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Abstract

Human robot collaborative work requires interactive ma-
nipulation and object handover. During the execution of
such tasks, the robot should monitor manipulation cues
to assess the human intentions and quickly determine the
appropriate execution strategies. In this paper, we present
a control architecture that combines a supervisory atten-
tional system with a human aware manipulation planner to
support effective and safe collaborative manipulation. Af-
ter detailing the approach, we present experimental results
describing the system at work with different manipulation
tasks (give, receive, pick, and place).

1 Introduction

In order to work with humans, a robotic system should
be able to understand the users’ behavior and to safely
interact with them within a shared workspace. More-
over, in order to be socially acceptable, the behavior of
the robotic system has to be safe, comfortable, and natu-
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ral. In Social Robotics (SR) and Human-Robot Interac-
tion (HRI), object exchange represents a basic and chal-
lenging capability [20, 16]. Indeed, simple tasks of object
handover pose the problem of a close and continuous co-
ordination between humans and robots, which should in-
terpret and adapt their reciprocal movements in a natural
and safe manner. From the robot perspective, the human
motions and the external environment should be contin-
uously monitored and interpreted searching for interac-
tion opportunities while avoiding unsafe situations. For
this purpose, the robotic system should assess the envi-
ronment to determine whether humans are reachable, at-
tentive, and willing to participate to the handover task.
On the other side of the interaction, if the robot move-
ments and intentions are natural and readable, it is easier
for the human operator to cooperate with the robot; in this
way, the robotic manipulation task can also be simplified
by human assistance [20].

During interactive manipulation, sensorimotor coordi-
nation processes should be continuously regulated with
respect to the mutual human-robotic behavior, hence at-
tentional mechanisms [33, 27, 35] can play a crucial role.
Indeed, they can direct sensors towards the most salient
sources of information, filter the sensory data, and provide
implicit coordination mechanisms to orchestrate and pri-
oritize concurrent/cooperative activities. In this perspec-
tive, an attentional system should be exploited not only
to monitor the interactive behavior, but also to guide and
focus the overall executive control during the interaction.

Attentional mechanisms in HRI have been proposed
mainly focusing on visual and joint attention [32, 29, 7,
8, 39, 47, 28]. In these works, the authors introduce and
analyze joint visual attentional mechanisms (eye gaze,
head/body orientation, pointing gestures, etc.) as implicit
nonverbal communication instruments used to improve
the quality of the human-robot communication and social
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interaction. In contrast, we focus our interest on executive
attention [36] proposing the deployment of a supervisory
attentional system [33, 17] that supports safe and natural
human-robot interaction and effective task execution dur-
ing human-aware manipulation. The achievement of this
goal is very desirable in SR, where social acceptability
and safety earn a role of primary importance.

Our attentional system is designed as an extension of
a reactive behavior-based architecture (BBA) [9, 4] en-
dowed with bottom-up attentional mechanisms capable of
monitoring multiple concurrent processes [27, 40]. For
this purpose, we assume a frequency-based approach to
attention allocation [40] extended to the executive atten-
tion. This approach is inspired by [34], where the at-
tentional load due to the accomplishment of a particular
task is defined as the quantity of attentional time units
devoted to that particular task, and by [40], where atten-
tional allocation mechanisms are related to the sampling
rate needed to monitor multiple parallel processes. More
specifically, we introduce attentional allocation mecha-
nisms [15], which allow the robot to regulate the reso-
lution at which multiple concurrent processes are moni-
tored and controlled. This is obtained by modulating the
frequency of sensory sampling rates and the speed asso-
ciated with the robot movements [15, 14, 24]. Following
this approach, we consider interactive manipulation tasks
like pick and give, receive and place, or give and receive.
In this context, the attentional allocation mechanisms are
regulated with respect to the humans’ dispositions and
activities in the environment, taking into account safety
and effective task execution. The human-robot interac-
tion state is monitored and assessed through costmaps
[30], which evaluate HRI requirements like human safety,
reachability, interaction comfort, and field of view. This
costmap-based representation provides a uniform assess-
ment of the human-robot interactive state, which is shared
by the motion planner and the attentional executive sys-
tem. Indeed, the costmap-based representation allows the
robot manipulation planner and arm controller to gener-
ate and to execute human-aware movements. On the other
hand, the attentional executive system exploits the cost as-
sessment to regulate the strategies for activity monitoring,
action selection, and velocity modulation.

