
HAL Id: hal-01992470
https://laas.hal.science/hal-01992470

Submitted on 24 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the Semantics of the GenoM3 Framework
Mohammed Foughali, Silvano Dal Zilio, Félix Ingrand

To cite this version:
Mohammed Foughali, Silvano Dal Zilio, Félix Ingrand. On the Semantics of the GenoM3 Framework.
Rapport LAAS n° 19036. 2019. �hal-01992470�

https://laas.hal.science/hal-01992470
https://hal.archives-ouvertes.fr

On the Semantics of the GenoM3 Framework

Mohammed Foughali,
Silvano Dal Zilio, and Félix Ingrand

CNRS, LAAS, 7 avenue du Colonel Roche, F-31400 Toulouse, France
Université de Toulouse, LAAS, F-31400 Toulouse, France

1 Introduction
In the current practice, robotic software trustworthiness relies on testing campaigns,

best coding practices, and the choice of sound architecture principles. While such meth-
ods are helpful, they unfortunately do not provide guarantees on crucial properties such
as schedulability of tasks, leads to and bounded response. Such properties often re-
flect the requirements on the safety and predictability of the system. For instance, the
bounded response is crucial in self-driving cars, where we want to know that for all
possible execution scenarios, the maximum time difference between requesting a brake
action and the actual braking is small enough so the vehicle stops before colliding with
an obstacle (which might be a pedestrian). Verifying this type of properties is thus nec-
essary to obtain a high level of trust in the robotic software, yet the routinely employed
methods fall short of giving the desired answers. For instance, scenario-based testing is
widely used in robotics but cannot, due to its non-exhaustive nature, verify a property
with a known level of certainty. Consequently, the reliability of robotic software does
not rise to the level found in many regulated domains, such as the aeronautic or nuclear
industries, where formal methods are used to check the most vital parts of systems [33].

The question that arises is why formal methods are not systematically employed
to verify robotic software? There exist many reasons, emerging from the specificities
of the robotics domain, such as the unstructured nature of environments, compared
to other domains like aeronautics. But, more generally, to answer this question , we
need to differentiate the levels of robotic software [2, 32], mostly viewed as functional
(tightly coupled with sensors and actuators) and decisional (in charge of deliberative
functions [19]). In contrast to most of the decisional ones, functional components are
specified within informal frameworks such as ROS [27] and Orocos [10]. Thus, in order
to apply formal methods to the functional level, we need first to formalize its specifi-
cations. The formalization is hard and error-prone and is consequently the most time-
consuming and error-prone step in verification [26]. Also, the transformation chain,
from robotic specifications to formal models, is not automatic (it needs to be re-done
from scratch for each new application). Additionally, there is a large number of exist-
ing formalisms/tools that can be employed in modeling and verification. The mutual
advantages and drawbacks of such formalisms/tools depend on the applications/proper-
ties to verify and cannot thus be known beforehand [11, 31]. In practice, the high cost
of formalization and the absence of automation limit the choice to only one formal-
ism/tool, which makes it impossible to know whether verification might be improved
with other formalisms/tools. Moreover, the complexity of the functional level (e.g. num-
ber of components, timing constraints, communication mechanisms) leads frequently to

scalability issues. Overall, there is a visible gap between the robotic and formal meth-
ods communities. On one hand, robotic programmers have neither the knowledge nor
the time to invest in applying formal methods to their applications. On the other hand,
formal methods specialists are often far from dealing with systems as complex as the
robotic ones.

Proposition The goal of this document is to add to the efforts toward the long-sought
objective of secure and safe robots with predictable and a priori known behavior. For
this, we give operational semantics to GenoM3, a robotic framework, in terms of timed
transition systems TTS (Sect. 4.1). Then, a mathematically proven translation to timed
automata extended with urgencies and data DUTA (Sect. 4.2) is derived from such se-
mantics. Thus, we provide a mapping from functional components to verifiable models.
Since TTS and DUTA are at the heart of a large corpus of formal verification languages
and tools (such as UPPAAL [5], Fiacre [7], and RT-BIP [4]), the semantics and its
translation allow a correct mapping between GenoM3 and such languages/tools. This
connection can then be automatized thanks to GenoM3 templates [23].

1.1 Related work

To cope with the problem of lack of semantics at the functional level in robotics,
some works propose alternative languages to specify robotic applications, such as the
synchronous language ESTEREL [9] (see [6] for synchronous languages). ESTEREL
is used many works like [29, 30, 21], where at times the robotic specifications are di-
rectly hard-coded in this language. Using formal languages directly to encode robotic
specifications is not suitable for the robotic community, rather familiar with robotic
frameworks.

RoboChart [25] is used in several verification efforts such as [24]. RoboChart mod-
els are automatically translated into Communicating Sequential Processes (CSP) [28]
in order to verify behavioral and timed properties using the FDR model checker [14].
RoboChart is a UML-like notation with formal semantics, but is not a robotic frame-
work per se (its models are not executable on robotic platforms). That is, one still needs
to have applications already written using a robotic framework to translate them into
RoboChart. So far, there is no proven translation approach linking a robotic framework
to RoboChart.

In the literature, we find a number of attempts to formalize robotic frameworks,
especially the most popular among them, ROS. The authors of [16] use the PRISM
probabilistic model checker [22] to verify bounded response properties on ROS appli-
cations. They attempt to formalize ROS graphs, but no operational semantics is given
which makes the formalization both manual and ad-hoc. Another attempt to formalize
ROS components is developed in [15] where UPPAAL is used to verify buffer-related
properties (no overflow). ROS components are not formalized and only the message
passing part (publisher/subscriber) is modeled.

Another way to go around the lack of semantics at the functional level is to rely
on runtime verification. BIP [4], a modeling and verification framework based on au-
tomata, is used in the verification effort presented in [1]. The functional components,
written in GenoM (version 2), of an outdoor robot with two navigation modes, are mod-
eled in BIP. Safety constraints, such as “the robot must never communicate and move at

the same time” are automatically translated from logical formulae into BIP then added
to the model. The latter is run within the BIP-Engine on DALA, an iRobot ATRV, and
the constraints are consequently enforced at runtime. It is not possible to verify the
soundness of the translation from GenoM to BIP due to the absence of operational se-
mantics of the former.

1.2 Contributions

Contribution 1 As shown so far, formalization is particularly difficult and error prone
at the functional level. This is due, mainly, to the fact that component-based frame-
works in robotics are not formal, which makes their formalization output questionable
in terms of their correctness vis-à-vis its robotic input. To solve this problem, we pro-
pose formal semantics for GenoM3, our chosen robotic component-based framework for
this document. Components have thus formal definitions and their operational seman-
tics is developed formally (Sect. 5) in TTS (Sect. 4.1). So far, formalization of robotic
frameworks at the functional level range from shy to inexistent 1.1.

Contribution 2 The semantics is translated into DUTA and the translation is proven
sound. TTS (respect. DUTA) are the underlying formalism for formal languages such as
Fiacre (respect. for major verification frameworks/tools such as UPPAAL and BIP). By
having the semantics in TTS and its counterpart sound translation in DUTA, mapping
to tools based on these formalisms is already halfway done. This opens the door wide
for automatic translations from GenoM3 to several formal frameworks and exploiting
their respective advantages.

1.3 Outline

The remainder of this document is organized as follows. First, we give an informal
description of GenoM3, from requirements to behavior. Then, we introduce in Sect. 4
TTS, and motivate choosing them to formalize GenoM3. Afterwards, we define within
the same section timed automata and their different extensions with urgencies and data
variables. In Sect. 5, we present the core of the work of semanticizing a lightweight
version of GenoM3. A translation from such semantics to an extended version of timed
automata is presented then in Sect. 6, together with a proof of soundness of the trans-
lation. Finally, we conclude with presenting the benefits this work brings to the broad
domain of formal verification of robotic systems.

2 GenoM3
3 Overview

GenoM3 [23] is a tool to specify and implement robotic functional components. The
LAAS architecture [20] proposes a modular approach where each functional component
acts as a “server” in charge of a given functionality. The latter may range from simple
low-level driver control (e.g. the velocity control of the propellers of a drone, camera) to
more integrated computations (e.g. Simultaneous Localization And Mapping (SLAM),
Potential-Field navigation, Rapidly-exploring Random Tree (RRT) motion planning).

3.1 Requirements

We consider that a typical component is a program which needs to manage the
following aspects:

Inputs and Outputs : a component interacts with external clients and other compo-
nents. For the former, the control flow, it must handle requests from client(s) and
send back reports to the client which issued the request, to act on the result. For the
latter, the data flow, it must provide a mechanism to share data with other compo-
nents.

Algorithms : the core algorithms needed to implement the functionality the compo-
nent is in charge of must be appropriately organized within e.g. services (Sect.3.2)
to fulfill the clients requests. A component may have just one service to provide,
but most of the time, there are a number of such services associated to the con-
sidered robotic functionality. The way algorithms are specified and organized in a
component is a tradeoff. One can let the programmer organize their code with no
design requirements or provide structure guidelines that must be followed. The latter
case enables formalization, given that the set of guidelines is well known (Sect. 5).
These organization rules must remain simple and easily understandable for robotic
programmers.

Data sharing : the various algorithms, possibly concurrent, running in the component,
may have to share data that represent the internal state of the component. These data
need to be handled correctly respecting e.g. mutual exclusion conditions.

3.2 Organization

To achieve such requirements of a functional component, we propose to organize
each one along the structure shown in Fig. 1. Specifying components in GenoM3 is the
programmer’s design choice. Thus, there are a number of considerations, depending
on various factors such as hardware constraints and algorithms complexity, that they
have to take into account. Here, we describe in more details the different elements of
a GenoM3 component, and how they are specified, in a generic manner. That is, the
description given here is not specific to any implementation or component.

To ease the comprehension of the different elements, a support example is given
in listing 1.1. It shows the dotgen (extension .gen) specification of a simple GenoM3
component called DEMO developed for illustration purposes. DEMO is a simple one-
dimensional motion component of a mobile robot. Its main functionalities are to move
the mobile for a relative distance within the interval [−1, 1], to monitor its position, to
read its speed, and to change it. The elements in charge of these operations are given
within the description of the component constituents hereafter.

Control Task : A component always has a control task that manages the control flow
by processing requests and sending reports (from/to external clients). The control
task must be highly reactive and is only assigned quick computations. It also man-
ages interruption and activation of longer computations (see more in Sect. 3.3). The
control task is implicitly comprised within a component and the user does not specify
it, hence its absence from listing 1.1.

Execution Task(s) : Aside from the control task, one may need one or more execution
tasks, aperiodic or periodic, in charge of longer computations. The component DEMO
has one execution task called motion (periodic at 400 ms, lines 17-19).

Services : The core algorithms needed to implement the functionality of the compo-
nent are encapsulated within services. Each service is associated to a request (with

Ports

Execution Tasks

Activity Services

Internal
Data

Structure

Reports

Control Task Attribute
and

Function
Services

Ports

Ports

In

Out

Clients

Ports

Permanent Activities

Requests

Fig. 1: A generic GenoM3 component.

the same name). One may also define a permanent service (running without being
requested) attached to each execution task. In the DEMO component, services are
MoveDistance (move the mobile for a relative distance within [−1, 1], lines 34-45),
Monitor (monitor the position, lines 46-54), GetSpeed (get the current speed, lines
26-27), SetSpeed (change the current speed, lines 22-25), Finish (stop moving, lines
29-32), and the permanent service of motion (initialization, line 19).

IDS : A local internal data structure is provided for all the services to share parameters,
computed values and variables of the component. It is appropriately accessed (i.e.
with proper locking) by the services when they need to read or write one or more of
its fields (lines 4-7). For instance, the arguments of GetSpeed specify that it reads the
current speed from the IDS (line 26).

Ports : They specify the shared data and the access direction to them (read “in” or write
“out”), the component needs/produces from/for other components. The component
DEMO provides one port that it writes (out mode, line 10).

Exceptions : One may specify exceptions, which can be returned by services to report
on execution errors (lines 13-14).

3.3 Behavior

We go in more details and see how these different elements interact and how the
component internally runs.

Codels Code elements, or codels, are small chunks of C or C++ code (e.g. the codel
StopMotion in line 31 matches a C function whose body is defined in a separate file).
When defined within activities, codels are associated with states in a finite-state ma-
chine (see activities and FSM below). For instance, the codel mdGotoPosition (line
39) is associated with the state exec (more details below).

Services Services hold the specifications of the algorithms handled by the component.
Services can take arguments (e.g. SetSpeed takes a SpeedRef, line 22), and return values
(e.g. GetSpeed outputs a SpeedRef, line 26). A service may have a validate codel
(e.g. Monitor, line 49). When the control task receives a service request, it runs the
service validate codel, if any, to check whether the service arguments are valid (it
reports an error to the client that requested it if they are not). A service may also specify
activities (see below) it interrupts (e.g. Finish interrupts MoveDistance, line 32). If a
service S interrupts an activity S′, we say that S′ is incompatible with S. Aside from
control services (see below), a service may not run unless all the services it interrupts
are terminated. A service that is ready to run is called an activated service. There are
two types of services:

Control Services, are only for quick computations which should not delay the con-
trol task (that executes them). A control service may be an attribute (setter or getter of
fields of the IDS, e.g. GetSpeed), or a function (for quick and simple computations, e.g.
Finish).

Activities, are executed by the execution task specified in their declaration (e.g. line
44, the activity MoveDistance is executed by the task motion). Activities are finite-state
machines, each state associated with a codel (see codels above).

FSM define the behavior of the activity through states, codels and transitions. A
codel specifies the state it is associated to and the C or C++ function it will call, with the
arguments (taken from the activity arguments, the IDS and the ports of the component)
they need for their execution (e.g. mdGotoPosition is associated with the state exec
of MoveDistance, it reads the fields speedRef and posRef of the IDS and writes the
field state of the IDS and the port Mobile, line 39). A codel specifies also the possible
transitions subsequent to its execution (e.g. the execution mdStartEngine, associated
with the state start of MoveDistance, returns the state exec or the state ether, lines
37-38). The non-determinism is resolved at runtime when executing the codel, which
returns upon completion the next state to transit to. Taking a transition labeled pause
stops the execution of the activity until the next cycle of its execution task (see execution
tasks below), the activity is thus paused (e.g. if the execution of monitor in activity
Monitor returns pause::start, line 50, Monitor is paused at state start until the next
cycle of the task motion). Each codel may (optionally) specify a WCET, namely its
worst case execution time on a given platform (e.g. mdStopEngine, associated with the

1 /* ---- component declaration ---- */
2 component demo {
3 /* ---- Data structures and IDS ---- */
4 ids {
5 demo::state state; /* Current state */
6 demo::speed speedRef; /* Speed reference */
7 double posRef;};
8
9 /* ports declaration: direction type name */

10 port out demo::state Mobile;
11
12 /* exception declaration */
13 exception TOO_FAR_AWAY {double overshoot;};
14 exception INVALID_SPEED;
15
16 /* execution tasks declaration */
17 task motion {
18 period 400 ms;
19 codel <start> InitDemoSDI(out ::ids, port out Mobile) yield ether;};
20 /* services declaration */
21 /* atributes */
22 attribute SetSpeed(in speedRef :"Mobile speed") {
23 doc "To change speed";
24 validate controlSpeed (local in speedRef);
25 throw INVALID_SPEED;};
26 attribute GetSpeed(out speedRef = :"Mobile speed") {
27 doc "To get current speed value";};
28 /* functions */
29 function Finish() {
30 doc "Stops motion and interrupts all motion requests";
31 codel StopMotion();
32 interrupts MoveDistance;};
33 /* activities */
34 activity MoveDistance(in double distRef :"Distance in m") {
35 doc "Move of the given distance";
36 validate controlDistance(in distRef, in state.position);
37 codel <start> mdStartEngine(in distRef, in state.position, out

posRef)
38 yield exec, ether;
39 codel <exec> mdGotoPosition(in speedRef, in posRef, out state, port

out Mobile)
40 yield exec, end;
41 codel <end> mdStopEngine() yield ether wcet 1 ms;
42 codel <stop> mdStopEngine() yield ether;
43 interrupts MoveDistance;
44 task motion;
45 throw TOO_FAR_AWAY;};
46 activity Monitor (in double monitor = 0 :"Monitored absolute position in m",
47 out double position) {
48 doc "Monitor the passage on the given position";
49 validate controlPosition (in monitor);
50 codel <start> monitor(in monitor, in ::ids) yield pause::start, end

wcet 2 ms;
51 codel <end> monitorStop(in ::ids, out position) yield ether;
52 codel <stop> monitorStop(in ::ids, out position) yield ether;
53 task motion;
54 throw TOO_FAR_AWAY;};
55 };

Listing 1.1: Excerpt from the GenoM3 specification of the DEMO component.

Start

exec

End

Stop

Ether
Activation
Pause
Interruption
Termination

Fig. 2: FSM of MoveDistance (lines 34-45 of listing 1.1).

state end of MoveDistance, has a WCET of 1 ms, line 41). Any activity FSM has the
states start (entry point) and ether (end point). When the latter is reached, the activity
is terminated and reported to the client. The state stop, if exists, is associated with the
codel to execute when the activity is interrupted (e.g. line 51). If an activity with no
stop codel is interrupted, it transits directly to ether. Fig. 2 is a visual illustration of
the FSM behavior of activity MoveDistance (WCETs are omitted).

The organisation of activities along FSMs may be seen wrongfully as an unneces-
sary burden for programmers. Indeed, nothing prevents the programmer from having
one start codel that does it all. Yet, breaking code along an FSM brings a number of
advantages as it e.g. improves code execution interleaving and provides a finer model of
data sharing and code interlocking (several short computations using each a fragment
of resources brings a better concurrency level and allows shorter task periods than a
single long computation that uses all resources). Furthermore, FSMs are amenable to
translation into formal languages (Sect. 5).

Control task The control task has a cyclic behavior that consists in managing the re-
quests and reports of the component, executing control services and activating and in-
terrupting activities. When a service request is received, the control task instructs the
execution tasks to interrupt the activities incompatible with the requested service. If
the latter is a control service (attribute or function), the control task executes it im-
mediately. If it is an activity, it is put on hold until all the incompatible instances are
correctly interrupted and terminated. It is then activated, (may be run by the execution
task in charge of it). Upon completion of any service, the control task sends a report to
the corresponding client (service ended nominally, interrupted, or failed by throwing an
exception).

Execution tasks Execution tasks are cyclic tasks that can be periodic or aperiodic (e.g.
the period of motion is 400 ms, line 18). With each cycle (triggered by a period signal
or event occurrence), the execution task runs, sequentially, its permanent activity (if
any) and all the instances of the activities it is in charge of, previously activated by the
control task. The execution of an activated instance ends when the instance is paused or
terminated. In the former case, the instance will be resumed at the next cycle.

Internal Data Structure The IDS stores data that represent the internal state of the
component, shared among tasks and services. For instance, the IDS of DEMO (lines 4-
7) stores the current position and current speed (in the field state) , the speed reference
and the position reference of the mobile. Access to the IDS is mutually exclusive. One
can see that the proper specifications (enforced by GenoM3) of the codel arguments
allows for a fine grain locking of the IDS and thus a high level of concurrency (only the
needed field(s) by a codel are locked when it executes and simultaneous readings are
allowed).

