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Abstract: Sampling-based path planning algorithms are powerful tools for com-
puting disassembly motions. This paper presents a variant of the RRT algorithm
particularly devised for the disassembly of objects with articulated parts. Configu-
ration parameters generally play two different roles in this type of problems: some
of them are essential for the disassembly task, while others only need to move if
they hinder the progress of the disassembly process. The proposed method is based
on such a partition of the configuration parameters. Results show a remarkable
performance improvement compared to standard path planning techniques.
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1. INTRODUCTION

This paper addresses the problem of automati-
cally computing motions to disassemble objects.
The problem can be formulated as a general path
planning problem (Latombe, 1991; LaValle, 2006)
(see Section 2). Indeed, path planning concepts
and algorithms have been applied to solve dif-
ferent instances of the (dis)assembly planning
problem (Lozano-Pérez and Wilson, 1993; Chang
and Li, 1995; Halperin et al., 2000; Sundaram
et al., 2001; Ferré and Laumond, 2004). The in-
stance treated in this paper considers two objects,
with the particularity that both objects may have
multiple articulated parts. Figure 1 illustrates a
simple two-dimensional example.

The algorithm presented in this paper is a vari-
ant of a sampling-based path planning method:
the RRT algorithm introduced by LaValle (1998).
Section 3 reminds the principle of this method.
Sampling-based path planners are efficient, gen-
eral and easy-to-implement methods. The RRT
algorithm has been widely studied and applied
to different types of problems in the last years

Fig. 1. Disassembly path planning problem for two
objects with articulated parts. The problem
consists in finding a path to extract the small
(dark) object from the big one.

(see http://msl.cs.uiuc.edu/rrt/ for a gen-
eral survey). The particularity of the proposed
variant is to introduce two types of configuration
parameters, labeled as active and passive, and to
generate their motion in a decoupled manner. We
call this variant Manhattan-like RRT (ML-RRT)
because the computed paths look like Manhat-



tan paths over these two sets of parameters that
change alternatively. The ML-RRT algorithm is
explained in Section 4. The partition of the con-
figuration parameters into active and passive cor-
responds to their role in the disassembly problem.
Active parameters are essential for the disassem-
bly task, while passive parameters only need to
move if they hinder the progress of the disassem-
bly process. The ML-RRT algorithm presents two
main advantages with respect to the basic RRT.
First, the computing time is notably reduced (see
results in Section 5.1). And second, but not less
important, the passive parts that have to move for
finding a solution path are automatically identi-
fied. Thus, the planner is able to handle models in-
volving hundreds of potential degrees of freedom,
avoiding user intervention to select the important
ones. This feature is particularly interesting for
one of the applications commented in Section 5.2:
the simulation of molecular interactions. Besides
this application in structural bioinformatics, the
ML-RRT algorithm is applicable to more clas-
sic problems involving part disassembly, such as
Product Lifecycle Management (PLM) problems
(Ferré and Laumond, 2004). Moreover, the al-
gorithm can be easily extended for integrating
the constraints imposed by the handling device
(e.g. a robotic manipulator) that carries out the
disassembly task (see Section 5.2). Other possible
future extensions of the algorithm are outlined in
Section 6.

2. PROBLEM FORMULATION

The disassembly path planning problem can be
formulated as a general path planning problem
for a system with multiple mobile objects, us-
ing the notion of configuration-space C (Lozano-
Pérez, 1983; Latombe, 1991; LaValle, 2006). A
configuration q is a minimal set of parameters
defining the location of the mobile system in the
world, and C is the set of all the configurations.
Given the assembled configuration qinit and a goal
configuration qgoal (any disassembled configura-
tion) the problem consists in finding a feasible
collision-free path in C that connects both con-
figurations.

The instance studied in this paper considers two
objects with possibly multiple articulated parts.
Considering that the spatial location of one of the
objects is fixed, then, the configuration parame-
ters are those defining the pose of the reference
frame attached to the other (mobile) object plus
the degrees of freedom associated with the artic-
ulated parts in both objects. Thus, the configura-
tion vector is given by: q = {qM ,qJm,qJs}, where
qM contains parameters defining the position and
the orientation of the mobile reference frame, and
qJm and qJs represent the joint variables of the

articulated parts in the mobile object and the
static object respectively.

In general, the most significant parameters for
the disassembly of articulated objects are those
concerning the pose of the mobile object, qM .
The parameters associated with the articulated
parts are relatively less important, since they
only need to move if they hinder the progress
of the mobile object toward the disassembled
configuration. Therefore, configuration parame-
ters can be separated into two sets: the active
parameters qact = qM and the passive parameters
qpas = {qJm,qJs}. This partition induces the
corresponding sub-manifolds in the configuration-
space: C = C act×C pas. The terms active and
passive have been chosen in relation to how the
algorithm described in Section 4 acts on them.