In this paper, we detail our approach presenting a case
study along with preliminary empirical results used to
show how the system works in typical scenarios of object
handovers.

2 Attentional and Safe Interactive
Manipulation Framework

In this work, we present an attentional executive system
suitable for safe and effective human-robot interaction
during cooperative manipulation tasks. We mainly focus
on handover tasks and simple manipulation behaviors like
pick, place, give, and receive. Here the attentional sys-
tem is used to distribute the attentional focus on multiple
tasks, humans and objects (i.e., the relevant action to per-
form and the human/object to interact with), to orches-
trate parallel behaviors, to decide on task switching, and
to modulate the robot execution.

Our approach combines the following design princi-
ples:

• Attentional Executive System: we deploy attention
allocation mechanisms for activity monitoring, ac-
tion selection, and execution regulation;

• Spatial and cost-based representation of the interac-
tion: a set of costmaps functions is computed from
the human kinematics state to assess human-robot in-
teraction constraints (distance, visibility, and reach-
ability);

• Adaptive human-aware planning: adaptive and re-
active human-aware motion/path/grasp planning and
replanning techniques are used to generate and to ad-
just manipulation trajectories. These can be adapted
at the execution time by taking into account the
costmaps and the attentional state.

Figure 1 details the corresponding attentional frame-
work. The spatial reasoning system allows the robot to
assess human-robot interaction constraints providing in-
teraction costmaps. These costmaps are then used by
the attentional executive system and by the human-aware
planner to generate safe and comfortable robot trajecto-
ries. More precisely, given the costmaps assessment from
the human posture and behavior, the attentional behavior-
based architecture (attentional BBA) continuously mod-
ulates the sensors sampling rate and the actions activa-
tions; while, depending on suitable attentional thresh-
olds, the executive system selects the current task induc-
ing path/motion replanning. When the task changes, the
executive system aborts the current motion and starts the
replanning process. Finally, the arm controller is to exe-
cute the trajectory generated by the manipulation planner
modulating the velocity as suggested by the attentional
executive module. In the following, we detail each com-
ponent of the architecture.
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Figure 1: The spatial reasoning module updates the
costmaps used to assess the human posture and behav-
ior. Given the costmap values, the attentional system con-
tinuously modulates the behaviors sampling rates and ac-
tivations. The attentional state is then interpreted by an
executive system, which decides about task switches and
modulates execution velocity affecting the manipulation
planner and the arm controller.

2.1 Spatial Reasoning
The attentional supervisory system is provided with a rich
data set by the spatial reasoning system such as distance,
visibility, and reachability assessment for the humans in
the scene. This key reasoning capacity enables to perform
situation assessment for interactive object manipulation
[45] and to determine whether humans are reachable, at-
tentive, and willing to participate to the handover task.

The spatial reasoning module also evaluates the robot
interaction space and opportunities in the same manner.
This enables to assess the possible manipulation tasks that
the robot can achieve alone.

Each property is represented by a human or robot cen-
tric costmap that establishes if regions of the workspace
are distant, visible or reachable by the agent. All costmaps
are computed off-line as arrays of values named grid in
the following. They are constructed by considering sim-
ple geometrical features such as the distance between a
segment and a point or the angle between two vectors
(details further). When assessing the cost of a particu-
lar point, the value is not computed on the fly but simply
looked-up in the preloaded grid. Hence, the attentional
system is able to quickly determine whether objects are
visible by the human or not by simply reading the value
in the costmap. Other examples might be to determine
whether an object is reachable or not by a human, whether
a human is attentive during handover tasks by considering
robot center visibility or whether he/she is too close for
handing an object (i.e. the human current position cannot

yield a safe handover).