Ports Data flow between components is made through ports (line 10). As seen above,
ports usage (in or out) is also declared in codels arguments (e.g. line 39). Consequently,
over a large set of components composing a robotic functional layer, we have a clear
model of which codels use a particular port. Ports allow functional-layer components to
exchange data. In a sensor-based navigation application, for instance, the collaboration
of several components is indispensable (e.g. the information collected by a component
from a sensor is a necessary input for another component handling a controller).

Clients GenoM3 components are usually unable to evolve unless controlled by external
clients. Indeed, apart from permanent activities, services need to be requested in order
to be served by the component. For instance, after being implemented and run, the com-
ponent DEMO, whose specification is shown in listing 1.1, does not execute any service.
Indeed, the control task, in charge of the component, needs to receive requests in or-
der to run control services and activate activities. For this, clients, which are external
entities to the component, send the requests for the services they want to run, together
with the arguments, if any. For example, the following line in a Tcl client requests the
activity MoveDistance with the argument 0 .5 , that is requests moving the mobile for
0.5m:

demo::MoveDistance(0.5)

4 Formalisms
4.1 Timed Transition Systems (TTS)

The chosen formalism is a variation of the Timed Transition Systems (TTS) pre-
sented in [17]. There are several arguments that justify this choice and that will be
given later in this document (Sect. 4.1.7).

One difference between our definition of TTS and the one proposed in [17] is that
we consider a dense-time model (durations and time constraints have values in R≥0 with
interval bounds in Q≥0 ∪∞) whereas the original presentation relies on a discrete-time
model (durations have values in N). We also accept more general timing constraints,
using time intervals with possibly left-open and right-open bounds.

4.1.1 Notations We start by defining some notations that will be useful in the re-
mainder of this document. We use I to denote the set of well-formed (time) intervals
over positive reals, with rational lower bounds and rational or infinite upper bounds. An
element i of I can be of one of four types: (where a ∈ Q≥0 and b can be either a rational
number or the infinity symbol,∞, meaning an infinite bound).

– [a, b] (with a 6 b),

–]a, b] (with a < b),
– [a, b[(with a < b),
–]a, b[(with a < b).

We say that ↓i = a is the lower bound of the interval i and ↑i = b is its upper bound.
In the following, we use the notation < a, b = for time intervals, where < (respect.

=) denotes whether i is open or closed at its left (respect. right) bound. Therefore we
have <= [for a closed interval on the left and == [for an open (strict) interval on the
right. Likewise we use ’]’ for an open interval on the left and closed interval on the right.
By an abuse of notation, we also conflate open/close interval symbols with comparison
operators between reals. We say that < is the strict comparison operator < when i is
left-open (<=]) and that < is the operator 6 when i is left-closed (<= [). Likewise, we
say that = is the operator 6 when i is right-closed and < otherwise. With this choice
of notation, an interval i =< a, b = is exactly the set of real values x ∈ R≥0 such that
a < x and x = b.

For any date δ in Q≥0 and interval i ∈ I, we denote i−δ the time interval obtained by
shifting i (to the left) by an amount of time δ. The operation is defined only if δ < ↑i (or
if δ ≤ ↑i and i is right-closed), which we call the upper bound condition. We consider
four different cases depending on the “shape” of interval i. Assume a′ = max(0, a−δ):

– if i = [a, b] and δ 6 b then i− δ = [a′, b− δ],
– if i =]a, b] and δ 6 b then i− δ =]a− δ, b− δ] if δ 6 a and [0, b− δ] otherwise,
– if i = [a, b[and δ < b then i− δ = [a′, b− δ[,
– if i =]a, b[and δ < b then i − δ =]a − δ, b − δ[if δ 6 a and [0, b − δ[otherwise

(With the convention that∞− δ =∞).

4.1.2 Syntax of TTS A Timed Transition System TTS is a tuple 〈U, S, s0, τ, I〉
where:

– U is a finite set of variables. Each variable is implicitly typed. We use dom(u) to
denote the domain of variable u in U ;

– S is a set of states. Each state of S is an interpretation of variables in U , that is a
mapping from variables u ∈ U to values in dom(u);

– s0 is the initial state (s0 ∈ S) that maps each variable to its initial value;
– τ is a set of transitions. Each transition t ∈ τ defines a (possibly empty) set of

successor states, denoted t(s), for every state s ∈ S;
– I : τ 7→ I maps each transition t ∈ τ to a static (time) interval I(t) ∈ I.

A transition t ∈ τ is said enabled at s if and only if s is a source state of t, that is
t(s) 6= ∅. We denote E(s) the set of transitions enabled at s.

We require the set t(s) to have cardinality at most one for any t in τ and any s
in S. This allows us to simplify the presentation of the semantics (especially when
defining the notion of persistent transitions later in this section) without loosing any
expressiveness (a state s may still have many successors over transitions with different
“names”).

4.1.3 Semantics of TTS In a TTS 〈U, S, s0, τ, I〉, each (enabled) transition is asso-
ciated with a timing constraint, that is an interval I(t) =< a, b =∈ I. The semantics
of time depends on the dates at which the transition can be taken. Informally, if s is the
current state since the date∆ and if transition t is enabled, then we can take t starting at
a date d s.t. ∆+↓I (t) < d and no later than a date d′ = ∆+↑I (t), unless t is disabled
in between by taking another transition.

The semantics of a TTS is therefore given over pairs (s, φ) where s ∈ S is a state
and φ : τ → I is a mapping from transitions to time intervals. Intuitively, if t is enabled
at s, then φ(t) contains the dates at which t can be possibly taken in the future. Hence,
a transition t can be taken (immediately) only when 0 is in φ(t). Likewise, a transition
t cannot remain enabled for more than its timespan, that is the value ↑φ(t).

We use φ .− δ for the partial function that associates, at a state s, each transition
t ∈ E(s) to the value φ(t)− δ (the interval φ(t) shifted by δ). This function is useful to
model the effect of time progress on the enabled transitions in a TTS. (Note that φ .− δ
is defined only when φ(t) − δ is defined for all t ∈ E(s), that is δ satisfies the upper
bound condition for all φ(t)).

Let t be enabled at s with t(s) = {s′}. We say that a transition k is persistent
(with k 6= t) if it is also enabled at s′. The transitions that are enabled at s′ and not at
s are called newly enabled. We define the predicates pers(s, t) and nenabl(s, t) that
describe, respectively, the sets of persistent and newly enabled transitions after t is taken
from s. We see that if t is still enabled in s′ then it is necessarily newly enabled.

pers(s, t) = {k ∈ τ | k ∈ E(s) ∧ k ∈ (E(s′) \ {t}) ∧ t(s) = {s′}}
nenabl(s, t) = {k ∈ τ | k /∈ (E(s) \ {t}) ∧ k ∈ E(s′) ∧ t(s) = {s′}}

With all these notations, we can define the semantics of a TTS as a Kripke structure
(a rooted, state graph) such that:

– states in the graph are pairs (s, φ) where s ∈ S is a state and φ is a mapping from
t ∈ E(s) to I,

– the initial state is (s0, φ0) where φ0 is such that φ0(t) = I(t) for each transition
t ∈ E(s0) (all transitions possible from s0 are newly enabled),

– discrete transitions: from every reachable state (s, φ) and every transition t ∈ E(s),
we have a (discrete) transition (s, φ)

t−→ (s′, φ′) when 0 ∈ φ(t) and t(s) = {s′}.
In this case φ′ is the unique mapping such that: φ′(k) = φ(k) for all transitions
k ∈ pers(s, t) and φ′(k) = I(k) otherwise,

– continuous transitions: for every delay δ ∈ Q≥0 such that φ .−δ is defined, we have
a (continuous) transition (s, φ)

δ−→ (s, φ .− δ).

From this definition, we see that time progress does not change the set of enabled
transitions; but it may change the set of transitions that may be taken immediately (the
set of transitions such that 0 ∈ φ(t)). We can also see that the state graph of a TTS is
generally infinite. Indeed, in most cases, we can choose between an infinite number of
continuous transitions. This is, for instance, the case when there are no transitions in τ
enabled at s (in which case we can let time elapse by an unbounded amount).

We give, In Table 1, an alternate definition of the reduction relation using notations
borrowed from structural operational semantics, where the relation −→ is defined by a

(discrete)

t ∈ E(s) 0 ∈ φ(t) t(s) = {s′}
∀k ∈ E(s′) : φ′(k) = φ(k) if k ∈ pers(s, t) and I(k) otherwise

(s, φ)
t−→ (s′, φ′)

(continuous)
δ ∈ Q≥0 φ .− δ defined

(s, φ)
δ−→ (s, φ .− δ)

Table 1: Operational Semantics of TTS.

set of inference rules. We use this notation later in order to simplify the presentation of
the semantics of GenoM3 and its translation to DUTA.

TTS in this document follow a strong time semantics, meaning that we must always
take an enabled transition from a state (s, φ) if there is no delay δ > 0 such that φ .− δ
is defined (that is when time cannot elapse). Since a transition cannot become disabled
from a continuous transitions, it follows that a TTS cannot have a “timelock”, that is
a situation in which a system is blocked because all timing constraints are indefinitely
false.

4.1.4 Timed Transition Diagrams We define a graphical notation for TTS (called
Time Transition Diagrams, or TTD for short) as well as a composition operation be-
tween TTDs that is also inspired from the work in [17]. Basically, we can see every
TTD as a component and composition as a way to build more complex systems through
the synchronization and interactions of simpler systems. In this approach, the composi-
tion of multiple TTDs (viewed as components) results in a TTS (viewed as the system).

A timed transition diagram (TTD) P is a finite directed graph, operating on a finite
set of variables, Y . V is the set of vertices and E the set of edges in the graph. The
vertex v0 ∈ V denotes the unique initial vertex of P . Each edge e ∈ E is associated
with: an interval I(e); a guard ge; and operations ope . If an edge e connects vertex v to
vertex v′, then we write by an abuse of notation, interchangeably, e ∈ E or v e−→ v′ ∈ E
to denote such edge. In the remainder of this document, guards that are always true,
operations with no effect on variables and [0,∞[intervals will not be represented.

As with TTS, we say that a state s of a TTD is a mapping from variables to values.
We consider a distinguished variable, or control vertex, denoted π, whose value gives
the “current vertex” of the TTD. Hence dom(π) = V and the initial value of π is v0.

Informally, a guard is a boolean expression over Y that defines when an edge is
enabled, whereas operations are instructions that can modify the values stored in these
variables (a sequence of operations is processed atomically). We use the expression
g(s) to denote the “truth” value of a guard g at the state s. likewise, we use the notation
s′|Y = op(s|Y) when the results of op on Y from s agree with the interpretation of Y
at s′. In particular, s ′(y) = s(y) for each y in Y that is not affected by op.

We show in Fig. 3 a simple generic TTD example with two vertices, v0 and v1, and
one edge v0

e−→ v1. The initial vertex, in this case v0, is denoted with an incoming edge
without source vertex.

v0

I(e)

v1

ge

ope
e

Fig. 3: A generic TTD example

Given a TTD P , we can associate its meaning, [[P]], that is a TTS that corresponds
to P . The meaning of P is the TTS 〈U = Y ∪ {π}, S, s0, τ, I〉 such that:

– S is the set of states, where each state is an interpretation of π and each variable in
Y .

– the initial state s0 is the mapping associating π to v0 (initially the control vertex is
at v0) and all the variables in Y to their initial value,

– τ is the set of transitions resulting from mapping each edge e in E to a transition te
as follows. If e connects vertice va to vb, then s′ ∈ te(s) iff
s(π) = va and s′(π) = vb; and
ge(s) is true; and
s′|Y = ope(s|Y).

– The function I maps every transition te to the interval I(e).

4.1.5 Composition of TTDs The parallel composition of a finite number of TTDs,
P1, . . . , Pn, over a set of shared variables, Us, results in a TTS denoted:

{Θ}[‖i∈1..n Pi]

A TTS also defines an initial valuation, Θ, that gives the initial assignation of variables
in Us to values.

Edge (identifiers) of different components are always distinct: if e is an edge in Pi
then it cannot be an edge in Pj with i 6= j. Also, each component (TTD) Pi can have
access to a set of local variables, denoted Ui, besides the variables in Us (Ui ∩ Us = ∅
and Ui ∩ Uj = ∅ for all indexes i, j ∈ 1..n with i 6= j). As seen above, we consider
one distinguished variable, πi, for each component Pi, to store the current vertex of the
TTD of Pi. Hence the set of variables declared in the TTS is:

U = Us ∪

(⋃
i∈1..n

Ui

)
∪

(⋃
i∈1..n

{πi}

)

Given the parallel composition {Θ}[‖i∈1..n Pi], we can easily define a TTS with
the set of variables U that will give the “semantics of the system”. We know that
〈Ui ∪ πi ∪ Us, Si, s0i , τi, Ii〉 is the meaning of Pi for all i ∈ 1..n. Then the meaning of
{Θ}[‖i∈1..n Pi] is the TTS 〈U, S, s0, τ, I〉 (U as defined above) such that:

– the set S lists all the possible interpretation of U ,
– the initial state s0 ∈ S is the only interpretation such that s0(x) = s0i (x) if x ∈ Ui,
s0(πi) = vi0 for all i ∈ 1..n, (vi0 is the initial vertex of the component Pi); and
s0(x) = Θ(x) for all x ∈ Us,

– τ is the set of transitions resulting from mapping each edge e in each component
Pi to a transition te as follows. If e connects vertice via to vib

1, then s′ ∈ te(s) iff
s(πi) = v i

a and s ′(πi) = v i
b ;

and ge(s) is true; and
s ′|Ui∪Us

= ope(s|Ui∪Us
); and

s ′(x) = s(x) for each x in U \(Ui ∪Us ∪ {πi}).
– I maps every transition te to the time interval Ii(e), where Pi is the component

containing the edge e.

The notion of a TTS defines a composition operator over TTDs and their compo-
sitions. This is basically the same operation as the one in [17] with the simplification
that all the components must start in their initial state. That is we only consider a “syn-
chronous start” of TTDs.

4.1.6 Sequential behavior The fact that TTS support the use of variables eases build-
ing several classes of systems by simply composing TTDs. We show how to use TTS in
order to build a system from the “sequential composition” of components. Sequential
composition will be a useful operation when defining the behavior of execution tasks in
Sect. 5.

v0
[0,1]

v1π = P2

π:= P0e

v0
[1,1]
π = P1

π:= P0

e

v0
[0,0]
π = P0

π:= P1

e1

P1

P2

P0

π = P0[0,0]
π:= P2

e2

Fig. 4: TTDs of a sequential system

As an example, let us consider the parallel composition of the TTDs in Fig. 4. The
set of shared variables Us contains a variable Π that will denote the “identity” of the
only currently executing component; that is dom(Π) = {P0, P1, P2}withΘ(Π) = P0.

The sequential composition of the three components is the TTS {Θ}[‖i∈0..2 Pi]
where the guard of each edge in the TTD Pi includes the test Π = Pi. With this
constraint, it is only possible to take an edge from the component whose identity is the
current value of Π . Therefore, at most one component can execute at a time (no two
edges belonging to two different components can be enabled simultaneously).

In this particular example, component P0 plays the role of a “scheduler” that gives
the control randomly to either P1 or P2. Giving the control more than once to P1 leads
to a deadlock (no discrete transitions possible in the resulting TTS).

1 The superscript i denotes that the vertex is in Pi

4.1.7 Suitability We discuss the rationale for the choice of TTS for formalizing
GenoM3, as opposed to e.g other formalisms based on clocks, such as timed automata
(Sect. 4.2). There are several arguments that favor such a choice among which we em-
phasize the following.

Variables and compositionality: As seen in Sect. 2, GenoM3 relies on a composi-
tional approach where robotic applications contain several components communicating
together. Moreover, components themselves are built from entities that interact in order
to ensure a correct behavior with regard to the requirements. For instance, the control
task interacts with the execution tasks to instruct them on which activities to run or in-
terrupt (Sect. 3.3). The power of TTS through the composition of TTDs is very useful
in such contexts. Indeed, shared variables and the parallel operator ease the modeling
of the complex asynchronous communication within and between GenoM3 components.
Also, the sequential behavior within execution tasks can be conveniently modeled using
shared variables and parallel operators as seen above (more in Sect. 5).

Variables, guards and time intervals: The possibility to have guards over vari-
ables and to use time intervals makes TTDs suitable for modeling the entities of a
GenoM3 component. For instance, one may, within a TTD model of an activity, condi-
tion through the guards the execution of a codel by the availability of resources, and use
WCET as upper bounds (more in Sect. 5).

Urgencies: many of the behaviors in GenoM3 are subject to global urgency con-
straints rather than local ones. For instance, executing a codel happens as soon as it has
secured the needed resources within the IDS, shared between all tasks. These aspects
are modeled easily in TTS as opposed to clock-based transition systems such as those
resulting from e.g. classical timed automata where urgencies can be expressed only lo-
cally using invariants (Sect. 4.2). The confrontation between the two models in terms
of expressing urgencies is explained in details in [11].

4.2 Timed Automata

4.2.1 Introduction Timed Automata (TA) is a theory for modeling and verification
of timed systems. In the original version of the theory [3], TA extend finite-state Büchi
automata with real-valued clocks. The behavior of such automata is therefore restricted
by defining constraints on the clock variables and a set of accepting states. A simpler
version allowing local invariant conditions and known as Timed Safety Automata TSA
is introduced in [18]. In this document, we focus on TSA and refer to them as simply
TA.

4.2.2 Formal definition A TA is a tuple

TA = 〈L, l0, X,E, I〉

where:

– L is a finite set of locations,
– l0 ∈ L is the initial location,

– X is a finite set of continuous variables called clocks,
– E is a finite set of edges of the form (l, g, e, ϕ, l′), where l and l′ are locations, g is

a predicate on RX and ϕ is a binary relation on RX ,
– I assigns an invariant predicate I(l) to any location l.

4.2.3 Semantics The semantics of TA is defined over a Kripke structure, whose states
are pairs s = (l, v) ∈ L× RX , with v |= I(l), and transitions defined as:

– delay transitions: (l, v) d−→ (l, v′) with d ∈ R≥0 and v′ = v + d, and
– discrete transitions: (l, v)

(−→ l′, v′) if there is an edge (l, g, Y, l′) such that v |= g
and v′ = v[Y], where Y ⊆ X , and v[Y] is the valuation assigning 0 when x ∈ Y
and v(x) otherwise.

4.2.4 Example Fig. 5 shows a simple TA with three locations l0 (initial, denoted
with an inside ring), l1 and l2 and a clock c. With locations l1 and l2 are associated
the invariants (in purple) c ≤ 2 and c ≤ 1, respectively. This means that whenever l1
(respect. l2) is reached, it must be left at most when the valuation of c is equal to 2
(respect. 1). The reset actions (in blue) assign the valuation 0 to c when the edges they
are associated to are taken (edges from l0 to l1 and from l1 to l2). The guards (in green)
must be satisfied when an edge is taken.