Although the above described partition can be
adopted as general, any other partition can be
defined by the user. The mobile parts are sepa-
rated into to lists Lact and Lpas containing the
active and the passive parts respectively. For a
given partition, qact is the set of configuration
parameters associated with the parts in Lact and
qpas is is the set associated with Lpas.

3. THE BASIC RRT ALGORITHM

The basic principle of the RRT algorithm (LaValle,
1998) is to incrementally grow a random tree τ
rooted at the initial configuration qinit to explore
the reachable configuration-space and find a fea-
sible path connecting qinit to a goal configura-
tion qgoal. Figure 2 illustrates the process and
Algorithm 1 gives the pseudo-code for the RRT
construction. At each iteration, the tree is ex-
panded toward a randomly sampled configuration
qrand∈ C. This random sample is used to simul-
taneously determine the tree node to be expanded
and the direction in which it is expanded. Given
a distance metric in the configuration-space, the
nearest node qnear in the tree to the sample
qrand is selected and an attempt is made to ex-
pand qnear in the direction of qrand. For holo-
nomic systems, the expansion procedure can be
simply performed by moving on the straight-line
segment between qnear and qrand. If the expan-
sion succeeds, a new node qnew and a feasible local
path from qnear are generated. The key idea of
this expansion strategy is to bias the exploration
toward unexplored regions of the space. Hence,
the probability that a node will be chosen for
an expansion is proportional to the volume of
its Voronoi region (i.e. the set of points closer to
this node than to the others). Therefore RRTs are
biased by large Voronoi regions to rapidly explore
before uniformly covering the space.
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Fig. 2. Illustration of one expansion step of a
search tree using an RRT-based algorithm.
The tree tends to cover Cfeas: the feasible
subset of the search-space C.

Algorithm 1: Construct RRT

input : the search-space C;
the root qinit and the goal qgoal;

output : the tree τ ;
begin

τ ← InitTree(qinit);
while not StopCondition(τ , qgoal) do

qrand ← SampleConf(C);
qnear ← BestNeighbor(τ , qrand);
qnew ← Expand(qnear, qrand);
if not TooSimilar(qnear, qnew) then

AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);

end

Different strategies can be adopted for the design
of path planners based on the RRT algorithm
(LaValle and Kuffner, 2001). The configuration
sampling achieved by the function SampleConf
is normally made using a uniform random dis-
tribution in the configuration-space C. However,
Yershova et al. (2005) have shown that sampling
in a dynamic domain that envelopes the search
tree may improve the performance of the RRT
algorithm. Another technical point concerns the
function BestNeighbor. The basic RRT algorithm
selects qnear as the nearest node to qrand using an
Euclidean metric in C. Such a metric distance is
very simple and easy to compute. However, since
it does not consider motion constraints (kinematic
constraints, obstacles, ...), it may lead to an un-
desired behavior of the planner, by repeatedly
selecting “blocked” nodes for futile expansion.
To avoid this problem, two modifications have
been introduced in BestNeighbor: (1) A node
is no longer selected after its expansion fails a
given number of consecutive times l. (2) qnear is
selected at random among the k nearest neigh-
bors. The efficiency of these two modifications
has been shown in related works (Cheng and
LaValle, 2001), (Urmson and Simmons, 2003),
(Cortés et al., 2007). In our implementation, l is
a constant with default value equal to 10, and k

is computed as the nearest integer greater than or
equal to nnodes/100, where nnodes is the current
number of nodes in the tree. One can also choose a
more or less greedy strategy for the expansion pro-
cedure (function Expand in Algorithm 1). In the
basic RRT algorithm, a single expansion step of
fixed distance is performed. The implementation
used in this work applies a more greedy variant,
which iterates the expansion step while feasibility
constraints are satisfied. This variant is in gen-
eral more efficient than the single-step version for
systems without differential constraints (LaValle
and Kuffner, 2001), which is the type of systems
considered in this paper.

4. THE ML-RRT VARIANT

This section presents a variant of the RRT al-
gorithm that considers the active/passive parti-
tion of the configuration parameters introduced
in Section 2. The algorithm, called Manhattan-
like RRT (ML-RRT), computes the motion of the
parts associated with both parameter types in a
decoupled manner. Active parameters are directly
handled by the planner, while passive parameters
are treated only when required to expand the tree.
Indeed, passive parts only move if they hinder the
motion of other mobile parts (active parts or other
passive parts involved in the motion).