(a) Distance (b) Field of view

Figure 2: The human-centered distance costmap (a) and
the field of view costmap (b).

The distance costmap, depicted in Figure 2.a, is com-
puted using a function f (h)→ (p1, p2), which returns two
points of interest (p1 at the head and p2 at the feet) given
a human model h. The two points p1 and p2 are then
used to define a simplified model of the human composed
of a segment and a sphere of radius R = 0.3m. The dis-
tance cost cdist(h, p) between a point p and this simplified
model will be:

cdist(h, p) = min(ds(h, p), max(0, ||p1− p||−R)) (1)

with:

ds(h, p)=


(p− p1)∧ (p2− p1)

||p2− p1||
if 0 < ρ < ||p2− p1||

||p1− p|| if ρ 6 0
||p2− p|| if ρ > ||p2− p1||

(2)

where ρ = (p1− p)
p2− p1

||p2− p1||
.

This costmap models a safety property as it contains
higher costs for regions that are close to the humans. This
property is accounted at several levels of the robot archi-
tecture to ensure the interaction safety. In fact, it reduces
the risk of harmful collisions by assessing possible danger
and it determines interaction capabilities (e.g. for object
handover).

The visibility costmap, depicted in Figure 2.b, is com-
puted from the direction of the gaze g and the vector d
joining the camera to the point p to observe as follows:

cvisib(h, p) =
1
2
(arccos

(
g
||g||
· d
||d||

)
+1) (3)

The gaze direction g and the vector d are computed
from the kinematic model h of the human or of the robot.

The visibility costmap models the attention and field
of view of the human; it contains high cost for regions
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of the workspace that are hardly visible by the human.
When accounted by the path planner it aims to limit the
effect of surprise as a human may experience unease while
the robot moves in hidden parts of the workspace. It also
provides information about the visibility of objects and
the attentional state of the human.

Both distance and field of view constraints are com-
bined and accounted by the path planner and the atten-
tional executive system. The path planner is so able to
avoid high cost regions by maximizing the clearance and
increasing the robot visibility. The executive system, in-
stead, influences the arm controller at run-time to mod-
ulate the velocity along the trajectory, even stopping the
motion when the cost exceeds a certain threshold.

(a) Reaching postures (b) Reachable space

Figure 3: Reaching postures (a) and a resulting slice
of the Reachable space (b) of the right arm. The com-
fort cost, depicted using different colors, is used to model
reaching capabilities of the human.

The reachability costmap, depicted in Figure 3.b, es-
timates the reachability cost for a point p in the human or
robot workspace. The assumed reachable volume of the
human or robot can be pre-computed using generalized
inverse kinematics. For each point inside the reachable
volume of the human, the determined configuration of the
torso remains as close as possible to a given resting posi-
tion. A comfort cost is assigned to each position through
a predictive model of human posture introduced in [31]
using a combination of the three following functions:

• The first function computes a joint angle distance
from a resting posture q0 to the actual posture q of
the human (see Figure 3.a), N is the number of joint
and wi are weights:

f1 =
N

∑
i=1

wi(qi−q0
i )

2 (4)

• The second considers the potential energy of the
arm, which is defined by the difference between the

arm and the forearm heights with those of a resting
posture (∆zi) pondered by an estimation of the arm
and the forearm weights mig :

f2 =
2

∑
i=1

(mig)2(∆zi)
2 (5)

• The third penalizes configurations close to joint
limits. To each joint corresponds a minimum and a
maximum limit and the distance to the closest limit
(∆qi) is taken into account in the cost function as
follows with a weight γi:

f3 =
N

∑
i=1

γi∆q2
i (6)