The absence of an invariant on location l0 makes taking its outgoing edge possible
no matter what the valuation of c is. Let τ be the date at which the outgoing edge of l0
is taken. This means that l1 is reached at τ and must be left within the interval]τ, τ+2].
This interval is left-open because each outgoing edge of l1 is guarded with the strict
inequality c > 0 (l1 cannot be left at τ). Let τ ′ be the date at which the edge from l1 to
l2 is taken. Location l2 will be left within]τ ′, τ ′ + 1] and the initial location is reached.

clock c

c<=2

l0

c:= 0
c>0

c>0
c:= 0

c>0l1

l2
c<=1

Fig. 5: Timed automaton example

4.2.5 Extending TA

Urgencies TA urgencies may be expressed only locally through invariants. To deal with
urgencies expressed globally, e.g. involving different TA components, TA are extended
with urgencies in [8]. We refer to such formalism as Urgency Timed Automata UTA.
When an edge in a UTA is eager, that we note

;

, it must be taken (or disabled by taking
another edge) as soon as enabled. That is, when an eager edge is enabled, time is not
allowed to progress and this very edge must be taken or disabled immediately.

Data variables To ease the modeling of real-world systems, often communicating
through shared variables, TA may be extended with data variables. In such a case,
guards and assignments, originally allowed only on clocks (equality/inequality for guards
and reset for assignments), become possible on variables as well. We refer to this ex-
tension as DTA. UTA extended with data are referred to as DUTA.

4.2.6 Composition of DUTA The parallel composition of n DUTA is the system
{Init}[‖i∈1..n Ai], where each Ai is a DUTA and Init defines the initial valuations of
shared variables.

The semantics of a DUTA composition is thus given over a Kripke structure with
states of the form of pairs s = (l , v). The difference with the states given in the se-
mantics of a single (non-extended) TA in Sect. 4.2.3 is that now (i) l stores the current
location for each DUTA Ai and the valuation of each non-clock variable in the system,
(ii) v stores the valuation of all clocks in the composition (in each Ai) and v |= Ii for
all Ai.

The transitions are then defined as in Sect. 4.2.3: discrete and delay. Here, the dis-
crete transitions may contain a set of

;

transitions, such that an

;

transition corresponds
to an

;

edge. When enabled, an

;

transition deactivates all delay transitions until it is
taken (or disabled by taking another concurrent discrete transition). A large example
over DUTA compositions in terms of GenoM3 applications is given in Sect. 6.2.

5 Formalizing GenoM3

5.1 Importance and feasibility

As explained in Sect. 1, the absence of formal semantics in low-level robotic frame-
works is quite problematic. Indeed, it is mostly cumbersome and error-prone to try
to model robotic specifications, written within informal frameworks such as ROS, in
formal languages and frameworks. Furthermore, computer science is a mathematically
founded discipline where, for instance, formal semantics is at the heart of programming
languages. Formal semantics gives a clear, unambiguous definition to the language/-
software contrary to informal descriptions that might be interpreted differently by dis-
tinct readers. In the case of robotics, such semantics would make it possible to soundly
translate robotic specifications into other formalisms. Indeed, since the translated spec-
ifications obey some formal semantics, it is possible to construct a proof of soundness
between the semantics and the translation (Sect. 6.2).

GenoM3 is amenable to formalization due, mainly, to its model-based nature. Indeed,
the definition of the entities a GenoM3 component may have is clear and the set of
behavioral rules is finite. For instance, we know that each GenoM3 component has one
control task, and we know how it evolves. We also know that a GenoM3 component may
have a finite number of activities, and that each activity has a finite number of codels,

and the evolution rules of an activity within its execution task are well defined. Overall,
there is a finite set of rules on what the programmer may define (syntactic definitions)
and how the component evolves (operational semantics) in GenoM3. This makes the
formalization of GenoM3 possible by carefully mapping each entity and rule into TTS.

For readability, we present formal definitions and operational semantics of a lightweight
version of GenoM3. This version preserves the most important mechanisms includ-
ing concurrency, mutual exclusion, activation and interruption of activities. Validate
codels, control services and aperiodic execution tasks are excluded. These choices per-
mit showing in-depth details on semanticizing ambiguous, yet crucial, software aspects
of GenoM3 (such as interruptions). At the same time, the presentation is not overloaded
with simpler and clearer mechanisms such as the execution of control services. For sim-
plicity, we abuse notation to make the term codel refer, from now on, interchangeably
to the codel or the state it is associated to, and bears always the name of the state rather
than the function it calls upon execution.

5.2 Syntax and syntactical restrictions

Let Comp be a GenoM3 component. We define hierarchically the constituents of
Comp:

5.2.1 Activities An activity A is a tuple

〈IDA, CA,WA, TA, T
P
A 〉

where:

– IDA is the unique activity name,
– CA is a set of codels with at least two codels (the entry codel startA and the final

codel etherA):
{startA, etherA} ⊆ CA.

An activity may also have a “stop codel”, stopA, that defines the code to be executed
when the activity is interrupted,

– WA : CA\{etherA} 7→ Q>0 is a function that associates to every codel its WCET
(Sect. 2). We do not define a WCET for the codel ether , reserved for termination
only (there is no code attached to it),

– TA is a set of transitions of the form c → c′ where c and c′ are codels in CA. We
denote such a transition by simply c → (or→ c′) when the identity of codel c (or
c′) is unimportant,

– TPA ⊆ TA is the set of pause transitions.

5.2.2 Execution task An execution task ET is a tuple

〈Per ,A, Inc, V 〉

where:

– A is the non-empty set of activities ET is in charge of. We use the notation IDA to
refer to the set

⋃
A∈A IDA of all IDs of activities in A,

– Per ∈ Q>0 is the period,

– Inc is the incompatibility function that maps the ID of each activity inA, say IDA,
to the set of activities in A that are incompatible with A, that is the activities that
must be interrupted before A is launched. Therefore:
Inc : IDA 7→ P(IDA), where P(S) denotes the powerset (the set of all subsets) of
S,

– V is a set of variables.

5.2.3 Control task A control task CT is a specific task dedicated to the interaction
between a component and its surrounding. It is also responsible for “marking” an activ-
ity as ready for execution or for interruption, and reports on the termination of activities.
In GenoM3, the user does not specify the control task whose behavior is defined implic-
itly. Therefore, a control task is only defined at this level by a set of local variables that
we call V .

5.2.4 Component A component Comp is a tuple 〈CT,E, V, µ〉 where:

– CT is a control task,
– E is a set of execution tasks,
– V is a set of variables (shared between CT and each ET in E).
– µ : C 7→ P(C) is the mutual exclusion function, where C is the union of all the

codels in all activities of all execution tasks in E. Informally, the set µ(c) lists the
set of codels that cannot simultaneously execute with c. In the remainder of this
document, codels c such that µ(c) = ∅ are referred to as thread safe. Otherwise
we say that c is non thread safe.

5.2.5 Application and well-formed specifications An application, denoted App in
the rest of the text, is simply a set of components.

We will only consider well-formed applications, that are defined by syntactic re-
strictions on the activities and execution tasks that they include.

First, we require that each codel in an activity A, excluding etherA, must have at
least one successor in the relation defined by the set of transitions TA. More formally,
for any activity A and codel c in CA \ {etherA}, there must be a transition of the form
c→ c′ in TA, with c′ ∈ CA.

Second, we require that a transition in TA must not involve a stop codel as a target.
Indeed stop codels are reserved for interruptions. Similarly, it cannot involve an ether
codel as its source, since ether is reserved for termination. Also, an ether codel cannot
be the target of a pause transition because the latter is for suspension until the next
period, while the former is for termination.

All the previous requirements can be expressed more succinctly with the following
constraints:

∀c ∈ CA\{etherA} ∃c′ ∈ CA : c→ c′ ∈ TA
∀c, c′ ∈ CA : (c→ c′ ∈ TA)⇒ (c 6= etherA ∧ c′ 6= stopA)
∀c, c′ ∈ CA : (c→ c′ ∈ TPA)⇒ (c′ 6= etherA)

Finally, ether codels are always thread safe (there is no code attached to them,
Sect. 5.2.1). Also, there must be no mutual exclusion between codels of activities that
belong to the same execution task. Indeed, any two activities A and B in the same

execution task are executed sequentially “by construction” (no activities in the same
task can run concurrently). Therefore we require that µ(c)∩CB = µ(c′)∩CA = ∅ for
all c in CA and c′ in CB .

5.3 Semantics of lightweight GenoM3

The operational semantics of GenoM3 entities is given in terms of TTDs that are
composed together to build components and applications. Then we can derive a no-
tion of reduction on GenoM3 by lifting the corresponding relation at the TTS level
(Sect. 4.1.3). As a consequence, we can define the behavior of GenoM3 components
independently from the implementation (in accordance with the informal description
given in Sect. 3.3). In the next section, we refine the operational semantics by defining
a more precise notion of actions.

Here, we need to distinguish between what the programmer specifies (which is re-
flected at the syntactical level, for instance in transitions between codels declared in
activities, Sect. 5.2), and what is implicitly specified, that is, enforced at execution to
produce the expected behavior, like for instance interruption transitions (to codel stop
if it exists). Indeed, the programmer does not specify transitions to the stop codel, if
it exists (Sect. 5.2.5), as such transitions are defined by default and automatically ex-
ecuted when applicable (Sect. 3.3). We define the semantics of a GenoM3 component
gradually through three levels:

– Mono-task component: the component contains only one execution task (no control
task),

– Multi-task component: the component contains a finite number of execution tasks
(no control task),

– All-task component: the component contains a finite number of execution tasks and
a control task.

This layering will help us present the semantics progressively, in an understandable
way, but also select the right level according to the objective (presentation, translation,
proof) such as both readability and convenience are preserved (more in next section).

5.3.1 Level 1: mono-task component This is the lowest level in complexity (and
highest abstraction). In this context, the component contains only one execution task,
which means that all the codels are thread safe (see the property of µ() in Sect. 5.2.5).

For the sake of simplicity, we stop referring to the names of edges in TTDs (Sect. 4.1.4).
That is, an edge e that connects vertex v to v′, denoted also v e−→ v′ in Sect. 4.1.4 will be
referred to, from now on, as simply v → v′, v → (when the identity of v′ is uninmpor-
tant), or→ v′ (when the identity of v is unimportant). This will alleviate the notations
but still permits to define edges uniquely through their source and target vertices and the
set they belong to as we will see hereafter. It will also ease loading edges with actions
in Sect. 6.2.

Definition 1 Activities semantics.
The operational semantics of an activity 〈IDA, CA,WA, TA, T

P
A 〉 (Sect. 5.2.1) is given

by a TTD (Sect.4.1.4) such that:

– Vertices V : each c ∈ CA is mapped to one vertex with the same name c ∈ V . The
initial vertex v0 is etherA.

– Edges E are partitioned into a set of nominal edges, E N , and additional edges,
E A. That is E = E N ∪ E A where:
• Nominal edges: each transition c → c′ in TA is mapped to an edge c → c′ in

E N . We distinguish three disjoint sets of nominal edges:
E N = E P ∪ E T ∪ E X . E P is the (possibly empty) set of pause edges that
maps the set of pause transitions T P ; E T is the (possibly empty) set of ter-
mination edges of the form → ether and E X the (possibly empty) set of the
remaining (execution) edges.

• Additional edges: We distinguish two disjoint sets of additional edges:
E A = E S ∪ E I . E S contains the additional edge for starting ether → start .
E I is the set of additional edges for interruption: (i) from vertex c = ether and
(ii) from each vertex c such that there is an edge→ c in E P to vertex stopA if
stopA ∈ CA (to vertex etherA otherwise).

– Time intervals I: I =]0 ,W (c)] for each edge in E N and I = [0 , 0] for each edge
in E A.

Consequently, the set of nominal edges maps the transitions that the programmer spec-
ifies, while the set of additional edges reflects internal actions enforced by GenoM3 to
handle starting and interruption of activities. The additional edges for interruption E I

ensure that an activity that is interrupted before starting or after a pause will execute
the interruption routine: transit to stop (if it exists) or terminate by transiting to ether
(otherwise).

Edges uniqueness For activities, due to the restrictions defined in Sect. 5.2.5, the sets
E N and E A are necessarily disjoint, and thus all subsets of E N and E A are mutu-
ally disjoint. Moreover, it is not possible to have two different edges with exactly the
same source and target codel, so specifying the source and target of an edge defines it
uniquely. The only exception is for codels c that are both the target of a pause transition
(∃ → c ∈ TPA) and the source of a transition to ether (c→ etherA ∈ TA) in an activity
that does not have a stop codel. In this case, we end up with two edges connecting c to
etherA: one nominal for termination (in the set E T) and one additional for interruption
(in the set E I). Here, it is sufficient to mention also to which set the edge belongs to
define it uniquely. For TTDs of other entities excluding the control task (such as the
task manager, see below), edges are uniquely defined through their source and target
vertices. This remains true at level 2 and level 3 (next sections).

Example This example shows the definition of an activity A and its operational seman-
tics.
Syntactic definition (from Sect. 5.2.1)

– CA = {startA,mainA, etherA},
– WA(startA) = 1 ,WA(mainA) = 2 ,
– TA = {startA → mainA,mainA → etherA},
– TPA = ∅.

Semantics We apply Definition 1 to A to get the TTD of A in Fig. 6. Note the edge
from etherA to etherA that represents interruption (absence of codel stopA here).

startA mainA

etherA

]0,1]

]0,2]

[0,0]

[0,0]

Fig. 6: Activity TTD example (mono-task context)

Definition 2 Execution task semantics.
The semantics of an execution task ET = 〈Per ,A, Inc, V 〉 is a TTS (parallel compo-
sition, Sect.4.1.5)

ET = {Θ}[Tim||Ex]

where Θ gives the initial values of the shared variables (given below) and Tim is the
timer.

Ex is a TTS (sequential composition, Sect.4.1.6)

{Θ}[M ||(||
A∈A

A)]

where M is the task manager and ||
A∈A

A is the sequential composition (Sect.4.1.6) of

all activities A in A (Sect. 5.2.2).
The set of variables V contains: N , the set of names of activities to be executed

nominally, R, the set of names of activities to be interrupted (both N and R are defined
over IDA, Sect. 5.2.2), sig , the period signal (boolean), and Π , the control passing
variable (of type IDA ∪ M , the same idea as in Sect.4.1.6). The initial values are
Θ(N) = Θ(R) = ∅, Θ(sig) = False , and Θ(Π) =M .

Π is initialized to M to ensure that the manager has the control when the system starts
(the global control is held by the manager M at the initial state of the underlying TTS).
Both Tim and M are TTDs whose behavior is defined in the sequel.

Definition 3 Timer semantics.
The timer has one vertex and one edge. The latter is associated with the interval [Per ,Per]
and the operation sig := true (Fig. 7).

Changing the value of sig to true corresponds to transmitting a signal asynchronously
to the manager (see below). The time interval [Per ,Per] ensures that this signal is
transmitted at exactly each period (each Per time units).

Definition 4 Manager semantics.
The manager is a TTD with two vertices: wait and manage. The edges, guards, opera-
tions and time intervals are shown in Fig. 8.

start
[Per, Per]
sig:= true

Fig. 7: Timer TTD

The location wait denotes waiting for the next period signal and manage is to exe-
cute activities, if any. The union N ∪ R defines the set of activities to execute through
their IDs . The operation Π := rand(N ∪ R) gives the global control randomly to one
of the activities whose ID is in N ∪R (by assigning randomly an element from N ∪R
to Π). The manager transits back to wait as soon as the set defined by this union is
empty.

Since Θ(N) = Θ(R) = ∅, no activity would ever be executed by the manager.
This is normal because fulfilling activities requests is the role of the control task that
we do not have at this level. The manager performs the operation rrand(N ,R) to solve
this problem. It initializes randomlyN andR, over the set of IDs of the activities ET is
in charge of; while respecting the disjointness conditionN ∩R = ∅ and the uniqueness
condition (IDA ∈ S ∧ IDB ∈ S) ⇒ (A 6= B) with S is either N or R. Note how

wait
[0, 0]

sig:= false,
rrand(N,R)

sig N∪R ≠ ∅ ∧ π = M

π := rand(N∪R)
[0, 0]

manage

[0, 0]
N∪R = ∅ ∧ π = M

Fig. 8: Manager TTD

the guard on the edge from wait to manage does not contain the clause Π = M . This
is indeed not necessary as we may easily prove that if the manager is at vertex wait,
thenΠ =M (this kind of invariants will be useful when we prove the soundness of our
translation in the next section):

– First visit: Θ(Π) =M ,
– Subsequent visits: each subsequent visit results from taking the edge from manage

to wait, which is itself guarded by Π =M and does not modify Π ,
– Time progress: all operations that change Π from M to something else are on

the edges whose source vertex is manage, which means that the value of Π when
reaching wait, proven above to beM , will remain so as long as the current vertex of
manager is wait. Activities have also access to Π but never change it to something
else than M (see below).

Now we see how the TTD of an activityA given in Definition 1 is enriched with guards
and operations when involved in the execution task.

Definition 5 Activities semantics (enriched).
Each incoming edge to ether (each element of E T if a codel stop exists, of E T ∪ E I

otherwise) and each pause edge (each element of E P) is augmented with the oper-
ation Π := M and the operation UP(ID ,N ,R) that removes ID from N or R,
whichever set it belongs to. Additional edges for interruption (E I) are guarded with
Π = ID ∧ ID ∈ R. The starting edge (the only element of E S) and each edge c → in
E N such that there exists an edge→ c in E P are guarded with Π = ID ∧ ID ∈ N .

Let us illustrate with an example how this augmentation with guards and operations
coincides with the behavior given in Sect. 3.3. We consider the same activity A (Fig. 6)
and a second activity B defined as follows:

– CB = {startB ,mainB , stopB , etherB},
– WB (startB) = 1 ,WB (mainB) = 2 ,WB (stopB) = 1 ,
– TB = {startB → mainB ,mainB → mainB , stopB → etherB},
– T P

B = {mainB → mainB}.

We apply Definition 5 to get the TTDs of A and B in Fig. 9 when evolving within the
execution task whose manager and timer are represented in Fig. 8 and Fig. 7 (Definition 4
and Definition 3), respectively. The non-determinism on whether to execute nominally
or interrupt at the beginning of the execution (from ether or wherever the activity was
paused) is resolved by finding to which set the activity ID belongs (e.g. edges from
mainB to stopB and from mainB to mainB). At the end of the execution, either by
taking a pause edge (e.g. edge from mainB to mainB) or reaching ether (e.g. edge
from mainA to etherA), the control is given back to the manager through the oper-
ation Π := M . Together with such operation, the activity updates the set N or R by
removing its ID from the set it belongs to through the operation UP(ID ,N ,R). This
is to denote that there is no further execution required for this activity in the current
cycle. Note that checking whether the activity has the control is necessary only on start-
ing and interrupting edges and when resuming after a pause (Definition 5) as we may
easily prove that when activating any of the remaining edges, Π is always equal to the
activity ID .

Component At this level, the component is simply the execution task ET . It is thus
derived from Definition 2.

5.3.2 Level 2: multi-task component At this level, the component may contain sev-
eral execution tasks, which means that some codels may be non thread safe. Only the
operational semantics of activities change.