The ML-RRT algorithm is schematized in Algo-
rithm 2. At each iteration, the motion of active
parts is computed first. The function SampleConf
receives as argument the list of active parts
Lact and only samples the associated parameters
qact. Thus, this function generates a configura-
tion qact

rand in a sub-manifold of the configuration-
space involving the active parameters, C act. The
function BestNeighbor selects the node to be
expanded qnear using a distance metric in C act.
Note that the function BestNeighbor also inte-
grates the basic improvements mentioned in Sec-
tion 3. Then, Expand performs the expansion of
the selected configuration by only changing the
active parameters. A greedy strategy is used. The
returned configuration qnew corresponds to the
last valid point in the straight-line segment from
qnear toward {qact

rand,q
pas
near}. If the expansion is

not negligible, a new node and a new edge are
added to the tree. The function Expand also an-
alyzes the collision pairs yielding the stop of the
expansion process. If active parts in Lact collide
with potentially mobile passive parts in Lpas, the
list of the involved passive parts Lcol

pas is returned.
This information is used in the second stage of
the algorithm, which generates the motion of pas-
sive parts. The function PerturbConf generates
a configuration qpas

rand by randomly sampling the
value of the passive parameters associated with
Lcol

pas in a ball around their configuration in qnear.



Algorithm 2: Construct ML-RRT

input : the search-space C;
the root qinit and the goal qgoal;
the partition {Lact, Lpas};

output : the tree τ ;
begin

τ ← InitTree(qinit);
while not StopCondition(τ , qgoal) do

qact
rand ← SampleConf(C, Lact);

qnear ← BestNeighbor(τ , qact
rand, Lact);

(qnew, Lcol
pas) ← Expand(qnear, qact

rand);
if not TooSimilar(qnear, qnew) then

AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);
qnear ← qnew;

while Lcol
pas 6= ∅ do

qpas
rand←PerturbConf(C, qnear, Lcol

pas);
(qnew, Lcol′

pas) ← Expand(qnear, qpas
rand);

if not TooSimilar(qnear, qnew) then
AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);
qnear ← qnew;

Lcol
pas ← Lcol′

pas \ Lcol
pas;

end

Note that, if the previous call to Expand has been
successful, qnear has been updated in order to
contain the new configuration of the active param-
eters. An attempt is then made to generate a new
node by expanding qnear toward {qact

near,q
pas
rand}.

Only the parts in Lcol
pas move during this tree

expansion. Like for the active parameters, a list
Lcol′

pas is returned by the function Expand when
the expansion is stopped by a collision involving
passive parts. If this list contains new passive
parts (in relation to Lcol

pas), the process generating
passive part motions is iterated. Such a possible
cascade of passive part motions may be useful
to solve problems where passive parts indirectly
hinder the motion of the active ones because they
block other passive parts.

5. RESULTS

This section presents two types of results. First, an
empirical performance analysis is presented based
on several academic examples. Then, two practical
applications are illustrated: robotic manipulation
and the simulation of molecular interactions.

5.1 Empirical performance analysis

The basic RRT algorithm and the ML-RRT vari-
ant have been implemented into the motion plan-
ning software Move3D (Siméon et al., 2001). An
empirical performance analysis has been carried

Table 1. RRT results.

stb-2D-S stb-2D-L stb-3D-S stb-3D-L

T(sec.) 751.7 →∞ 10.1 →∞
Nnodes 5047 →∞ 1102 →∞

Table 2. ML-RRT results.

stb-2D-S stb-2D-L stb-3D-S stb-3D-L

T(sec.) 8.0 13.5 2.7 11.0
Nnodes 856 1189 757 1142

out applying both algorithms to several two-
dimensional and three-dimensional academic ex-
amples. The first example, stb-2D-S, corresponds
to the problem illustrated in Figure 1. The second
example, stb-2D-L, is a more difficult version with
a longer static object containing six mobile sticks
(see Figure 3). The other two examples, stb-3D-
S and stb-3D-L, correspond to the two versions
of a three-dimensional disassembly problem illus-
trated in Figure 5. All tests have been performed
on an Apple iBook with a 1.2 GHz PowerPC G4
processor.