The cost functions are summed to create the reachabil-
ity cost with the function GIK(h, p)→ q that generates
a fully specified configuration using generalized inverse
kinematics:

creach(h, p) =
3

∑
i=1

wi fi(GIK(h, p)) (7)

where h is the human model and wi weighting the three
functions. The musculoskeletal costmap (i.e. the predic-
tive human like posture costmap) accounts for the reach-
ing capabilities of the human in the workspace. It is used
to compute object transfer points and, during the path
planning for the handover task, to facilitate the exchange
of the object at any time during motion such as introduced
in [30]. A similar costmap defined for the robot is used by
the attentional system to assess the capacity of reaching an
object in the workspace.

Apart from the costmaps, the spatial reasoning system
provides a large set of data to the attentional system. Such
data are the objects position and velocity (poso and velo
where o is the object identifier), the state of the gripper
(open or closed), and the distance between the gripper and
a given object (dgo).

2.2 Attentional Executive System
In a HRI domain, an attentional system should super-
vise and orchestrate the human-robot interactions insur-
ing safety, effectiveness, and naturalness. Here, simple
handover activities are designed using a BBA endowed
with bottom-up attentional allocation strategies suitable
for monitoring and regulating human-robot interactive
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manipulation [14, 41]. Starting from values obtained from
the costmaps, the environment, and the internal states of
the robot, the attentional system is able to focus on salient
external stimuli by regulating the frequency of sensory
processing. It is also able to monitor and orchestrate rele-
vant activities by modulating the activations of the behav-
iors.

We assume a frequency-based model of attention allo-
cation [15], where the frequency of the sensors sampling
rate is interpreted as a degree of attention towards a pro-
cess: the higher the sampling rate, the higher the resolu-
tion at which a process is monitored and controlled. This
adaptive frequency provides a simple and implicit mecha-
nism for both behavior orchestration and prioritization. In
particular, depending on the disposition and the attitude of
a person in the environment, the behaviors sampling rates
and activations are increased or decreased changing the
overall attentional state of the system. This attentional
state can influence the executive system in the choice of
the activities to be executed, indeed, high-frequency be-
haviors are associated with activities with a high priority.

2.2.1 Attentional Model

Our attentional system is obtained as a reactive behavior-
based system where each behavior is endowed with an
attentional mechanism. We assume a discrete time model,
with the control cycle of the attentional system as the time
unit.

Figure 4: Schema theory representation of an attentional
behavior.

The model of our frequency-based attentional behavior
is represented in Figure 4 by a Schema Theory represen-
tation [3]. This is characterized by: a Perceptual Schema,
which takes as input the sensory data σ t

b (represented as
a vector of n sensory inputs); a Motor Schema, producing
the pattern of motor actions π t

b (represented as a vector
of m motor outputs); a Releaser [46] that works as a trig-
ger for the motor schema activation; an attention control
mechanism based on a Clock regulating sensors sampling
rate and behaviors activations (when enabled). The clock

regulation mechanism represents our frequency-based at-
tentional allocation mechanism: it regulates the resolu-
tion/frequency at which a behavior is monitored and con-
trolled.

This attentional mechanism is characterized by:

• An activation period pt
b ranging in an interval [pb min,

pb max], where b is the behavior identifier. It defines
the sensors sampling rate at time t. A specific value
x for the period pt

b implies that the behavior b per-
ceptual schema is active every x control cycles.

• A monitoring function fb(σ
t
b, pt ′

b ) : Rn→ R that ad-
justs the current clock period pt

b. Here σ t
b is the per-

ceptual input of the behavior b, t ′ is the time value at
the previous activation, while pt ′

b is the period at the
previous control cycle.