Definition 6 Activities semantics (level 2).
The operational semantics of an activity 〈IDA, CA,WA, TA, T

P
A 〉 (Sect. 5.2.1) is given

by a TTD such that:

– Vertices V : each c ∈ CA s.t. µ(c) 6= ∅ (non thread safe) is mapped to two vertices
c and cexec. Definition 1 applies otherwise.

startA

]0,1]

]0
,2

]

[0,0]

[0,0]

]0,1]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]

π = ID
A ∧ ID

A∈ N

π = IDA ∧ IDA∈ R

π
 = ID

B ∧ ID
B ∈

 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDA ,N,R), π := M

UP(IDB ,N,R), π := M

U
P(

ID
A

,N
,R

),
π

 :=
 M

mainA

etherA

startB mainB

stopBetherB

Fig. 9: Activities A and B in task ET (level 1)

– Edges E: partitioned into nominal edges E N and additional edges E A:
• Nominal edges E N : partitioned into E P (pause edges), E T (termination edges)

and E X (execution edges). Each transition in TA\TPA from a non-thread-safe
codel c to c′ is mapped to an edge cexec → c′ in E X (in E T if c′ = ether).
Each transition in TPA from a non-thread-safe codel c to c′ is mapped to an edge
cexec → c′ in E P . For the remaining transitions in TA, Definition 1 applies to
get their mapping in E N ,

• Additional edges E A: partitioned into E I (interruption edges), E S (starting
edges) and E M (mutual exclusion edges). E M is the set of edges c → cexec
for all non-thread-safe codels c. Definition 1 applies to get E S and E I .

– Time intervals: Definition 1 applies on all edges.

The manager and the timer remain unchanged (Definition 3 and Definition 4). Now
we see how the activities at this level are enriched when involved in ET .

Definition 7 Activities semantics (enriched, level 2).
Definition 5 applies. Then, each additional edge c → cexec in E M is guarded with
Fr(c) ∧Π = ID ∧ ID ∈ N if there exists an edge→ c in EP (Fr(c) otherwise), such
that Fr(c) is true if and only if c′exec is not the current vertex of its activity (in the global
state of the underlying TTS) for all c′ in µ(c).

The guard Fr(c) is to ensure no two codels sharing some resources run simultaneously.
It is implementable through e.g. shared variables (see example in [13], section 6.1).

Example Let us consider the same activitiesA andB from the previous level semantics
(Sect. 5.3.1). The behavior is the same, but some codels become non thread safe due to
the existence of other execution tasks:

– Activity A: The codel mainA becomes non thread safe (µ(mainA) 6= ∅).
– Activity B: The codel mainB becomes non thread safe (µ(mainB) 6= ∅).

Applying Definition 6 then Definition 7 to A and B give the TTDs in Fig. 10.

startA
]0

,1
]

[0,0]

]0
,2

]

[0,0]

[0,0]

mainB exec

]0,1]
[0,0]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]
π = ID

A ∧ ID
A∈ N

π = IDA ∧ IDA∈ R

π
 = ID

B ∧ ID
B ∈

 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π := M

UP(IDA ,N,R), π := M

Fr(mainA)
UP(IDB ,N,R), π := M

U
P(

ID
A

,N
,R

),
π

 :=
 M

mainA execmainA

etherA

startB mainB

stopBetherB

Fig. 10: Activities A and B in task ET (level 2)

Component At this level, the component is the TTS

Comp = [E]

where E =‖i∈1 ..n ETi is the parallel composition of all execution tasks in the compo-
nent Comp.

5.3.3 Level 3: all-task component

Definition 8 Control task semantics.
The semantics of a control task (Sect. 5.2.3) is given over the TTD in Fig. 11 where:
rec(ID) evaluates to true when an activity ID is received, Insert(ID ,Wa) inserts the
received ID in the local variable (a set) Wa , and report is the operation of reporting
to external entities.

Requesting an activity, denoted by the guard rec(ID) (ID received), triggers an
urgent edge from the initial vertex idle to the vertex busy . The received activity name
is inserted in the set Wa , which is an initially empty local variable denoting the names
of the activities waiting for activation (it is the only element of V given in Sect. 5.2.3).
Another possible edge with the same source and target vertices is triggered when an
activity finishes its execution (the guard will be formalized later). The edge from busy
to end includes the operations of e.g. interruption and activation, which will be given
later. The edge from end to idle corresponds to sending replies through the operation
report to external entities.

Definition 9 Component semantics.
a GenoM3 component is a TTS

Comp = {Θ}[CT ‖ E]

where CT is a control task, and E =‖i∈1 ..n ETi is the TTS resulting from the parallel
composition of all the n execution tasks ET in component Comp (CT and E are the

idle
[0, 0]
rec(ID)

[0, 0]

busy

[0, 0]

end

[0, 0]

Insert (ID,Wa)

report

Fig. 11: Control task TTD

operational counterparts of CT and E in Sect. 5.2.4), and Θ gives the initial values
of the shared variables (from V in Sect. 5.2.4). These shared variables are: Act the
set of activated activities, In the set of interrupted activities and Fi the set of finished
activities. Θ(Act) = Θ(In) = Θ(Fi) = ∅.

Act and In are modifiable only by CT that determines who is activated and who is
interrupted (read-only for E) and Fi is modifiable by everyone (both activities and
control task need to update it).

Now, the execution tasks and control task diagrams will be enriched with operations
over shared variables to ensure a correct behavior within Comp (with regard to that
given informally in Sect. 3.3). Within an execution task, the manager (Definition 4)
and the activities (Definition 7) will be enriched as follows:

Definition 10 Manager semantics (level 3).
On the edge from wait to manage (Definition 4), N and R are copied from Act and
In , respectively (instead of randomization). Only the names of the activities that this
execution task is in charge of (i.e. activities members of A, Sect. 5.2.3) are copied,
excluding those in Fi . That is, for task ET , the restricted copy of Act into N results in
the set N = {IDA|A ∈ A ∧A ∈ Act ∧A /∈ Fi} (and similarly when copying In into
R). We denote this operation by rcopy (restricted copy), see Fig. 12.

The restricted copy eliminates possible infinite execution scenarios (the execution
task makes the copy once, the activities activated afterwards will be processed at the
next period). Excluding the elements in Fi when copying ensures that already termi-
nated activities will not be re-executed (unless requested again in the future).

Definition 11 Activities semantics (level 3)
The enriched TTD is obtained from Definition 7. Then, on each incoming edge to ether
(each element of E T if a codel stop exists, of E T ∪ E I otherwise), a new operation
that inserts the activity ID in the set Fi is added.

This new operation will notify the control task to act accordingly on the termination
of the activity (see below). Applying Definition 11 to activities A and B (Fig. 10) gives
the TTDs in Fig. 13.

wait
[0, 0]

sig:= false,

sig

π := rand(N∪R)
[0, 0]

manage

[0, 0]

rcopy(Act,N), rcopy(In,R)

N∪R ≠ ∅ ∧ π = M

N∪R = ∅ ∧ π = M

Fig. 12: Manager TTD (level 3)

startA

]0
,1

]

[0,0]
]0

,2
]

[0,0]

[0,0]

mainB exec

]0,1]
[0,0]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]
π = ID

A ∧ ID
A∈ N

π = IDA ∧ IDA∈ R

π
 = ID

B ∧ ID
B ∈

 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π := M
Insert(IDB, Fi)

UP(IDA ,N,R), π := M
Insert(IDA, Fi)

Fr(mainA)
UP(IDB ,N,R), π := M

U
P

(ID
A

 ,N
,R

),
π

 :=
 M

In
se

rt
(ID

A
, F

i)

mainA execmainA

etherA

startB mainB

stopBetherB

Fig. 13: Activities A and B in task ET (level 3)

Definition 12 Control task semantics (enriched).
The control task (Definition 8) is enriched as follows: the edge idle → busy (not
guarded with rec(ID)) is guarded with a non-emptiness condition on Fi (Fig. 14). The
edge busy → end is associated with the following operations (in this order):

– update Act and In by removing the IDs in Fi :
Act := Act\(Act ∩ Fi) (and same for In)
We refer to this operation as U (),

– empty Fi ,
– Activate and interrupt: move elements of Wa to Act if possible (and from Act to

In if necessary):
∀id ∈Wa:

if Inc(id) ∩ (Act ∪ In) = ∅ then
Wa := Wa\{id} and Act := Act ∪ {id} (activation)

else if Inc(id) ∩Act 6= ∅ then
In := In ∪ (Act ∩ Inc(id)) and Act := Act\(Act ∩ Inc(id)) (in-

terruption).
We refer to this operation as A I ().

idle
[0, 0]
rec(ID)

[0, 0]

busy

[0, 0]

end

[0, 0]

Insert (ID,Wa)

report
U(),

Fi:= ∅,

A_I()

Fi ≠ ∅

Fig. 14: Control task TTD (enriched)

The guard Fi 6= ∅, combined with the urgency interval [0, 0] (the edge idle → busy
not guarded with rec(ID)), allows the control task to update the sets Act and In as soon
as an activity ends. The operation U () on the edge busy → end ensures that this update
is correct by removing the ended activities from the sets of activities to be executed
(Act ∪ In). The operation A I () activates the waiting activities if possible. That is, for
each waiting activity A (in Wa), it checks if there is at least an activity incompatible
with it that is still not terminated (in Act ∪ In). If it is the case, then A needs to wait
further (remains in Wa) and the incompatible activities with A that are not interrupted
(in Act) need to be moved to In . Otherwise, A is activated (moved from Wa to Act).
After these operations, the control task reports to the external entity that requested the
finished activities (if any, edge end → idle).

5.3.4 Application A robotic specification written in GenoM3 contains usually several
components. We give thus the definition of a robotic application in terms of operational
semantics. We can apply this at any level, which gives us different views of an appli-
cation at different levels of abstraction. Note that the data flow through ports is not
specified at this level as its mechanisms depend on the implementation [12].

Definition 13 Application semantics.
An m-component specification is the TTS resulting from the parallel composition of all
components

app = [‖i∈1 ..m Compi]

.

6 Translation of GenoM3 Semantics
6.1 Translation to DUTA

DUTA use clocks which evolve monotonically with time and do not depend on
edges enabledness. It is thus important to translate while preserving a semantically
equivalent behavior under clocks. This equivalence will be proven using bisimulation
(Sect. 6.2). From the previous section, we easily notice that the main source of complex-
ity in GenoM3 resides at the execution tasks level. Thus, for readability and convenience,
we restrict our translation to the first two levels of operational semantics (Sect. 5.3.1 and

Sect. 5.3.2). At these levels, we use the rrand(N ,R) initialization (Sect. 5.3.1) which
covers all the possible evolutions of execution tasks as N and R would contain at least
all possible IDs if the control task was involved. That is, the set of all the possible con-
figurations of N and R resulting from the application of rrand(N ,R) is a superset of
that resulting from applying the restricted copy rcopy(N ,R) (Sect. 5.3.3).

6.1.1 Mono-task component The objective is now to define the DUTA equivalent to
the TTS of ET (Sect. 5.3.1):

{Θ}[Tim ‖ M ‖ (‖
A∈A

A)]

where Tim ,M andA are, respectively, the DUTA translations of the timer, the manager
and each activity in A. Θ will define the initial values of shared variables in the DUTA
of ET that will have the same names as in in the TTS, i.e. N , R, Π and sig . We give
hereafter the definitions of the elements of the DUTA of ET .

Definition 14 Timer Tim (DUTA).
The DUTA translation of the timer is given by the following rules:

– clocks: The timer has a clock xt , whose initial valuation is zero,
– locations: The timer has one location start that maps the vertex start of its TTD

counterpart (Definition 3). It is associated with the invariant xt ≤ Per ,
– edges: The timer has one edge from start to start that maps its TTD counterpart.

With this edge, a guard xt = Per and an operation that resets xt to zero are asso-
ciated. The sig := true operation is also associated with the same edge.

The invariant on location start is to enforce its unique outgoing edge to be taken
at Per time units at most. The guard on the latter (xt = Per) is to ensure taking it at
exactly each period, and the reset operation xt := 0 to recount the period from zero
each time. Consequently, the period signal through sig is sent periodically.

Fig. 15 shows the timer TTD given in Definition 3 and its DUTA counterpart,
resulting from applying Definition 14.

start
[Per, Per]
sig:= true

(a) Timer TTD

start

clock xt

xt ≤ Per

xt=Per
sig:= true,

xt:= 0

(b) Timer DUTA

Fig. 15: Timer TTD to DUTA (Definition 14)

Definition 15 Manager M (DUTA).
The DUTA translation of the manager is given by the following rules:

– locations: The manager has two locations wait and manage that map their TTD
counterparts (Definition 4),

– edges: The manager has three edges that map their TTD counterpart. Guards and
operations are the same as in the TTD version. Now the urgency on each TTD
edge, ensured with [0, 0] intervals, is enforced by making each edge in the DUTA
counterpart eager .

Fig. 16 shows the manager TTD given in Definition 4 and its DUTA counterpart,
resulting from applying Definition 15.

wait
[0, 0]

sig:= false,
rrand(N,R)

sig N∪R ≠ ∅ ∧ π = M

π := rand(N∪R)
[0, 0]

manage

[0, 0]
N∪R = ∅ ∧ π = M

(a) Manager TTD

wait

sig:= false,
rrand(N,R)

sig N∪R ≠ ∅ ∧ π = M
π := rand(N∪R)

manage

N∪R = ∅ ∧ π = M

(b) Manager DUTA

Fig. 16: Manager TTD to DUTA (Definition 15)

We define now translation rules for activities. Due to the special pause statements,
one needs to be particularly careful with the translation of activities. For starts, let us
consider activity A with the restriction TPA = ∅. We will clarify later with an example
why pause behaviors at this level are more delicate to translate to DUTA and propose a
solution as a general rule (see Definition 17 below).

Definition 16 Activities A (DUTA, restricted).
The DUTA translation of an activity A |= (TPA = ∅) is given by the following rules:

– clocks: An activity A has a clock xA, whose initial valuation is zero,
– locations: Each vertex in the underlying TTD (Definition 5) is mapped to a location

with the same name in the DUTA. Each location c 6= ether is associated with an
invariant xA ≤ ↑I(c → c′) with c′ any vertex in the TTD s.t. c → c′ in E (↑I of
any outgoing edge of c is equal to W (c) of the underlying codel, Definition 12),

– edges: (1) Each edge of the underlying TTD is mapped into an edge in the target
DUTA with the same source and target. (2) Urgency intervals [0, 0] are mapped
into

;

tags (eager edges). (3) Each outgoing edge of a location that is associated
with an invariant xA ≤W (c) is guarded with xA > 0. (4) Each incoming edge
to a location with an invariant xA ≤W (c) is associated with the reset operation
over xA. (5) Guards (respect. operations) associated with each edge in the DUTA
result from the conjunction (respect. sequencing) of guards (respect. operations) of
its TTD counterpart and the guards (respect. resets) of clocks as defined in (3) and
(4).

2 This is true for all outgoing edges of c here because no pause transition exists in the underlying
activity, and thus no interruption is possible from any c 6= ether

The invariants ensure that the execution of each codel takes between zero and W (c)
units of time. For clock x, the guards x > 0 are to eliminate 0 as a possible execution
time and the reset operations are to ensure counting W (c) starting at zero. Conse-
quently, each codel c is executed in a non-zero amount of time inferior or equal to its
WCET W (c).

As an example, Fig. 17 shows the TTD of activity A (Sect. 5.3.1, Fig. 9 left) and its
DUTA counterpart, resulting from applying Definition 16.

startA

]0,1]
]0

,2
]

[0,0]

[0,0]

A

π = ID
A ∧ ID

A∈ N

π = IDA ∧ IDA∈ R

UP(IDA ,N,R), π := M

UP
(ID

A
,N

,R
),
π

 :=
 M

mainA

etherA

(a) TTD of Activity A task ET (level 1)

startA

A

π = IDA ∧ IDA ∈ R
UP(IDA ,N,R),
π:= M

UP
(ID

A
,N

,R
),

π:
=

M

mainA

clock xA

xA ≤ 1

x A
>0

π = ID
A ∧ ID

A ∈ N

xA:=
 0

xA ≤ 2

x A
>0

x
A:= 0

etherA

(b) DUTA of Activity A in task ET (level 1)

Fig. 17: Activities TTD to DUTA (activity A, level 1, Definition 16)

Let us now focus on activity B at the same level (Sect. 5.3.1, Fig. 9 right). We note
immediately that B violates the restriction in Definition 16 since
T P 6= ∅. The activity B is a good practical example to show why Definition 16 may
lead to incorrect translations in some cases due to the nature of clocks in DUTA.

Fig. 18 shows the TTD of activity B (Sect. 5.3.1, Fig. 9 right) and its DUTA coun-
terpart, resulting from applying Definition 16. This translation is incorrect. Indeed, ifB
passes the control back to the manager after a pause transition (taking the edge from
mainB to mainB in the DUTA in Fig. 18), the clock xB will continue evolving mono-
tonically and the DUTA will timelock after 2 time units unless it resumes the control
before then (all outgoing edges from location mainB are disabled). This problem is due
in part to the fact that clocks evolve independently from edges enabledness in DUTA
(in contrast to TTDs where time intervals are relative to the date their edge was last
enabled). We propose thus a new generic translation that is valid for all activities at this
level without restrictions.

Definition 17 Activities A (DUTA, level 1).
The DUTA of an activity A is defined using the following translation rules:

]0,1]

]0,2]

[0,0]

B

]0,1]

[0,0]

[0,0]

π = ID
B ∧ ID

B ∈
 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDB ,N,R), π := M
startB mainB

stopBetherB

(a) TTD of Activity B task ET (level 1)

startB

B

π = ID
B ∧ ID

B ∈
 N

π = IDB ∧ IDB ∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB ∈ N ∧ xB>0

UP(IDB ,N,R), π:= M

UP(IDB ,N,R), π:= Mclock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0

x
B := 0

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

(b) Incorrect DUTA of Activity B (level 1)

Fig. 18: Incorrect TTD to DUTA translation (activity B, level 1, Definition 16)

– clocks: Same as in Definition 16,
– locations: Each vertex c of a codel c s.t. there exists → c in T P is mapped to,

besides the location c (Definition 16), another location cpause. The rules on trans-
lating vertices in Definition 16 apply on the remaining vertices to obtain the re-
maining locations,

– edges: Each edge c
g,op−−→ c′ in E P (Definition 1) is mapped to an edge c

true,op−−−−−→ c′pause

in the DUTA, and an eager edge c′pause
g,null−−−−→ c′ is added (null = no operation).

Each interruption edge (in E I) in the TTD from c 6= ether to stop (respect. to
ether , Definition 1) is mapped to an edge from location cpause to stop (respect. to
ether)3. Rule (1) of Definition 16 is then applied on the remaining edges of the TTD
to obtain the remaining edges of the DUTA. Finally, rules (2) to (5) in Definition 16
are subsequently applied to all edges.

These additional rules will allow time on clocks to evolve unboundedly at locations
cpause, that is when the activity is paused. Resuming the activity nominally is then
equivalent to taking the eager edge cpause → c and the clock will be reset at this very
edge to count the WCET of c starting from 0.