Table 1 and Table 2 display the computing time
and the number of nodes in the search trees
generated for solving the four problems with RRT
and ML-RRT respectively. Numerical results have
been averaged over 10 runs. These results show
that ML-RRT clearly outperforms the basic RRT,
and that the performance gain increases with the
complexity of the articulated objects. Note that
the basic RRT is unable to solve the difficult
versions of the problems in reasonable computing
time, while the performance of ML-RRT is only
slightly affected by the problem difficulty. Figure 3
shows a projection of the search trees on the
coordinates of the center of mass of the mobile
object for example stb-2D-L. The tree computed
with the basic RRT algorithm contains 10000
nodes but all are concentrated in a small region of

Fig. 3. Projection of search trees for problem stb-
2D-L obtained with the basic RRT algorithm
(a) and with the ML-RRT algorithm (b).



Fig. 4. Trace of solution paths for problem stb-
2D-S obtained with the basic RRT algorithm
(a) and with the ML-RRT algorithm (b).

the search-space around the initial configuration.
The tree obtained with the ML-RRT algorithm
contains less than 1000 nodes and yet better
covers the search-space.

Besides the computational efficiency, the solution
paths obtained with both algorithms are also qual-
itatively different. Figure 4 shows the trace of
one of the paths obtained with the basic RRT
and another obtained with ML-RRT. In the path
displayed by Figure 4.a, obtained with the ba-
sic RRT, the mobile object circumvents the mo-
bile parts of the fixed object. In the solution
path obtained with ML-RRT, the mobile object
“pushes” the passive parts. This type of solution
path seems more natural for this kind of problem.
Note that although the active and passive parts
move alternately in the path obtained by the
ML-RRT algorithm, a randomized path smooth-
ing post-processing is performed in the composite
configuration-space of all the parameters, so that
simultaneous motions are obtained in the final
path.

Fig. 5. Two variants of a three-dimensional aca-
demic example: a) stb-3D-S, b) stb-3D-L.

5.2 Practical applications

Robotic manipulation. The proposed algorithm
can be easily extended to integrate a robot that
manipulates the mobile object. For non-redundant
manipulators, all the degrees of freedom are con-
sidered as passive parameters for the planner and
their values are directly computed from the active
parameters that define the location of the object
using inverse kinematics. For redundant manipu-
lators, the general approach for closed-chain path
planning described by Cortés and Siméon (2005)
can be used. Figure 6 shows an example in which
a robotic manipulator extracts an object from a
box containing articulated parts. This problem
has been solved with ML-RRT (extended to closed
chains) in only 4 seconds.

Structural bioinformatics. A mechanistic repre-
sentation of molecules permits to apply path plan-
ning algorithms for studying their interactions
(Cortés et al., 2005). An important problem in
structural bioinformatics is to compute access (or
exit) pathways of a ligand to the active site of a
protein. Figure 7 illustrates this problem. Both,
the protein and the ligand, can be modeled as
articulated mechanisms, and then the problem
can be formulated as a mechanical disassembly
problem for two articulated objects. The difficulty
is that the motion of many atoms may be involved
in the disassembly. Indeed, if an a priori knowl-
edge about the ligand passageway is not available,
hundreds of potential degrees of freedom have to
be considered. The ML-RRT algorithm performs
very well when applied to this kind of difficult
problems (Cortés et al., 2007). Problems involving
more than 300 potential degrees of freedom are
solved in only a few seconds.

Fig. 6. The two objects of the example stb-3D-S
are disassembled by a robotic manipulator.



Fig. 7. Ligand in the active site of a protein.
Both molecules can be modeled as articulated
mechanisms.

6. CONCLUSIONS AND FUTURE WORK

The ML-RRT algorithm described in this paper is
an efficient method for disassembly path planning
of two objects with articulated parts. An inter-
esting feature of the algorithm is its ability to
treat problems with a high number of potentially
mobile parts and to automatically identify the
degrees of freedom that are important for the dis-
assembly task. This feature has already been ex-
ploited in structural bioinformatics applications,
and we think that it will be also very useful in
CAD/PLM problems.

The current version of ML-RRT is devised for
solving problems in which passive articulated
parts are “pushed” by the mobile object. A fu-
ture extension of the algorithm will also consider
“pulling” motions, which may be important in
some classes of disassembly problems.

Another envisaged extension is to address dis-
assembly planning problems for multiple (possi-
bly articulated) objects. Disassembly sequences
could be computed using an active/passive de-
composition of the configuration parameters and
applying the mechanism for motion propagation
implemented in the ML-RRT algorithm. The ac-
tive/passive roles could be assigned based on
a (random) selection of objects being moved
with priority. Sampling-based path planning al-
gorithms have already been proposed for disas-
sembly sequencing (Sundaram et al., 2001). The
main advantage of ML-RRT over other existing
methods is a reduced computational cost thanks
to the decoupled exploration of sub-manifolds in
the configuration-space that correspond to differ-
ent subsets of parameters.
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