• A normalization function φ( fb) : R→ N that maps
the values returned by fb into the allowed range
[pb min, pb max]:

φ(x) =

pb max, if x≥ pb max
bxc, if pb min < x < pb max

pb min, if x≤ pb min

(8)

• Finally, a trigger function ρ(t, t ′, pt ′
b ), which enables

the perceptual elaboration of the input data σ t
b with a

latency period pt
b:

ρ(t, t ′, pt ′
b ) =

{
1, if t− t ′ = pt ′

b
0, otherwise

(9)

The clock period at time t is regulated as follows:

pt
b = ρ(t, t ′, pt ′

b )φ( fb(σ
t
b, pt ′

b ))+(1−ρ(t, t ′, pt ′
b ))pt ′

b (10)

That is, if the behavior is disabled, the clock period re-
mains unchanged, i.e., pt

b = pt ′
b ; otherwise, when the trig-

ger function returns 1, the behavior is activated and the
clock period changes according to φ( fb).

2.2.2 Attentional Architecture

The proposed attentional architecture integrates the tasks
for pick, place, give, and receive. It is depicted in Figure
5, where each task is controlled by an attentional behavior.
It is also endowed with behaviors for searching and track-
ing (humans and objects) and with the behavior associated
with the obstacle avoidance capability. Each behavior b is

5



Figure 5: Behavior-based attentional architecture within
the overall framework. The attentional system is provided
by the spatial reasoning module with preprocessed data
and influences task switching (executive) and motion con-
trol (arm controller).

endowed with a distinct adaptive clock period pt
b charac-

terized by its own updating function. In the following, we
use the notation σ t

b[i] to refer to the i-th component of the
sensory input vector σ t

b.
SEARCH provides an attentional visual scan of the en-

vironment looking for humans. The monitored input
signal is cdist(r, p), which represents the distance of the
human pelvis p from the robot r in a robot centric
costmap (i.e., the input data vector for this behavior is
σ t

sr = 〈cdist(r, p)〉). This behavior is always active and
it has a constant activation period (pt

sr = pt ′
sr), hence

fsr(σ
t
sr, pt ′

sr) = pt ′
sr.

Once a human is detected in the robot far workspace
(i.e., when 3m < cdist(r, p) ≤ 5m), TRACK is enabled and
allows the robot to monitor the humans motions before
they enter in the interaction space (1m< cdist(r, p)≤ 3m).
Also in this case, the monitored signal is the robot-human
distance (i.e., σ t

tr = 〈cdist(r, p)〉). In this context, a human
that moves fast and in the direction of the robot needs to
be carefully monitored (at high frequency), while a hu-
man that moves slowly and far away can be monitored
in a more relaxed manner (at low frequency). Therefore,

the clock period associated with this behavior is updated
following the equation (10) with:

ftr(σ t
tr, pt ′

tr) = βtrσ
t
tr[1] · γtr(

σ t
tr[1]−σ t ′

tr [1]
pt ′

tr
)+δtr. (11)

Here, the period update is affected by the human po-
sition with respect to the robot and the perceived human
velocity. In particular, the period is directly proportional
to the human distance and modulated by the perceived ve-
locity. The latter is computed as the incremental ratio of
the space displacement with respect to the sampling pe-
riod. The behavior parameters βtr, γtr and δtr are used to
weight the importance of the human position and velocity
in the attentional model and to scale the sampling period
within the allowed range. In this specific application the
values of these parameters are chosen experimentally (see
Section 3.1.1 and Table 1), but they can also be tuned by
learning mechanisms either off-line or on-line as shown
in previous works [12, 18].
AVOID supervises the human safety during human-

robot interaction. It monitors the humans in the interac-
tion and proximity space and modulates the arm motion
speed with respect to the humans’ positions and move-
ments. Moreover, it interrupts the arm motion whenever a
situation is assessed as dangerous for the humans. Specif-
ically, the input vector for AVOID is σ t

av = 〈cdist(r, p),
cdist(h,r), cvisib(h,r)〉 representing, respectively, the op-
erator proximity (distance of the human pelvis from the
robot base), the minimal distance of the robot from the hu-
man body (including hands, head, legs, etc.), and the robot
visibility. The human-robot distance σ t

av[1] is monitored
in the range 0.1m < σ t

av[1] ≤ 3m and AVOID is enabled
when a human is detected in such an area. If a human
gets closer to the robot, then the costs σ t

av[1] and σ t
av[2]

increase and the clock should be accelerated. Instead, the
clock should be decelerated, if the operator moves away
from the robot. This is captured by the following moni-
toring function.