Now, applying Definition 17 to activity A will give exactly the same outcome as
when applying Definition 16 (Fig. 17). Let us apply Definition 17 to activity B for
which Definition 16 is not valid as shown in Fig. 18. The new translation is given in
Fig. 19. Here we know that mainB is reached only when B has the control and with a
prior clock reset, which eliminates the potential timelock seen in Fig. 18.

6.1.2 Multi-task component The DUTA translation rules remain unchanged for the
timer Tim ′ and manager M ′. We extend now translation rules for activities to take into
account non-thread-safe codels.

3 To ensure interruption of a paused activity occurs as soon as the latter is resumed.

]0,1]

]0,2]

[0,0]

B

]0,1]

[0,0]

[0,0]

π = ID
B ∧ ID

B ∈
 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDB ,N,R), π := M
startB mainB

stopBetherB

(a) TTD of Activity B task ET (level 1)

startB
mainB pause

B

π = ID
B ∧ ID

B ∈
 N

π = IDB ∧ IDB ∈ R

π = ID
B ∧

 ID
B ∈

 R

π = IDB ∧ IDB ∈ N

UP(IDB ,N,R), π:= M

UP(IDB ,N,R), π:= M

clock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0

x
B := 0

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

xB>0

(b) DUTA of Activity B in task ET (level 1)

Fig. 19: TTD to DUTA translation (activity B, level 1, Definition 17)

Definition 18 Activities A′ (DUTA, level 2).
The DUTA of an activity A is defined using the following translation rules:

– clocks: Same as in Definition 16,
– locations: Each vertex c in the underlying TTD (Definition 7) of a thread-safe codel
c s.t. there exists→ c in T P is mapped to, besides the location c , another location
cpause. Each remaining vertex in the underlying TTD (Definition 7) is mapped to a
location with the same name in the DUTA. Each location c that maps a vertex c of
a thread-safe codel c 6= ether is associated with an invariant xA ≤ ↑I(c → c′)
with c′ any vertex in the TTD s.t. c→ c′ in EN . The same invariant rule is applied
to each location cexec,

– edges: Each pause edge c
g,op−−→ c′ s.t. c′ is thread safe is mapped to an edge

c
true,op−−−−−→ c′pause in the DUTA, and an eager edge c′pause

g,null−−−−→ c′ is added. Each
interruption edge in the TTD from c 6= ether (whose underlying codel c is thread
safe) to stop (respect. to ether) is mapped to an edge from location cpause to stop
(respect. to ether). Rule (1) of Definition 16 is then applied on the remaining edges
of the TTD to obtain the remaining edges of the DUTA. Finally, rules (2) to (5) in
Definition 16 are subsequently applied to all edges.

We note immediately the resemblance between this translation and that given for level
1. Indeed, only thread-safe codels targeted by pause transitions induce a non-direct
mapping of vertices and edges, and this aspect is already covered at level 1. For instance,
applying Definition 18 to activities A and B at level 2 (Sect. 5.3.2, Fig. 10) gives
the models in Fig. 20. Notice how, in the absence of thread-safe codels targeted by
pause transitions, the translation is rather a one-to-one mapping (besides clock-related
constraints).

startA

]0,
1]

[0,0]

]0
,2

]

[0,0]

[0,0]

mainB exec

]0,1]
[0,0]

]0,2]

[0,0]

A B

]0,1]

[0,0]

[0,0]
π = ID

A ∧ ID
A∈ N

π = IDA ∧ IDA∈ R

π = ID
B ∧ ID

B ∈ N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π := M

UP(IDA ,N,R), π := M

Fr(mainA)
UP(IDB ,N,R), π := M

U
P(

ID
A

,N
,R

),
π

 :=
 M

mainA execmainA

etherA

startB mainB

stopBetherB

(a) TTDs of Activities A and B in task ET (level 2)

startA

startB
mainB exec

A B

π = IDA ∧ IDA ∈ R

π = ID
B ∧

 ID
B ∈

 N

π = IDB ∧ IDB ∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB ∈ N
∧ Fr(mainB)

UP(IDB ,N,R), π:= M

UP(IDA ,N,R),
π:= M

Fr(mainA)

UP(IDB ,N,R), π:= M

UP
(ID

A
,N

,R
),

π:
=

M

mainA exec

clock xA clock xB

xA ≤ 1

x A
>0

π = ID
A ∧ ID

A ∈ N

xA:= 0 xA ≤ 2

x A
>0

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB>0

x
A:= 0

xB:= 0

xB:= 0

x
B := 0

x
B := 0

mainA

etherA

mainB

stopB

etherB

(b) DUTA of Activities A and B in task ET (level 2)

Fig. 20: Activities TTD to DUTA (A and B, Definition 18)

6.2 Translation soundness

We use weak timed bisimulation (Definition 20 below) to prove that our translation
from TTS to DUTA is correct. To make the proof readable and the definitions minimal,
we restrict it at level 1. This choice is both convenient and representative since it shows
the most delicate aspect of the translation, related to thread-safe codels targeted by
pause transitions. Indeed, we saw previously how, except this aspect, the translation is
rather straightforward.

6.2.1 Execution actions To ease following the events within a GenoM3 execution
task, we define a set of possible actions. Each action represents a category of similar
events that obey the same guards and have similar side effects on global variables. This

will also ease reasoning on the soundness of the translation to DUTA. We first define
the actions for the original system (in TTS) then the translation (in DUTA).

Nominal execution Nominal edges E N are the ones explicitly specified in the GenoM3
specification (Sect. 5.2.1 and Definition 1). In order to partition these edges according
to the actions they pertain to, we need to have a similar precondition for them. The
issue here is that nominal edges (members of E N) do not necessarily obey the property
IDA ∈ N . Indeed, in activity B for instance (Sect. 5.3.1, Fig. 9 right), the edge from
stopB to etherB is nominal, yet it is taken when IDA ∈ R. This will make it hard to
express nominal actions distinguishably from interruption ones. We propose thus the
following.

Definition 19 Augmenting interruption edges.
Enriching an activity A TTD is given by Definition 5, then each interruption edge
c → stop (in E I) is augmented with the operation R := R\{IDA} (remove IDA from
R)4. The DUTA of A is then obtained from Definition 17.

Lemma 1 Correctness of Definition 19.
Activities TTDs and DUTA obtained from Definition 19 induce the same behavior as
the ones obtained from Definition 5 and Definition 17. That is, augmenting interruption
edges c → stop with the operation R := R\{IDA} does not alter the behavior of the
execution task.

Proof. Removing IDA from R at the beginning of the interruption (when taking the
interruption edge) is equivalent to removing IDA from R at the end of the interruption
(with a termination or a pause edge). Indeed, between these two events, A has the con-
trol, that is Π = A, which means that all edges in the manager and other activities are
disabled (the composition of the activities and the manager is sequential, Definition 2).
It follows that no edge depending on R is enabled, and thus the behavior remains un-
changed.

Additionally, when performing R := R\{IDA} (when taking the interruption edge
to stop) is followed by performing UP(IDA,N ,R) (when taking a termination edge),
removing IDA from R is redundant, that is the operation UP(IDA,N ,R) is side-effect
free (since IDA has been already removed from R).

Definition 19 makes it easier to differ between interruption edges and nominal
edges. Simply, a nominal edge must satisfy IDA /∈ R while an interruption edge must
satisfy IDA ∈ R. We will use thus this definition for our proof. Fig. 21 shows the TTD
and DUTA of activity B (Fig. 19) when applying Definition 19.

TTS
First, we partition the edges within an activity as follows:

– Interrupt activity A (ia): This action contains all additional edges for interruption
(Definition 1), that is all edges in E I ,

– Finish activity A (fa): This action contains all nominal termination and pause edges
(Definition 1), that is all edges in E P ∪ E T ,

4 if ether is the target codel of the interruption edge, then this is not needed.

]0,1]

]0,2]

[0,0]

B

]0,1]

[0,0]

[0,0]

π
 = ID

B ∧ ID
B ∈

 N

π = IDB ∧ IDB∈ R

π = ID
B ∧ ID

B ∈ R

π = IDB ∧ IDB∈ N

UP(IDB ,N,R), π := M

UP(IDB ,N,R), π := M
startB mainB

stopBetherB

R:= R\{ID
B }

R:= R\{IDB}

(a) TTD of activity B (Definition 19)

startB
mainB pause

B

π = ID
B ∧ ID

B ∈
 N

π = IDB ∧ IDB ∈ R

π = ID
B ∧

 ID
B ∈

 R

π = IDB ∧ IDB ∈ N

UP(IDB ,N,R), π:= M

UP(IDB ,N,R), π:= M

clock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0, R:= R\{IDB}

x
B := 0, R

:= R
\{ID

B }

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

xB>0

(b) DUTA of activity B (Definition 19)

Fig. 21: TTD and DUTA of activity B (Definition 19)

– Execute activity A (ea): This action contains all nominal non-pause, non-termination
edges plus the additional edge (for starting) ether → start (Definition 1), that is
all edges in E X ∪ E S .

Second, each edge in the manager and the timer corresponds to a distinguished action:

– Start timer (st): corresponds to taking the only possible edge in the timer (Definition 3),
– Start manager (sm): corresponds taking the edge from vertex wait to vertex manage

(Definition 4),
– Launch manager (lm): matches taking the edge from vertex manage to itself (Definition 4),
– Finish manager (fm): matches taking the edge from vertex manage to vertex wait

(Definition 4).

It is intuitive to say that these actions are (i) disjoint and (ii) cover all the edges
in the execution task. Indeed, from the partitioning of the actions over edges above
and from Definition 1, Definition 3 and Definition 4, it follows that the actions cover
all the possible edges (no edge remains untied to an action). Additionally, from the
definition of the actions above and the mutual disjointness of all the subsets of nominal
and interruption edges given in Definition 1 (Sect. 5.3.1), it follows that the sets of
actions are disjoint.

Now, we give for each action some inference rules in terms of TTS semantics: the
properties that must be satisfied before taking the action and the side effects of taking
it on state variables (and on future dates of taking edges, when uniquely defined). We
recall that M and Tim are, respectively, the manager and timer TTDs. By abuse of

notation, we refer to an edge by the action it is associated with. For instance, c
fa−→ c′

is an edge associated with fa (by abuse of notation, an edge fa) from c to c′, that is
an edge c → c′ that belongs to E P ∪ E T (see partitioning of actions above). The
edges preserve thus their uniqueness according to their source and target vertex, and

st :

0 ∈ φ(st)
s′(sig) = true φ′(st) = [Per, Per])

(s, φ)
st−→ (s′, φ′)

Table 2: Action st .

sm:

s(sig) = true s(πM) = wait
s′(sig) = false s′(πM) = manage s′(N) = N ′ s′(R) = R′

(s, φ)
sm−→ (s′, φ′)

Table 3: Action sm .

the set of edges they belong to (that we can retrieve from the action on the edge). This
simplification helps writing the inference rules without loading the notations further.

Discrete actions (TTS): In the following, s′ agrees with s on all state variables
unless indicated otherwise. The formula ∃c act−−→c′ means there is an edge act from c to
c′ in the TTD of activity A (even if not enabled). R′ and N ′ are the results of applying
rrand() to R and N , respectively.

Action st Taking this action requires satisfying the timing constraints at the timer edge.
That is, st is taken at state s in the underlying TTS iff the Kripke state (s, φ) (see TTS
semantics in Sect. 4.1.3) satisfies 0 ∈ φ(st). Similarly, the state s′ satisfies sig = true
(table 2).

Action sm To take this action, the manager must be at vertex wait and must have the
period signal (sig = true). After taking this action, the manager is at location manage ,
sig becomes false and N and R are randomly initialized (table 3).

Action lm To take this action, the manager must have the control (Π = M) and there
must be activities to execute ((N ∪ R) 6= ∅). According to the target Kripke state of
this action, we distinguish four cases (table 4): the activity that will take the control is
to interrupt from ether (rule lm.1), the activity that will take the control is to interrupt
after a pause (rule lm.2), the activity that will take the control is to execute nominally
from ether (rule lm.3), or the activity that will take the control is to execute nominally
after a pause (rule lm.4).

Action fm To take this action, the manager must have the control (Π = M), must be
at vertex manage and there must be no remaining activities to execute ((N ∪ R) = ∅).
Taking this action switches the manager vertex to wait (table 5).

Action ia We distinguish four cases (table 6): the source vertex is ether and the target
vertex is stop (rule ia.1),the source vertex is not ether and the target vertex is stop
(rule ia.2), the source vertex is ether and the target vertex is ether (rule ia.3), the
source vertex is not ether and the target vertex is ether (rule ia.4).

Action fa We distinguish two cases (table 7): taking a pause edge (in E P , rule fa.1) or
taking a termination edge (in E T , rule fa.2).

lm.1 :

s(Π) =M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = ether IDA ∈ s′(R)

(s, φ)
lm−→ (s′, φ′)

lm.2 :

s(Π) =M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = c 6= ether IDA ∈ s′(R)

(s, φ)
lm−→ (s′, φ′)

lm.3 :

s(Π) =M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = ether IDA /∈ s′(R)

(s, φ)
lm−→ (s′, φ′)

lm.4 :

s(Π) =M (s(N) ∪ s(R)) 6= ∅
s′(Π) = IDA∈A s′(πA) = c 6= ether IDA /∈ s′(R)

(φ′(ea) = Iea ∨ φ′(fa) = Ifa)

(s, φ)
lm−→ (s′, φ′)

Table 4: Action lm .

fm:

s(Π) =M (s(N) ∪ s(R)) = ∅ s(πM) = manage
s′(πM) = wait

(s, φ)
fm−→ (s′, φ′)

Table 5: Action fm .

Action ea We distinguish two cases (table 8): taking an additional (starting) edge (in
E S , rule ea.1) or taking a nominal edge (in E X rule ea.2).

Note that the definitions of discrete actions preconditions are both necessary and
sufficient, and also expressed minimally. For instance, the condition to take the ac-
tion lm (table 4) seems to lack the clause (πM = manage). this clause is, however,
not necessary because we may easily prove that if (Π = M ∧ (N ∪ R) 6= ∅) then
πM = manage .

Proof. If s |= (Π = M ∧ πM 6= manage) then:
either s = s0 , which means that (N ∪ R) = ∅)

or s is reached by taking the edge manage
g=(Π=M∧N∪R=∅),op=null)−−−−−−−−−−−−−−−−−−−→ wait , which

means also that (N ∪ R) = ∅)
It follows that the only vertex where (Π = M ∧ (N ∪ R) 6= ∅) may evaluate to true is
manage

Another example is the lack of the clause ∃ether
ea−→ start . This is a rule optimiza-

tion since, by definition (i) any activity has the codels start and ether (Sect. 5.2.1), (ii)

ia.1 :

∃ether ia−→ stop
s(Π) = IDA∈A s(πA) = ether IDA ∈ s(R)

s′(πA) = stop IDA /∈ s′(R) φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ia−→ (s′, φ′)

ia.2 :

∃c 6= ether
ia−→ stop

s(Π) = IDA∈A s(πA) = c IDA ∈ s(R)
s′(πA) = stop IDA /∈ s′(R) φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ia−→ (s′, φ′)

ia.3 :

∃ether ia−→ ether
s(Π) = IDA∈A s(πA) = ether IDA ∈ s(R)

s′(πA) = ether s′(Π) =M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
ia−→ (s′, φ′)

ia.4 :

∃c 6= ether
ia−→ ether

s(Π) = IDA∈A s(πA) = c IDA ∈ s(R)
s′(πA) = ether s′(Π) =M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
ia−→ (s′, φ′)

Table 6: Action ia .

fa.1 :

∃c fa−→ c′ 6= ether
s(Π) = IDA∈A s(πA) = c IDA /∈ s(R) φ(fa) = Ifa − θ θ > 0
s′(πA) = c′ s′(Π) =M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
fa−→ (s′, φ′)

fa.2 :

∃c fa−→ ether
s(Π) = IDA∈A s(πA) = c IDA /∈ s(R) φ(fa) = Ifa − θ θ > 0
s′(πA) = ether s′(Π) =M ¬(IDA ∈ s′(N) ∨ IDA ∈ s′(R))

(s, φ)
fa−→ (s′, φ′)

Table 7: Action fa .

there is always an additional edge ether → start (in E S , Definition 1) and (iii) this
edge is necessarily an ea edge (see the partitioning of actions above).

Similarly, side effects are expressed minimally and effects on future times to take
transitions are mentioned only when certain. For instance, we may easily prove that
each execution action ea results in a state where only ea or fa are possible (table 8).

ea.1 :

s(Π) = IDA∈A IDA /∈ s(R) s(πA) = ether
s′(πA) = start φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ea−→ (s′, φ′)

ea.2 :

∃c 6= ether
ea−→ c′

s(Π) = IDA∈A IDA /∈ s(R) s(πA) = c φ(ea) = Iea − θ θ > 0
s′(πA) = c′ φ′(ea) = Iea ∨ φ′(fa) = Ifa

(s, φ)
ea−→ (s′, φ′)

Table 8: Action ea .

Proof. From the partitioning, action ea is taken either on a starting edge (ether → start)
or on a nominal edge that is neither a pause nor a termination edge (c → c′ ∈ E X).
It follows that ea is operation free (no side effects on shared variables (Definition 1
and Definition 5). Now, since s |= (IDA /∈ s(R)) (table 8), then s ′ |= (IDA /∈ s ′(R)),
which means that ia is not possible from s′. Additionally, since each vertex has at least
one successor (Definition 1 and Sect. 5.2.5), then either ea or fa are possible at s′.

Example: In activity B (Fig. 19a), the edge from mainB to mainB is a pause
edge, it corresponds thus to the finish B action fb. The same action is associated with
taking the termination edge from stopB to etherB . The edges from mainB to stopB

and etherB to stopB are interruption edges, and therefore correspond to the interrupt
B action ib. Finally, the remaining edges are the starting edge and nominal edges that
are neither for termination nor for pause, that is ea edges. Fig. 22 shows the TTD of
B where edges are tagged with their corresponding actions (guards and operations are
omitted for readability).

]0,1]

]0,2]

[0,0]

B

]0,1]

[0,0]

[0,0]

startB mainB

stopBetherB

fb

eb

eb

ib

ib

fb

Fig. 22: Actions in activity B

d .1 :

φ(st) = Ist − a a < Per s(sig) = false s(πM) = wait
d ∈]0, P er − a]

φ′(st) = φ(st)− d

(s, φ)
d−→ (s′, φ′)

d .2 :

φ(st) = Ist − a a < Per s(Π) = IDA s(πA) = c 6= ether
IDA /∈ s(R) φ(ea) = Iea − b ∨ φ(fa) = Ifa − b b < W (c)

d ∈]0,min(Per − a,W (c)− b)]
φ′(st) = φ(st)− d φ′(ea) = φ(ea)− d ∨ φ′(fa) = φ(fa)− d

(s, φ)
d−→ (s′, φ′)

Table 9: Time actions d .

