin (left) and Steerman (right).

Therefore there is a priori no arguments to conclude
on general results guiding the choice of a suitable steer-
ing method. This choice should be done after practi-
cal experiments on special classes of systems and en-
vironments. For instance, in [4] several steering meth-
ods working for free-flying rigid bodies are compared
from a practical point of view. In particular a steering
method consisting in decoupling translation and rota-
tion is shown performing well.

6 Current directions

We began the integration of various probabilistic
roadmap algorithms within a same software platform®
Move3D. All the examples displayed in Figure 1 have
been computed within Move3D by using the visibility
roadmap algorithm. The generality constraint intro-
duced as the main motivation of this work has been
respected.

From a practical point of view, it remains to show
that such techniques may face real size problems. The
environment of Figure 13 represents a canonical exam-
ple we are working on. The industrial installation is a
stabilizer (subset of a plant in chemical industry). The
geometric model was translated from PDMS geometric

Shttp://www.laas.fr/~nic/Move3D
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data structures”. The crane was added within Move3D.
Tts workspace a priori covers all the environment. The
model contains around 300.000 polygonal facets. Here
the difficulty is to face the geometrical complexity of
the environment in a reasonable time.

We are working on new hybrid collision-checkers
combining the techniques developed in [22] and allow-
ing to process polyhedra together with volumic primi-
tives (e.g., spheres, tubes, torus...) as in [6].

On the other hand we are testing incremental ap-
proaches to roadmap constructions. The principle con-
sists in partitioning the CS space of the crane into
elementary regions. Then for each corresponding ele-
mentary workspace, we apply a filter on the geomet-
ric database to select the bodies to be handled by the
collision-checker. Elementary roadmaps are computed
in each CS regions and then merged together.

Figure 13: A real-size problem.

Another challenging issue is to provide the operator
with facilities for combining several handling devices
to carry freights. Path planning should be extended

"PDMS is a product of Cadcentre Ltd, partner of LAAS-
CNRS, EDF and Utrecht University within the MOLOG
project.

to handling task planning. This problem is often ref-
erenced as the manipulation planning problem. Tts ge-
ometrical formulation [2] allows to apply probabilistic
approaches. Results already appeared in [18] in the
domain of digital actors animation and in [1] in the
context of manufacturing.

A priori such issues do not ask for new fundamental
research. They require incremental research extending
at best the existing state of the art.

From a theoretical point of view, the formal analyses
referenced in Section 5 have opened the route toward a
better understanding of the behavior and performance
of probabilistic roadmap algorithms. Moreover addi-
tional work remains to be done to better control the
probabilistic roadmap algorithms.

Acknowledgment We thank Carole Nissoux who
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