fav(σ
t
av, pt ′

av) =(βavσ
t
av[1]+ γavσ

t
av[2])·

δav(
(σ t

av[1]−σ t ′
av[1])

pt ′
av

)+λav.
(12)

In this case, the clock period is directly proportional to
the human position σ t

av[1] and human-robot minimal dis-
tance σ t

av[2], while it is modulated by the perceived hu-
man speed (with respect to the robot base). Analogously
to the previous cases, these components are weighted and
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scaled by suitable parameters. δav is thus used to empha-
size the period reduction when the human moves towards
the robot and, similarly, to increase the period relaxation
when the human moves away from the robot base. The
βav, γav and λav values are chosen as shown in Table 1 in
order to weight the importance of the parameters and to
scale the period value within the allowed range.

The output of this behavior is a speed deceleration as-
sociated with high frequencies. This is obtained by regu-
lating the function α(t) that permits a reactive adaptation
of the robot arm velocity (see Section 2.3.4). Specifically,
α(t) represents the percentage of the speed applied on-
line with respect to the one planned. In our case, α(t) is
regulated as follows:

α(t)=

{
pt

av
pav max

, if (σ t
av[1]> 0.1m) and (σ t

av[3]< Kvisibility)

0, if (σ t
av[1]< 0.1m) or (σ t

av[3]≥ Kvisibility)
(13)

where, pt
av and pav max are, respectively, the current ac-

tivation rate and the maximum allowed period for AVOID.
Here, if the human is not in the robot proximity and the
robot is in the human’s field of view (visibility cost below
a suitable threshold, σ t

av[3] < Kvisibility), then the velocity
is proportional to the clock period (i.e., slow at high fre-
quencies and fast at low frequencies). Instead, if the robot
is not visible enough or the human is in the robot proxim-
ity, then AVOID stops the robot by imposing zero velocity.
PICK is activated when the robot is not holding an ob-

ject, but there exists a reachable object in the robot in-
teraction and proximity space. This behavior monitors
the distance dgo of the target object from the end effector
and the associated reachability cost creach(r,o) (i.e., the
input vector for this behavior is σ t

pk = 〈dgo, creach(r,o)〉).
Specifically, PICK is activated when the distance of the
object from the end effector is below a specific distance
(σ t

pk[1]≤ 3m) and the reachability cost is below a suitable
threshold (σ t

pk[2] < Kreachability). If this the case, then the
associated period pt

pk is updated with the equation (10) by
means of the following monitoring function:

fpk(σ
t
pk, pt ′

pk) = (ppk max− ppk min)
σ t

pk[1]

dmaxpk
+ ppk min

(14)
where, ppk min and ppk max are, respectively, the minimum
and the maximum allowed value for ppk, while dmaxpk is
the maximum allowed distance between the end effector
and the object (refer to Table 1 for the parameters values).
This scaling function is used to linearly scale and map
σ t

pk[1] in the allowed range of periods [ppk min, ppk max].

Analogously to the previous case, the speed modulation
associated with this behavior is directly proportional to
the clock period:

α(t) =
pt

pk

ppk max
(15)

That is, if PICK is the only active behavior, then the arm
should move with max speed when there is free space
for movements (and a low monitoring frequency). Con-
versely, the arm should smoothly reduce its speed to a
minimum value in the proximity of objects and obstacles
when precision motion is needed at higher monitoring fre-
quency (this effect is analogous to the one provided by the
Fitts’s law [21]).