Time actions (TTS) We define the inference rules of taking a time action in table 9.
Informally, to let time evolve for a strictly positive amount d (non-trivial time

step), we must have: (i) A timer period still has not elapsed since the last tick, that
is φ(st) = Ist − a 6= [0 , 0]. Additionally, there must be no urgent edges possible either
in the manager M or in an activity A, whichever has the control. If M has the control,
that is Π = M , then the only case where no urgent edge is enabled is when M is at lo-
cation wait5 given that sig evaluates to false (see the manager model in Definition 3).
If A has the control, that is Π = IDA, it must be at a vertex c different than ether be-
cause all possible edges at ether are urgent (see the activities model in Definition 4),
the urgent edge ia , if exists, must be deactivated at c, that is IDA /∈ R (table 6) and the
time elapsed since visiting c must be inferior than W (c) of the underlying codel c (that
is φ(ea) = Iea − b 6= [0 , 0] ∨ φ(fa) = Ifa − b 6= [0 , 0]). (ii) The time amount to let
elapse must be superior to zero (non trivial) and must not violate any timing constraint,
that is it must be at most equal to ↑φ(st) (if the manager is at wait) or the supremum of
↑φ(st), ↑φ(ea), and ↑φ(fa)(otherwise).

DUTA The composition of the DUTA of the manager M , timer Tim and activities
(Definition 14, Definition 15 and Definition 18) results in a Kripke structure with pairs
(l , v) as states (Sect. 4.2). We may thus define the conditions and side effects for each
action, defined in the original TTS, in the DUTA system.

Actions (DUTA translation). In the following, l′ agrees with l on all state variables
unless indicated otherwise. R′ and N ′ are the results of applying rrand() to R and N ,
respectively. We keep the notation π(P), used in TTS, to denote the control location
of DUTA P . The inference rules for actions st , sm , lm , fm , ia , fa and ea are given,
respectively, in table 10, table 11, table 12, table 13, table 14, table 15 and table 16.

Example: In activity B (Fig. 19b), the edge from mainB to mainB pause maps a
pause edge in its TTD counterpart, it corresponds thus to the finish B action fb. The
interruption action ib is associated with taking any of the edges mainB pause to stopB

or etherB to stopB , as both map interruption edges in the TTD counterpart. The edge
etherB to startB and the edge startB to mainB map, respectively, the starting edge

5 Here Π = M is redundant since the manager is at location wait , hence the absence of the
precondition Π = M from table 9.

st :

v(xt) = Per
l′(sig) = true v′(xt) = 0

(l, v)
st−→ (l′, v′)

Table 10: Action st (DUTA).

sm:

l(sig) = true l(πM) = wait
l′(sig) = false l′(πM) = manage l′(N) = N ′ l′(R) = R′

(l, v)
sm−→ (l′, v′)

Table 11: Action sm (DUTA).

lm.1 :

l(Π) =M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = ether IDA ∈ l′(R)

(l, v)
lm−→ (l′, v′)

lm.2 :

l(Π) =M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = cpause IDA ∈ l′(R)

(l, v)
lm−→ (l′, v′)

lm.3 :

l(Π) =M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = ether IDA /∈ l′(R)

(l, v)
lm−→ (l′, v′)

lm.4 :

l(Π) =M (l(N) ∪ l(R)) 6= ∅
l′(Π) = IDA∈A l′(πA) = cpause IDA /∈ l′(R)

(l, v)
lm−→ (l′, v′)

Table 12: Actions lm (DUTA).

fm:

l(Π) =M (l(N) ∪ l(R)) = ∅ l(πM) = manage
l′(πM) = wait

(l, v)
fm−→ (l′, v′)

Table 13: Action fm (DUTA).

and the only nominal edge that is neither a termination nor a pause edge in the TTD
counterpart, they are therefore execute B actions eb. Now, the edge from mainB pause to
mainB does not match the definition of any action and will be thus treated as an internal
action τ . Fig. 23 shows the DUTA of activity B where edges are tagged with their
corresponding actions (non-clock guards and operations are omitted for readability).

ia.1 :

∃ether ia−→ stop
l(Π) = IDA∈A l(πA) = ether IDA ∈ l(R)
l′(πA) = stop IDA /∈ l′(R) v′(xA) = 0

(l, v)
ia−→ (l′, v′)

ia.2 :

∃cpause
ia−→ stop

l(Π) = IDA∈A l(πA) = cpause IDA ∈ l(R)
l′(πA) = stop IDA /∈ l′(R) v′(xA) = 0

(l, v)
ia−→ (l′, v′)

ia.3 :

∃ether ia−→ ether
l(Π) = IDA∈A l(πA) = ether IDA ∈ l(R)

l′(πA) = ether l′(Π) =M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
ia−→ (l′, v′)

ia.4 :

∃cpause
ia−→ ether

l(Π) = IDA∈A l(πA) = cpause IDA ∈ l(R)
l′(πA) = ether l′(Π) =M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
ia−→ (l′, v′)

Table 14: Actions ia (DUTA).

fa.1 :

∃c fa−→ c′pause
l(Π) = IDA∈A IDA /∈ l(R) l(πA) = c v(xA) > 0
l′(πA) = c′pause l′(Π) =M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
fa−→ (l′, v′)

fa.2 :

∃c fa−→ ether
l(Π) = IDA∈A l(πA) = c IDA /∈ l(R) v(xA) > 0
l′(πA) = ether l′(Π) =M ¬(IDA ∈ l′(N) ∨ IDA ∈ l′(R))

(l, v)
fa−→ (l′, v′)

Table 15: Actions fa (DUTA).

The internal discrete action τ The internal action τ is possible only when the activity
has the control, its current location is cpause and it is not interrupted. Taking τ changes
the current location to c and resets the clock of the activity (Definition 17). Formally,
the inference rules are given in table 17.

Time actions (DUTA) The preconditions and effects of time actions are given by the
inference rules in table 18 (X is the set of clocks in the DUTA system).

ea.1 :

l(Π) = IDA∈A IDA /∈ l(R) l(πA) = ether
l′(πA) = start v′(xA) = 0

(l, v)
ea−→ (l′, v′)

ea.2 :

∃c 6= ether
ea−→ c′

l(Π) = IDA∈A IDA /∈ l(R) l(πA) = c v(xA) > 0
l′(πA) = c′ v(xA) = 0

(l, v)
ea−→ (l′, v′)

Table 16: Actions ea (DUTA).

startB
mainB pause

B
clock xB

xB ≤ 1

xB ≤ 2

xB ≤ 1

xB>0

xB>0

xB:= 0

x
B := 0

x
B := 0

mainB

stopB

etherB

xB:= 0

xB:= 0

xB>0
fb

fb

ib

ib

eb

eb

τ

Fig. 23: Actions in DUTA of activity B

τ :

l(πA) = cpause l(Π) = IDA∈A IDA /∈ l(R)
l′(πA) = c v′(xA) = 0

(l, v)
τ−→ (l′, v′)

Table 17: Internal action tau (DUTA).

6.2.2 Absence of st effect on activities The action st has no effect on the enabled-
ness or timing constraints of activities actions.

Proof. The action st changes only the variable sig , that is not involved in any guard
g(act) | act ∈ {ea, fa, ia}. It follows that if act is enabled (or disabled) before taking
st , it will remain so after taking it, both in the TTDs and DUTA. As for timing con-
straints, Since the enabledness is not affected in the TTD then we may write:
(s, φ)

st−→ (s ′, φ′)⇔ φ′(act) = φ(act)∀act ∈ {ea, fa, ia}. In the DUTA, the clocks
valuations are trivially unaffected because the timer has no access to the activities
clocks, intrinsically local to their components.

6.2.3 Absence of external actions effects on timer Any action that is external to the
timer has no effect on the enabledness or timing constraints of the timer action.

d .1 :

v(xt) < Per l(sig) = false l(πM) = wait
d ∈]0, P er − v(xt)]

∀x ∈ X : v′(x) = v(x) + d

(s, φ)
d−→ (s′, φ′)

d .2 :

v(xt) < Per l(Π) = IDA∈A l(πA) 6= ether
IDA /∈ l(R) v(xA) < W (c)
d ∈]0,min(Per − v(xt),W (c)− v(xA))]

∀x ∈ X : v′(x) = v(x) + d

(s, φ)
d−→ (s′, φ′)

Table 18: Time action d (DUTA).

Proof. The action st is guard free, which means that it is always enabled, and thus no
other action can affect its enabledness or timing constraints. In the DUTA, the clock
valuations is trivially unaffected because external actions have no access to the timer
clock, intrinsically local to it.

6.2.4 Edges equivalence Let At and Ad be, respectively, the TTD and DUTA of
some activityA. (i) there is an action edge ea between vertices c and c′ inAt iff there is
an identical action edge between locations c and c′ in Ad. (i) there is an action edge ia
between vertices ether and c′ in At iff there is an identical action edge between loca-
tions ether and c′ in Ad. (iii) there is an action edge ia (respect. fa) between vertices c
and c′ inAt iff there is an identical action edge between locations cpause and c′ (respect.
c and c′pause) in Ad, given that there is an edge → c ∈ EP in At (respect. given that
c→ c′ is in EP). (iv) there is an action edge fa between vertices c and ether in At iff
there is an identical action edge between locations c and ether in Ad. Formally:
(i) ∃cAt

ea−→ c′At ⇔ ∃cAd
ea−→ c′Ad

(ii) ∃etherAt
ia−→ c′At ⇔ ∃etherAd

ia−→ c′Ad

(iii) (action ia) (∃cAt
ia−→ c′At ∧ ∃ → c ∈ E P)⇔ ∃cAd pause

ia−→ c′Ad

(iii) (action fa) (∃cAt
fa−→ c′At ∈ E P)⇔ ∃c fa−→ c′

Ad pause

(iv) ∃cAt
fa−→ etherAt ⇔ ∃cAd

fa−→ etherAd

Proof. From Definition 17, each edge c → c′ in the TTD is mapped to c → c′ in
the DUTA, except for interruption edges c → c′ mapped to cpause → c′ iff c satisfies
∃ → c ∈ E P (respect. pause edges c → c′ mapped to c → c′pause).

6.2.5 Bisimilarity between TTS and DUTA systems Let Ψ and Γ be the Kripke
structures over which the semantics of an execution task TTS and DUTA, respectively,
is defined. Each state in Ψ is a pair (s, φ) where s is the TTS state and φ the future
dates for taking transitions (Sect. 4.1.3). Each state in Γ is a pair (l , v) where l is the
interpretation of all variables excluding clocks and v the valuation of each clock x in
the DUTA composition. The objective is to prove that Ψ and Γ are timed bisimilar.

Definition 20 Timed bisimilarity.
We say that Ψ and Γ are timed bisimilar iff for some binary relationR and discrete or
time-progress action α, the initial states of Ψ and Γ are inR, that is ψ0 Rγ0 , and:

– Γ simulates Ψ : if (ψ ∈ Ψ)R(γ ∈ Γ) and ψ α−→ ψ′ then ∃γ′ ∈ Γ s.t. γ α−→ γ′ and
ψ′Rγ′,

– Ψ simulates Γ : if (ψ ∈ Ψ)R(γ ∈ Γ) and γ α−→ γ′ then ∃ψ′ ∈ Ψ s.t. ψ α−→ ψ′ and
ψ′Rγ′.

In our proof, we use the weak version of timed bisimilarity: some internal actions τ
may be involved in α−→. That is, x(τ−→)∗

α−→ (
τ−→)∗x′ is observed simply as x α−→ x′. For

a stronger equivalence between the models, we require τ to be a discrete action. That
is, time is not allowed to progress when taking τ . We begin by defining the relationR:

Definition 21 The binary relationR:

(ψ = (s, φ))R(γ = (l , v)) iff

(1) (∀u ∈ {Π ,N ,R, sig} : s(u) = l(u)) ∧

(2) (s(πTim) = l(πTim) ∧ φ(st) = Ist − θ ∧ v(xt) = θ) ∧

(3) (s(πM) = l(πM)) ∧

(4) (∀A ∈ A | s(Π) = l(Π) 6= IDA : s(πA) = l(πA)∨
(s(πA) = c ∧ l(πA) = cpause)) ∧

(5)(∃A |= (s(Π) = l(Π) = IDA)⇒
(5 .1)(s(πA) = l(πA) = ether)∨
(5 .2)(s(πA) = l(πA) = c 6= ether ∧ ((φ(ea) = Iea − θ)∨

(φ(fa) = Ifa − θ)) ∧ v(xA) = θ)∨
(5 .3)(s(πA) = c ∧ l(πA) = cpause∧

(IDA ∈ s(R) ∨ ((φ(ea) = Iea∨
φ(fa) = Ifa)))))

Informally, Definition 21 of the relation between states ψ and γ says the following.
Rules (1) to (4) stipulate that ψ and γ need to agree on all state variables, at the excep-
tion of the locations of idle activities (not being executed) that can be cpause instead of
c in γ. Additionally, the property φ(st) = Ist − θ ∧ v(xt) = θ (Rule (2)) reflects that
time in both timers progresses at the same rate (there is no guard on st which means
φ(st) is always defined, and taking st in the timer DUTA resets xt). Rule (5) is only
for the activity A currently executing (if any). Roughly, it says that the TTD vertex and
the DUTA location ofA need to be identical, and at which time must progress similarly.
The location and vertex of the activity DUTA and TTD, respectively, must be identical
if at ether (5.1). The location of the DUTA ofAmust match the vertex of its TTD coun-
terpart when executing a codel, where time must also progress identically (5.2). Finally,
if the vertex of the TTD is c whereas the location of the DUTA is cpause, then time is
not allowed to progress and only instantaneous actions (mainly interruption actions) are
possible (5.3).

Initial states We start with checking whether the initial states ψ0 = (s0, φ0) and
γ0 = (l0, v0) are inR (Definition 20). By definition, we know that initially:
(s0 (N) = s0 (R) = l0 (N) = l0 (R) = ∅) ∧ (s0 (sig) = l0 (sig) = false)∧
(s0 (Π) = l0 (Π) = M),
l0 (πTim) = s0 (πTim) = start ∧ φ(st) = Ist ∧ v(xt) = 0 ,
l0 (πM) = s0 (πM) = wait ,
∀A ∈ A : l0 (πA) = s0 (πA) = ether ,
@A ∈ A | l0 (Π) = s0 (Π) = IDA

It follows that ψ0 and γ0 satisfy all the rules in Definition 21, that is ψ0Rγ0.
Now, we prove that Γ (weakly) time simulates Ψ (Definition 20). Let ψ ∈ Ψ and γ ∈ Γ
be some states satisfying ψRγ.

Discrete actions

Action st: From inference rules in table 2, to take st from ψ, we must have:
ψ = (s, φ) |= (0 ∈ φ(st)) (1.a)
Additionally, we know that ψRγ, then from (1.a) and Definition 21 (Rule (2)) we have:
v(xt) = θ ∧ φ(st) = Ist − θ, knowing that Ist = [Per ,Per] and from (1.a) 0 ∈ φ(st).
It follows that θ = Per and thus v(xt) = Per (1.b)
Now from inference rules in table 10, to take st we must have
γ = (l , v) |= (v(xt) = Per) (1.c)
From (1.b) and (1.c) it follows that action st is possible at γ.
We take now the action st from ψ to reach the state ψ′. From table 2 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = true ∧ φ(st) = [Per ,Per]) and s′ agrees with s otherwise
(1.d)
We take the action st from γ to reach the state γ′. From table 10 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = true ∧ v ′(xt) = 0) and l′ agrees with l otherwise (1.e)
From (1.d) and (1.e) it follows that rules (1) to (4) in Definition 21 are satisfied by ψ′

and γ′, and from Sect. 6.2.2 (absence of effects on activities) we conclude that the rule
(5) in Definition 21 is satisfied as well.
It follows that ψ′Rγ′.

Action sm: From inference rules in table 3, to take sm from ψ, we must have:
ψ = (s, φ) |= (s(sig) = true ∧ s(πM) = wait) (2.a)
Additionally, we know that ψRγ, then from (2.a) and Definition 21 (Rules (1),(3)) we
have at γ:
l(sig) = true ∧ l(πM) = wait (2.b)
Now from inference rules in table 11, to take sm we must have
γ = (l , v) |= (l(sig) = true ∧ l(πM) = wait) (2.c)
From (2.b) and (2.c) it follows that action sm is possible at γ.
We take now the action sm from ψ to reach the state ψ′. From table 3 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = false ∧ s ′(πM) = manage ∧ s ′(N) = N ′ ∧ s ′(R) = R′) and
s′ agrees with s otherwise (2.d)
We take the action sm from γ to reach the state γ′. From table 11 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = false ∧ l ′(πM) = manage ∧ l ′(N) = N ′ ∧ l ′(R) = R′) and
l′ agrees with l otherwise (2.e)

From (2.d) and (2.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also, from (2.a)
and (2.d) (respect. (2.b) and (2.e)) we have Π = M at ψ′ and γ′ and thus both satisfy
rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Note that N ′ and R′, being the result of a random initialization, may be different
at ψ′ and γ′. However, since the operation rrand(N ,R) is the same in both systems, it
is sufficient to match the states pairwise, that is ψ′ and γ′ where the result of applying
rrand(N ,R) is the same. It is trivial to prove that mapping ψ′ ∈ Ψ to γ′ ∈ Γ s.t.
sm−−→ ψ′ ∧ sm−−→ γ′ ∧ ψ(N ′) = γ(N ′)∧ ψ(R′) = γ(R′) is a one-to-one function defined

over all ψ′ |= sm−−→ ψ′, and thus for each ψ′ resulting from taking an action sm there is
γ′ ∈ Γ s.t. ψ′Rγ′.

Action lm: From inference rules in table 4, to take lm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) 6= ∅) (3.a)
Additionally, we know that ψRγ, then from (3.a) and Definition 21 (Rule (1)) we have
at γ:
l(Π) = M ∧ (l(N) ∪ l(R)) 6= ∅ (3.b)
Now from inference rules in table 12, to take lm we must have
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) 6= ∅) (3.c)
From (3.b) and (3.c) it follows that action lm is possible at γ.
We take now the action lm (rule lm.1) from ψ to reach the state ψ′. From table 4 we
have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA ∈ s ′(R)) and s′ agrees with
s otherwise (3.d)
We take the action lm (rule lm.1) from γ to reach the state γ′. From table 12 we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA ∈ l ′(R)) and l′ agrees with
l otherwise (3.e)
From (3.d) and (3.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.1).

We take now the action lm (rule lm.2) from ψ to reach the state ψ′. From table 4
we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA ∈ s ′(R)) and s′ agrees
with s otherwise (3.f)
We take the action lm (rule lm.2) from γ to reach the state γ′. From table 12 we have:
(l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = cpause ∧ IDA ∈ l ′(R)) and l′ agrees with l oth-
erwise (3.g)
From (3.f) and (3.g) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.3) are satisfied by
ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.2).

We take now the action lm (rule lm.3) from ψ to reach the state ψ′. From table 4
we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA /∈ s ′(R)) and s′ agrees with
s otherwise (3.h)

We take the action lm (rule lm.3) from γ to reach the state γ′. From table 12 we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA /∈ l ′(R)) and l′ agrees with
l otherwise (3.i)
From (3.h) and (3.i) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.3).

We take now the action lm (rule lm.4) from ψ to reach the state ψ′. From table 4
we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA /∈ s ′(R)∧
(φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with s otherwise (3.j)
We take the action lm (rule lm.4) from γ to reach the state γ′′. From table 12 we have:
γ′′ = (l ′′, v ′′) |= (l ′′(Π) = IDA∈A ∧ l ′′(πA) = cpause ∧ IDA /∈ l ′′(R)) and l′′ agrees
with l otherwise.
We take now the internal urgent action τ from γ′′ to reach the state γ′. From table 17
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = l ′(πA) = c ∧ v ′(xA) = 0) and l′ agrees with l′′ otherwise
(3.k)
From (3.j) and (3.k) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.26 with θ = 0) are
satisfied by ψ′ and γ′, that is ψ′Rγ′ after taking lm (rule lm.4).

Action fm: From inference rules in table 5, to take fm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) = ∅ ∧ s(πM) = manage) (4.a)
Additionally, we know that ψRγ, then from (4.a) and Definition 21 (Rules (1),(3)) we
have at γ:
l(Π) = M ∧ (l(N) ∪ l(R)) = ∅ ∧ l(πM) = manage (4.b)
Now from inference rules in table 13, to take fm we must have
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) = ∅ ∧ l(πM) = manage) (4.c)
From (4.b) and (4.c) it follows that action fm is possible at γ.
We take now the action fm from ψ to reach the state ψ′. From table 5 we have:
ψ′ = (s ′, φ′) |= (s ′(πM) = wait) and s′ agrees with s otherwise (4.d)
We take the action fm from γ to reach the state γ′. From table 13 we have:
γ′ = (l ′, v ′) |= (l ′(πM) = wait) and l′ agrees with l otherwise (4.e)
From (4.d) and (4.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also, from (4.a)
and (4.d) (respect. (4.b) and (4.e)) we have Π = M at both ψ′ and γ′ and thus both
satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ia: From inference rules in table 6, to take ia (rule ia.1 or ia.3) from ψ,
we must have, besides the existence of an outgoing ia edge from ether (to stop (rule
ia.1) or to ether (ia.3)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = ether ∧ IDA ∈ s(R)) (5.a)
Additionally, we know that ψRγ, then from (5.a) and Definition 21 (Rules (1), (5.1))

6 Note that we know that location c from (3.k) is different from ether since cpause exists and
we know by definition (Sect. 5.2.5) that ether cannot be the target of a pause.

we have at γ:
l(Π) = IDA∈A ∧ l(πA) = ether ∧ IDA ∈ l(R) (5.b)
Now from inference rules in table 14, to take ia (rule ia.1 or ia.3) we must have, be-
sides the existence of an outgoing ia edge from ether (to stop (rule ia.1) or to ether
(ia.3)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = ether ∧ IDA ∈ l(R)) (5.c)
From (5.a), (5.b) and (5.c) and edges equivalence (Sect. 6.2.4) it follows that action ia
(rule ia.1 or ia.3) is possible at γ.
We take now the action ia (rule ia.1) fromψ to reach the stateψ′. From table 6 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = stop ∧ IDA /∈ s ′(R) ∧ (φ′ea = Iea ∨ φ′(fa) = Ifa)) and s′

agrees with s otherwise (5.d).
We take the action ia (rule ia.1) from γ to reach the state γ′. From table 14 we have:
γ′ = (l ′, v ′) |= (l ′(πA) = stop ∧ v ′(xA) = 0 ∧ IDA /∈ l ′(R)) and l′ agrees with l oth-
erwise (5.e)
From (5.d) and (5.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by ψ′ and γ′, that is ψ′Rγ′ after taking ia (rule ia.1).

We take now the action ia (rule ia.3) from ψ to reach the state ψ′. From table 6 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and
s′ agrees with s otherwise (5.f)
We take the action ia (rule ia.3) from γ to reach the state γ′. From table 14 we have:
γ′ = (l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and
l′ agrees with l otherwise (5.g)
From (5.f) and (5.g) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (5) are satisfied by ψ′ and γ′ ((5) is satisfied becauseΠ =M at
both ψ′ and γ′ and thus @A ∈ A | s ′(Π) = l ′(Π) = IDA). It follows that ψ′Rγ′ after
taking ia.1 or ia.3 .

From inference rules in table 6, to take ia (rule ia.2 or ia.4) from ψ, we must have,
besides the existence of an outgoing ia edge from c (to stop (rule ia.2) or to ether
(ia.4)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = c 6= ether ∧ IDA ∈ s(R)) (5.h)
Additionally, we know that ψRγ, then from (5.h) and Definition 21 (Rules (1),(5.3))
we have at γ:
l(Π) = IDA∈A ∧ l(πA) = cpause ∧ IDA ∈ l(R) (5.i)
Now from table 14, to take ia (rule ia.2 or ia.4) we must have, besides the existence
of an outgoing ia edge from cpause (to stop (rule ia.2) or to ether (ia.4)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = cpause ∧ IDA ∈ l(R) (5.j)
From (5.h), (5.i), (5.j) and edges equivalence (Sect. 6.2.4) it follows that action ia (rule
ia.2 or ia.4) is possible at γ.
Now, proving that ψ′Rγ′ after applying rule ia.2 (respect. ia.4) is identical to proving
ψ′Rγ′ after applying rule ia.1 (respect. ia.3).

Action fa: From inference rules in table 7, to take fa from ψ, we must have, be-
sides the existence of an outgoing fa edge from c (to c′ 6= ether (rule fa.1) or to ether
(fa.2)):

ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c ∧ (φ(fa) = Ifa − θ | θ > 0))
(6.a)
Additionally, we know that ψRγ, then from (6.a) and Definition 21 (Rules (1),(5.2)7)
we have at γ:
l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c ∧ v(xA) > 0 (6.b)
Now from From inference rules in table 15, to take fa we must have, besides the exis-
tence of an outgoing fa edge from c (to c′pause (rule fa.1) or to ether (fa.2)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c ∧ v(xA) > 0) (6.c)
From (6.a), (6.b), (6.c) and edges equivalence (Sect. 6.2.4) it follows that action fa is
possible at γ.
We take now the action fa (rule fa.1) fromψ to reach the stateψ′. From table 7 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = c′ 6= ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R)))
and s′ agrees with s otherwise (6.d)
We take now the action fa (rule fa.1) from γ to reach the state γ′. From table 15 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = c′pause, l

′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and
l′ agrees with l otherwise (6.e)
From (6.d) and (6.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also, we have
Π = M at bothψ′ and γ′ and thus both satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

We take now the action fa (rule fa.2) from ψ to reach the state ψ′. From table 7 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and
s′ agrees with s otherwise (6.f)
We take now the action fa (rule fa.2) from γ to reach the state γ′. From table 15 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and
l′ agrees with l otherwise (6.g)
From (6.f) and (6.g) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by ψ′ and γ′. Also, from (6.a)
and (6.f) (respect. (6.b) and (6.g)) we have Π = M at both ψ′ and γ′ and thus both
satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ea: From inference rules in table 8, to take ea (rule ea.1) from ψ, we must
have:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = ether) (7.a)
Additionally, we know that ψRγ, then from (7.a) and Definition 21 (Rules (1),(5.1))
we have at γ:
l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = ether (7.b)
Now from inference rules in table 16, to take ea (rule ea.1) we must have:

7 Here also we know that c in (6.a) is different from ether (Sect. 5.2.5 and Definition 1, there
is no nominal edge outgoing ether).

γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = ether) (7.c)
From (7.b), (7.c) it follows that action ea is possible at γ.
We take now the action ea (rule ea.1) from ψ to reach the state ψ′. From table 8 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = start ∧ (φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with
s otherwise (7.d)
We take the action ea (rule ea.1) from γ to reach the state γ′. From table 16 we have:
γ′ = (l ′, v ′) |= (l ′(πA) = start ∧ v ′(xA) = 0) and l′ agrees with l otherwise (7.e)
From (7.d) and (7.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by ψ′ and γ′.
It follows that ψ′Rγ′.

From inference rules in table 8, to take ea (rule ea.2) from ψ, we must have, besides
the existence of an outgoing ea edge from c:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c 6= ether ∧ φ(ea) = Iea − θ | θ > 0)
(7.f)
Additionally, we know that ψRγ, then from (7.f) and Definition 21 (Rules (1),(5.2))
we have at γ:
l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c 6= ether ∧ v(xA) > 0 (7.g)
Now from inference rules in table 16, to take ea (rule ea.2) we must have, besides the
existence of an outgoing ea edge from c:
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c 6= ether ∧ v(xA) > 0) (7.h)
From (7.f), (7.g), (7.h) and edges equivalence (Sect. 6.2.4) it follows that action ea (rule
ea.2) is possible at γ.
We apply now the rule ea.2 from ψ to reach the state ψ′ (table 8) then from γ to reach
the state γ′ (table 16). The proof that ψ′Rγ′ is similar to that when taking ea.1 (with
replacing start by c′.

Time actions From inference rules in table 9, to take d (rule d .1) from ψ, we must
have:
ψ = (s, φ) |= ((φ(st) = Ist − a | a < Per) ∧ s(sig) = false ∧ s(πM) = wait) (8.a)
Additionally, we know that ψRγ, then from (8.a) and Definition 21 (Rules (1),(2,
θ = a),(3)) we have at γ:
v(xt) = a ∧ l(sig) = false ∧ l(πM) = wait (8.b)
Now from inference rules in table 18, to take d we must have:
(l , v) |= (v(xt) < Per ∧ l(sig) = false ∧ l(πM) = wait) (8.c)
From (8.a), (8.b) and (8.c) it follows that action d (d ∈]0 ,Per − a]) is possible at γ.
We take now the action d (d ∈]0 ,Per − a]) from ψ to reach the state ψ′. From table 9
(rule d .1) we have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d) (8.d).
We take the action d (d ∈]0 ,Per − a]) from γ to reach the state γ′. From table 18 (rule
d .1) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means v ′(xt) = a + d (8.e)
From (8.d) and (8.e) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5) (the
manager has the control because s(πM) = l(πM) = wait and thus @A ∈ A | s(A) = l(A) = IDA)
are satisfied by ψ′ and γ′.

It follows that ψ′Rγ′.

From inference rules in table 9, to take d (rule d .2) from ψ, we must have:
ψ = (s, φ) |= ((φ(st) = Ist − a | a < Per) ∧ s(Π) = IDA∧
s(πA) = c 6= ether ∧ IDA /∈ s(R) ∧ (φ(ea) = Iea − b ∨ φ(fa) = Ifa − b | b < W (c)))
(8.f)
Additionally, we know that ψRγ, then from (8.a) and Definition 21 (Rules (1),(2,
θ = a),(5.2, θ = b)) we have at γ:
v(xt) = a ∧ l(Π) = IDA∧
l(πA) = c ∧ IDA /∈ l(R) ∧ v(xA) = b (8.g)
Now from inference rules in table 18 (rule d .2), to take d we must have:
(l , v) |= (v(xt) < Per ∧ l(Π) = IDA∧
l(πA) = c 6= ether ∧ IDA /∈ R ∧ v(xA) < W (c)) (8.h)
From (8.f), (8.g) and (8.h) it follows that action d (d ∈]0 ,min(W (c)− b,Per − a)])
is possible at γ.
We take now the action d (d ∈]0 ,min(W (c)− b,Per − a)]) from ψ to reach the state
ψ′. From table 9 (rule d .2) we have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d ∧ (φ′(ea) = Iea − b − d ∨ φ′(fa) = Ifa − b − d))
(8.i).
We take the action d (d ∈]0 ,min(W (c)− b,Per − a)]) from γ to reach the state γ′.
From table 18 (rule d .2) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means (v ′(xt) = a + d ∧ v ′(xA) = b + d)
(8.j)
From (8.i) and (8.j) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5)
(through the clause 5.2 with θ = b + d) are satisfied by ψ′ and γ′.
It follows that ψ′Rγ′.

We have thus proven that for all discrete and time actions, if ψRγ and action act is
possible from ψ s.t. ψ act−−→ ψ′, then the same action act is possible from γ s.t. γ act−−→ γ′

and ψ′Rγ′. It follows that Γ (weakly) time simulates Ψ . Similarly, we prove that Ψ
simulates Γ in Appendix. A. Γ and Ψ are thus weakly timed bisimilar which proves
the soundness of our translation.

7 Conclusion

In this document, we formalize a lightweight version of GenoM3. The formal defini-
tions and semantics give an unambiguous characterization of the most complex GenoM3
constituents, namely activities, execution and control tasks. We provide a sort of abstract
syntax that, despite helping practitioners grasp the notion of components and their in-
gredients, defines the attributes on which operational semantics are built. That is, each
abstract element in a tuple has an operational meaning that helps define the behavior
of the global system. The work on semanticizing GenoM3 allowed to clarify several
ambiguous notions such as the incompatibility between activities and the behavior of
pause transitions. Additionally, it allowed, using the full power of TTS, GenoM3 to
evolve from a single-threaded version, where tasks executed sequentially using a global

lock, to a multithreaded one where tasks run in parallel following a fine-grain mutual
exclusion model.

In contrast to the descriptions given in Sect. 2, the operational semantics favors un-
ambiguity and gives a clear view on the behavior of GenoM3 components. Indeed, the
semantics given in this document in terms of TTDs composed in parallel would always
give the same TTS for the same GenoM3 specifications, while informal descriptions
might be interpreted in different ways. Also, besides the choice of TTS, only elemen-
tary operations over sets and booleans are used which abstracts away from more tedious
structures and complex operators and contributes thus to the comprehension of the for-
malization. This smoothes translating the semantics to other formalisms and proving
the soundness of such translations.

We also develop a sound translation from the TTS semantics to DUTA. We thus
have, at the end of this document, accurate semantics of GenoM3 in the underlying
formalisms of several formal frameworks. Indeed, the TTS semantics allowed the auto-
matic generation from GenoM3 to Fiacre, presented in [13], as Fiacre specifications are
a particular implementation of TTS. Moreover, the translation presented here enables
mapping GenoM3 into pioneer frameworks based on DUTA and their subclasses, such
as UPPAAL and BIP. This adds to the value and the usability of the work presented in
this document.

References
[1] Tesnim Abdellatif, Saddek Bensalem, Jacques Combaz, Lavindra De Silva, and

Félix Ingrand. Rigorous design of robot software: A formal component-based
approach. Robotics and Autonomous Systems, 60(12):1563–1578, 2012.

[2] Rachid Alami, Raja Chatila, Sara Fleury, Malik Ghallab, and Félix Ingrand.
An architecture for autonomy. The International Journal of Robotics Research,
17(4):315–337, 1998.

[3] Rajeev Alur and David Dill. A theory of timed automata. Theoretical computer
science, 126(2):183–235, 1994.

[4] Ananda Basu, Bensalem Bensalem, Marius Bozga, Jacques Combaz, Mohamad
Jaber, Thanh-Hung Nguyen, and Joseph Sifakis. Rigorous component-based sys-
tem design using the bip framework. IEEE software, 28(3):41–48, 2011.

[5] Gerd Behrmann, Alexandre David, and Kim Larsen. A tutorial on uppaal. In
Formal Methods for the Design of Real-Time Systems, pages 200–236. Springer,
2004.

[6] Albert Benveniste and Gérard Berry. The synchronous approach to reactive and
real-time systems. Proceedings of the IEEE, 79:1270–1282, 1991.

[7] Bernard Berthomieu, Jean-Paul Bodeveix, Patrick Farail, Mamoun Filali, Hubert
Garavel, Pierre Gaufillet, Frederic Lang, and François Vernadat. Fiacre: an inter-
mediate language for model verification in the topcased environment. In European
Congress on Embedded Real-Time Software and Systems, 2008.

[8] Sébastien Bornot, Joseph Sifakis, and Stavros Tripakis. Modeling urgency in
timed systems. In International Symposium on Compositionality: the significant
difference, pages 103–129. Springer, 1998.

[9] Frédéric Boussinot and Robert de Simone. The ESTEREL Language. In Proceed-
ing of the IEEE, volume 79, pages 1293–1304, 1991.

[10] Herman Bruyninckx. Open robot control software: the OROCOS project. In
International Conference on Robotics and Automation, pages 2523–2528. IEEE,
2001.

[11] M. Foughali. Toward a correct-and-scalable verification of concurrent robotic
systems: Insights on formalisms and tools. In IEEE Application of Concurrency
to System Design, pages 29–38, 2017.

[12] Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio, Pierre-Emmanuel
Hladik, Félix Ingrand, and Anthony Mallet. Formal verification of complex
robotic systems on resource-constrained platforms. In International Conference
on Formal Methods in Software Engineering, pages 2–9, 2018.

[13] Mohammed Foughali, Bernard Berthomieu, Silvano Dal Zilio, Félix Ingrand, and
Anthony Mallet. Model checking real-time properties on the functional layer of
autonomous robots. In International Conference on Formal Engineering Methods,
pages 383–399. Springer, 2016.

[14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and Andrew
Roscoe. Fdr3a modern refinement checker for csp. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 187–
201. Springer, 2014.

[15] Raju Halder, José Proença, Nuno Macedo, and André Santos. Formal verifica-
tion of ros-based robotic applications using timed-automata. In International
Workshop on Formal Methods in Software Engineering (FormaliSE), pages 44–
50. IEEE/ACM, 2017.

[16] Mohammed Hazim, Hongyang Qu, and Sandor Veres. Testing, verification and
improvements of timeliness in ros processes. In Conference Towards Autonomous
Robotic Systems, pages 146–157. Springer, 2016.

[17] Thomas Henzinger, Zohar Manna, and Amir Pnueli. Timed transition systems.
In Workshop/School/Symposium of the REX Project (Research and Education in
Concurrent Systems), pages 226–251. Springer, 1991.

[18] Thomas Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Information and computation, 111(2):193–
244, 1994.

[19] Félix Ingrand and Malik Ghallab. Deliberation for autonomous robots: A survey.
Artificial Intelligence, 247:10–44, 2017.

[20] Félix Ingrand, Simon Lacroix, Solange Lemai-Chenevier, and Frederic Py. Deci-
sional autonomy of planetary rovers. Journal of Field Robotics, 24(7):559–580,
2007.

[21] Moonzoo Kim and Kyo Kang. Formal Construction and Verification of Home
Service Robots: A Case Study. In International Symposium on Automated Tech-
nology for Verification and Analysis, pages 429–443. Springer, 2005.

[22] Marta Kwiatkowska, Gethin Norman, and David Parker. Prism 4.0: Verification of
probabilistic real-time systems. In International Conference on Computer Aided
Verification, pages 585–591. Springer, 2011.

[23] Anthony Mallet, Cédric Pasteur, Mathieu Herrb, Séverin Lemaignan, and Félix
Ingrand. GenoM3: Building middleware-independent robotic components. In
International Conference on Robotics and Automation, pages 4627–4632. IEEE,
2010.

[24] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, and Jon Timmis. Au-
tomatic property checking of robotic applications. In International Conference on
Intelligent Robots and Systems, pages 3869–3876. IEEE, 2017.

[25] Alvaro Miyazawa, Pedro Ribeiro, Wei Li, Ana Cavalcanti, Jon Timmis, and Jim
Woodcock. Robochart: a state-machine notation for modelling and verification of
mobile and autonomous robots. Technical report, University of York, 2016.

[26] Charles Pecheur. Verification and validation of autonomy software at nasa. Tech-
nical report, NASA Ames Research Center, 2000.

[27] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy
Leibs, Eric Berger, Rob Wheeler, and Andrew Ng. ROS: an open-source Robot
Operating System. In ICRA workshop on open source software, page 5, 2009.

[28] Andrew Roscoe. Understanding concurrent systems. Springer Science & Business
Media, 2010.

[29] Daniel Simon, Roger Pissard-Gibollet, and Soraya Arias. Orccad, a framework for
safe robot control design and implementation. In National workshop on control
architectures of robots: software approaches and issues, 2006.

[30] Arcot Sowmya, David Tsz-Wang So, and Wan Hung Tang. Design of a Mobile
Robot Controller using Esterel Tools. Electronic Notes in Theoretical Computer
Science, 65(5):3–10, 2002.

[31] Vassil Todorov, Frédéric Boulanger, and Safouan Taha. Formal verification of
automotive embedded software. In 6th Conference on Formal Methods in Software
Engineering, pages 84–87. ACM, 2018.

[32] Richard Volpe, Issa Nesnas, Tara Estlin, Darren Mutz, Richard Petras, and Hari
Das. The claraty architecture for robotic autonomy. In Proccedings of IEEE
Aerospace Conference, pages 1–121, 2001.

[33] Jim Woodcock, Peter Larsen, Juan Bicarregui, and John Fitzgerald. Formal meth-
ods: Practice and experience. ACM computing surveys, 41(4):19, 2009.

A Bisimilarity (Part II)
Discrete actions

Action st: From inference rules in table 10, to take st from γ, we must have:
γ = (l , v) |= (v(xt) = Per) (1.a)
Additionally, we know that ψRγ, then from (1.a) and Definition 21 (Rule (2)) we have:
φ(st) = Ist − Per and thus φ(st) = [0 , 0] (1.b)
Now from inference rules in table 2, to take st we must have
ψ = (s, φ) |= (0 ∈ φ(st)) (1.c)
From (1.b) and (1.c) it follows that action st is possible at ψ.
We take now the action st from γ to reach the state γ′. From table 10 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = true ∧ v ′(xt) = 0) and l′ agrees with l otherwise (1.d)
We take the action st from ψ to reach the state ψ′. From table 2 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = true ∧ φ(st) = [Per ,Per]) and s′ agrees with s otherwise
(1.e)
From (1.d) and (1.e) it follows that rules (1) to (4) in Definition 21 are satisfied by γ′

and ψ′, and from Sect. 6.2.2 (absence of effects on time constraints in activities) we
conclude that the rule (5) in Definition 21 is satisfied as well.
It follows that ψ′Rγ′.

Action sm: From inference rules in table 11, to take sm we must have
γ = (l , v) |= (l(sig) = true ∧ l(πM) = wait) (2.a)
Additionally, we know that ψRγ, then from (2.a) and Definition 21 (Rules (1),(3)) we
have at ψ:
s(sig) = true ∧ s(πM) = wait (2.b)
Now from inference rules in table 3, to take sm from ψ, we must have:
ψ = (s, φ) |= (s(sig) = true ∧ s(πM) = wait) (2.c)
From (2.b) and (2.c) it follows that action sm is possible at ψ.
We take now the action sm from γ to reach the state γ′. From table 11 we have:
γ′ = (l ′, v ′) |= (l ′(sig) = false ∧ l ′(N) = N ′ ∧ l ′(R) = R′ ∧ l ′(πM) = manage) and
l′ agrees with l otherwise (2.d)
We take the action sm from ψ to reach the state ψ′. From table 3 we have:
ψ′ = (s ′, φ′) |= (s ′(sig) = false ∧ s ′(πM) = manage ∧ s ′(N) = N ′ ∧ s ′(R) = R′) and
s′ agrees with s otherwise (2.e)
From (2.d) and (2.e) and absence of external actions effect on the timer (Sect. 6.2.3), it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, from (2.a)
and (2.d) (respect. (2.b) and (2.e)) we have Π = M at both γ′ and ψ′ and thus both
satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action lm: From inference rules in table 12, to take lm we must have:
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) 6= ∅) (3.a)
Additionally, we know that ψRγ, then from (3.a) and Definition 21 (Rule (1)) we have
at ψ:
s(Π) = M ∧ (s(N) ∪ s(R)) 6= ∅ (3.b)
Now from inference rules in table 4, to take lm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) 6= ∅) (3.c)

From (3.b) and (3.c) it follows that action lm is possible at ψ.
We take now the action lm (rule lm.1) from γ to reach the state γ′. From table 12 we
have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA ∈ l ′(R)) and l′ agrees with
l otherwise (3.d)
We take the action lm (rule lm.1) from ψ to reach the state ψ′. From table 4 we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA ∈ s ′(R)) and s′ agrees with
s otherwise (3.e)
From (3.d) and (3.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.1).

We take now the action lm (rule lm.2) from γ to reach the state γ′. From table 12
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = cpause ∧ IDA ∈ l ′(R)) and l′ agrees with
l otherwise (3.f)
We take the action lm (rule lm.2) from ψ to reach the state ψ′. From table 4 we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA ∈ s ′(R)) and s′ agrees
with s otherwise (3.g)
From (3.f) and (3.g) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.3) are satisfied by
γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.2).

We take now the action lm (rule lm.3) from γ to reach the state γ′. From table 12
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = ether ∧ IDA /∈ l ′(R)) and l′ agrees with
l otherwise (3.h)
We take the action lm (rule lm.3) from ψ to reach the state ψ′. From table 4 we have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = ether ∧ IDA /∈ s ′(R)) and s′ agrees with
s otherwise (3.i)
From (3.h) and (3.i) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.1) are satisfied by
γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.3).

We take now the action lm (rule lm.4) from γ to reach the state γ′. From table 12
we have:
γ′ = (l ′, v ′) |= (l ′(Π) = IDA∈A ∧ l ′(πA) = cpause ∧ IDA /∈ l ′(R)) and l′ agrees with
l otherwise. (3.j)
We take now the action lm (rule lm.4) from ψ to reach the state ψ′. From table 4 we
have:
ψ′ = (s ′, φ′) |= (s ′(Π) = IDA∈A ∧ s ′(πA) = c 6= ether ∧ IDA /∈ s ′(R)∧
(φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with s otherwise (3.k)
From (3.j) and (3.k) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.3 with φ′(ea) = Iea ∨ φ′(fa) = Ifa)
are satisfied by γ′ and ψ′, that is ψ′Rγ′ after taking lm (rule lm.4).
Note here that taking the action τ from γ′ would give the state γ′′ = (l ′′, v ′′) such that

l ′′(πA) = c, v ′′(xA) = 0 and l′′ agrees with l′ otherwise. We may easily deduce then
that ψ′Rγ′′ (Rule (5) through clause 5.2 with θ = 0).

Action fm: From inference rules in table 13, to take fm we must have
γ = (l , v) |= (l(Π) = M ∧ (l(N) ∪ l(R)) = ∅ ∧ l(πM) = manage) (4.a)
Additionally, we know that ψRγ, then from (4.a) and Definition 21 (Rules (1),(3)) we
have at ψ:
s(Π) = M ∧ (s(N) ∪ s(R)) = ∅ ∧ s(πM) = manage (4.b)
Now from inference rules in table 5, to take fm from ψ, we must have:
ψ = (s, φ) |= (s(Π) = M ∧ (s(N) ∪ s(R)) = ∅ ∧ s(πM) = manage) (4.c)
From (4.b) and (4.c) it follows that action fm is possible at ψ.
We take now the action fm from γ to reach the state γ′. From table 13 we have:
γ′ = (l ′, v ′) |= (l ′(πM) = wait) and l′ agrees with l otherwise (4.d)
We take the action fm from ψ to reach the state ψ′. From table 5 we have:
ψ′ = (s ′, φ′) |= (s ′(πM) = wait) and s′ agrees with s otherwise (4.e)
From (4.d) and (4.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, from (4.a)
and (4.d) (respect. (4.b) and (4.e)) we have Π = M at γ′ and ψ′ and thus both satisfy
rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ia: From inference rules in table 14 to take ia (rule ia.1 or ia.3) we must
have, besides the existence of an outgoing ia edge from ether (to stop (rule ia.1) or to
ether (ia.3)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = ether ∧ IDA ∈ l(R) (5.a)
Additionally, we know that ψRγ, then from (5.a) and Definition 21 (Rules (1), (5.1))
we have at ψ:
s(Π) = IDA∈A ∧ s(πA) = ether ∧ IDA ∈ s(R) (5.b)
Now from inference rules in table 6, to take ia (rule ia.1 or ia.3) from ψ, we must
have, besides the existence of an outgoing ia edge from ether (to stop (rule ia.1) or to
ether (ia.3)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = ether ∧ IDA ∈ s(R)) (5.c)
From (5.a), (5.b) and (5.c) and edges equivalence (Sect. 6.2.4) it follows that action ia
(rule ia.1 or ia.3) is possible at ψ.
We take now the action ia (rule ia.1) from γ to reach the state γ′. From table 14 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = stop ∧ v ′(xA) = 0 ∧ IDA /∈ l ′(R)) and l′ agrees with l oth-
erwise (5.d)
We take the action ia (rule ia.1) from ψ to reach the state ψ′. From table 6 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = stop ∧ IDA /∈ s ′(R) ∧ (φ′ea = Iea ∨ φ′(fa) = Ifa)) and s′

agrees with s otherwise (5.e)
From (5.d) and (5.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by γ′ and ψ′, that is ψ′Rγ′ after taking ia (rule ia.1).

We take now the action ia (rule ia.3) from γ to reach the state γ′. From table 14
we have:
γ′ = (l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and

l′ agrees with l otherwise (5.f)
We take the action ia (rule ia.3) from ψ to reach the state ψ′. From table 6 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and
s′ agrees with s otherwise (5.g)
From (5.f) and (5.g) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (5) are satisfied by γ′ and ψ′ ((5) is satisfied becauseΠ =M at
both ψ′ and γ′ and thus @A ∈ A | s ′(Π) = l ′(Π) = IDA). It follows that ψ′Rγ′ after
taking ia.1 or ia.3 .

From inference rules in table 14, to take ia (rule ia.2 or ia.4) we must have, besides
the existence of an outgoing ia edge from cpause (to stop (rule ia.2) or to ether (ia.4)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ l(πA) = cpause ∧ IDA ∈ l(R) (5.h)
Additionally, we know that ψRγ, then from (5.h) and Definition 21 (Rules (1),(5.3))
we have at ψ:
s(Π) = IDA∈A ∧ s(πA) = c ∧ IDA ∈ s(R) (5.i)
Now from inference rules in table 6, to take ia (rule ia.2 or ia.4) from ψ, we must
have, besides the existence of an outgoing ia edge from c (to stop (rule ia.2) or to
ether (ia.4)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ s(πA) = c 6= ether ∧ IDA ∈ s(R)) (5.j)
From (5.h), (5.i), (5.j) and edges equivalence (Sect. 6.2.4) it follows that action ia (rule
ia.2 or ia.4) is possible at ψ.
Now, proving that ψ′Rγ′ after applying rule ia.2 (respect. ia.4) is identical to proving
ψ′Rγ′ after applying rule ia.1 (respect. ia.3).

Action fa: From inference rules in table 15, to take fa we must have, besides the
existence of an outgoing fa edge from c (to c′pause (rule fa.1) or to ether (fa.2)):
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c ∧ v(xA) > 0) (6.a)
Additionally, we know that ψRγ, then from (6.a) and Definition 21 (Rules (1),(5.2) we
have at ψ:
s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c ∧ (φ(fa) = Ifa − θ | θ > 0) (6.b)
Now from inference rules in table 7, to take fa from ψ, we must have, besides the exis-
tence of an outgoing fa edge from c (to c′ 6= ether (rule fa.1) or to ether (fa.2)):
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c ∧ (φ(fa) = Ifa − θ | θ > 0))
(6.c)
From (6.a), (6.b), (6.c) and edges equivalence (Sect. 6.2.4) it follows that action fa is
possible at ψ.
We take now the action fa (rule fa.1) from γ to reach the state γ′. From table 15 we
have:
γ = (l ′, v ′) |= (l ′(πA) = c′pause, l

′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and l′

agrees with l otherwise (6.d)
We take the action fa (rule fa.1) from ψ to reach the state ψ′. From table 7 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = c′ 6= ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R)))
and s′ agrees with s otherwise (6.e)
From (6.d) and (6.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, we have
Π = M at γ′ andψ′ and thus both satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).

It follows that ψ′Rγ′.

We take now the action fa (rule fa.2) from γ to reach the state γ′. From table 15
we have:
(l ′, v ′) |= (l ′(πA) = ether ∧ l ′(Π) = M ∧ ¬(IDA ∈ l ′(N) ∨ IDA ∈ l ′(R))) and l′ agrees
with l otherwise (6.f)
We take now the action fa (rule fa.2) fromψ to reach the stateψ′. From table 7 we have:
ψ′ = (s ′, φ′) |= (s ′(πA) = ether ∧ s ′(Π) = M ∧ ¬(IDA ∈ s ′(N) ∨ IDA ∈ s ′(R))) and
s′ agrees with s otherwise (6.g)
From (6.f) and (6.g) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) in Definition 21 are satisfied by γ′ and ψ′. Also, we have
Π = M at γ′ andψ′ and thus both satisfy rule (5) in Definition 21 (@A ∈ A | s ′(Π) = l ′(Π) = IDA).
It follows that ψ′Rγ′.

Action ea: From inference rules in table 16, to take ea (rule ea.1) we must have:
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = ether) (7.a)
Additionally, we know that ψRγ, then from (7.a) and Definition 21 (Rules (1),(5.1))
we have at γ:
s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = ether (7.b)
Now, from inference rules in table 8, to take ea (rule ea.1) from ψ, we must have:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = ether) (7.c)
From (7.b), (7.c) it follows that action ea is possible at ψ.
We take now the action ea (rule ea.1) from γ to reach the state γ′. From table 16 we
have:
γ′ = (l ′, v ′) |= (l ′(πA) = start ∧ v ′(xA) = 0) and l′ agrees with l otherwise (7.d)
We take now the action ea (rule ea.1) from ψ to reach the state ψ′. From table 8 we
have:
ψ′ = (s ′, φ′) |= (s ′(πA) = start ∧ (φ′(ea) = Iea ∨ φ′(fa) = Ifa)) and s′ agrees with
s otherwise (7.e)
From (7.d) and (7.e) and absence of external actions effect on the timer (Sect. 6.2.3) it
follows that rules (1) to (4) as well as rule (5) (through the clause 5.2 with θ = 0) are
satisfied by γ′ and ψ′.
It follows that ψ′Rγ′.

From inference rules in table 16, to take ea (rule ea.2) we must have, besides the
existence of an outgoing ea edge from c:
γ = (l , v) |= (l(Π) = IDA∈A ∧ IDA /∈ l(R) ∧ l(πA) = c 6= ether ∧ v(xA) > 0) (7.f)
Additionally, we know that ψRγ, then from (7.f) and Definition 21 (Rules (1),(5.2))
we have at ψ:
s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c 6= ether∧
∧(φ(ea) = Iea − θ ∨ φ(fa) = Ifa − θ) with θ = v(xA) (7.g)
Now from inference rules in table 8, to take ea (rule ea.2) from ψ, we must have, be-
sides the existence of an outgoing ea edge from c:
ψ = (s, φ) |= (s(Π) = IDA∈A ∧ IDA /∈ s(R) ∧ s(πA) = c 6= ether ∧ φ(ea) = Iea − θ | θ > 0)
(7.h)
From (7.f), (7.g) and (7.h) and edges equivalence (Sect. 6.2.4) it follows that action ea

(rule ea.2) is possible at ψ.
We apply now the rule ea.2 from γ to reach the state γ′ (table 16) then from ψ to reach
the state ψ′ (table 8). The proof that ψ′Rγ′ is similar to that when taking ea.1 (with
replacing start by c′.

Time actions From inference rules in table 18, to take d (rule d .1) we must have:
(l , v) |= (v(xt) < Per ∧ l(sig) = false ∧ l(πM) = wait) (8.a)
Additionally, we know that ψRγ, then from (8.a) and Definition 21 (Rules (1),(2),(3))
we have at ψ:
φ(st) = Ist − a ∧ s(sig) = false ∧ s(πM) = wait s.t. a = v(xt) (8.b)
Now from inference rules in table 9, to take d (rule d .1) from ψ, we must have:
ψ = (s, φ) |= ((φ(st) = Ist − a | a < Per) ∧ s(sig) = false ∧ s(πM) = wait) (8.c)
From (8.a), (8.b) and (8.c) it follows that action d (d ∈]0 ,Per − a]) is possible at ψ.
We take now the action d (d ∈]0 ,Per − a]) from γ to reach the state γ′. From table 18
(rule d .1) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means v ′(xt) = a + d (8.d)
We take now the action d from ψ to reach the state ψ′. From table 9 (rule d .1) we have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d) (8.e)
From (8.d) and (8.e) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5) (the
manager has the control and thus @A ∈ A | s(A) = l(A) = IDA) are satisfied by γ′

and ψ′.
It follows that ψ′Rγ′.

From inference rules in table 18 (rule d .2), to take d we must have:
(l , v) |= (v(xt) < Per ∧ l(Π) = IDA∧
l(πA) = c 6= ether ∧ IDA /∈ R ∧ v(xA) < W (c)) (8.f)
Additionally, we know that ψRγ, then from (8.f) and Definition 21 (Rules (1),(2),(5.2))
we have at ψ:
φ(st) = Ist − a | a < Per ∧ s(Π) = IDA∧
s(πA) = c 6= ether ∧ IDA /∈ s(R) ∧ (φ(ea) = Iea − b ∨ φ(fa) = Ifa − b | b < W (c)))
s.t. v(xA) = b and v(xt) = a (8.g)
Now from inference rules in table 9, to take d (rule d .2) from ψ, we must have:
ψ = (s, φ) |= (φ(st) = Ist − a | a < Per ∧ s(Π) = IDA∧
s(πA) = c 6= ether ∧ IDA /∈ s(R) ∧ (φ(ea) = Iea − b ∨ φ(fa) = Ifa − b | b < W (c)))
(8.h)
From (8.f), (8.g) and (8.h) it follows that action d (d ∈]0 ,min(W (c)− b,Per − a)])
is possible at ψ.
We take now the action d (d ∈]0 ,min(W (c)− b,Per − a)]) from γ to reach the state
γ′. From table 18 (rule d .2) we have:
γ′ = (l , v ′) |= (∀x ∈ X : v ′(x) = v(x) + d), which means (v ′(xt) = a + d ∧ v ′(xA) = b + d)
(8.i)
We take the action d from ψ to reach the state ψ′. From table 9 (rule d .2) we have:
ψ′ = (s, φ′) |= (φ′(st) = Ist − a − d ∧ (φ′(ea) = Iea − b − d ∨ φ′(fa) = Ifa − b − d))
(8.j).
From (8.i) and (8.j) it follows that rules (1), (2 with θ = a + d), (3), (4), and (5)
(through the clause 5.2 with θ = b + d) are satisfied by γ′ and ψ′.

It follows that ψ′Rγ′.

We have thus proven that for all discrete and time actions, if ψRγ and action act is
possible from γ s.t. γ act−−→ γ′, then the same action act is possible from ψ s.t. ψ act−−→ ψ′

and ψ′Rγ′. It follows that Ψ (weakly) time simulates Γ .