Once selected by the executive system (see Section
2.2.3), the execution of PICK is associated with a set of
processes: a planning process generates a trajectory to-
wards the given object; upon the successful execution of
this trajectory, a grasping procedure follows; finally, if the
robot holds the object, it moves it towards a safe position,
close to the robot body. Notice that, if PICK is not enabled
by the executive system this sequence of processes is not
activated (indeed, the attentional behaviors provide only
potential activations, while the actual ones are filtered and
selected by the executive module).
PLACE is activated when the robot is holding an object.

Once selected by the executive system (i.e., in the absence
of humans in the interaction space), this behavior acti-
vates a set of processes that move the robot end effector
towards a target position, place the object and then move
the robot arm back to an idle position. Analogously to
PICK, PLACE monitors the distance of the target dgt and
the reachability cost creach(r, t) (i.e., the input vector for
this behavior is σ t

pl = 〈dgt , creach(r, t)〉). The clock pe-
riod is regulated by a function, which is analogous to the
one of PICK (14), while the speed modulation follows the
equation (15).
GIVE and RECEIVE regulate the activities of giving and

receiving objects taking into account the positions and
movements of humans in the work space along with their
reachability and visibility costs.
GIVE monitors: the presence of humans in the in-

teraction space (1 < cdist(r, p) ≤ 3m), the visibility
of the end effector (cvisib(h,r) < Kvisibility), the dis-
tance (cdist(r, t)) and reachability of the human hand
(creach(h, t) < Kreachability), and the presence of an object
held by the robot end effector (distance between end ef-
fector and object dgo below a suitable threshold). That is,
the input vector is σ t

gv = 〈cdist(r, p), cvisib(h,r), cdist(r, t),
creach(h, t), dgo〉.
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The clock period is here associated with the distance
and the speed of the human hand. If more than one human
hand is available, GIVE selects the one with a minimal
cost in the reachability costmap. Once activated by the
executive system, the execution of this behavior moves
the end effector towards the target hand; during the ex-
ecution the robot arm velocity should be regulated with
respect to the hand distance and movement. The GIVE pe-
riod changes according to its monitoring function fgv that
combines two functions f 1

gv and f 2
gv with a weighted sum

regulated by a βgv parameter as follows:

fgv(σ
t
gv, pt ′

gv) = βgv f 1
gv(σ

t
gv[3])+(1−βgv) f 2

gv(σ
t
gv[3])

(16)
The function f 1

gv sets the period proportional to the
hand position (i.e. the closer the hand, the higher the sam-
pling frequency) as in equation (14). Instead, f 2

gv depends
on the hand speed, that is, the higher the hand speed, the
higher is the sampling frequency. The speed of the target

hand is calculated as v = γgv
σ t

gv[3]−σ t′
gv[3]

pt′
gv

, where γgv nor-

malizes the velocity within [0,1], while the function f 2
gv

is used to scale the value of the period within the allowed
interval [pgv min, pgv max]:

f 2
gv =

{
(pgv max− pgv min)(1− v)+ pgv min if v≤ 1
pgv min otherwise

(17)
Intuitively, the βgv should be chosen in order to give

great priority to the hand position rather than to its veloc-
ity (see Table 1), since very quick hand movements are not
to be considered as dangerous if the hand is far from the
robot operational space. The clock frequency regulates
the velocity of the arm movements. More specifically, the
execution speed is related to the period and the costs as
follows:

α(t) =

{ pt
gv

pgv max
, if σ t

gv[2]< Kvisibility

−1, otherwise
(18)

In this case, if the human subject is not looking at the
robot (σ t

gv[2]≥ Kvisibility), then the robot performs a back-
ward movement in the planned trajectory (α(t) =−1).

In Figure 6, we show the activations and releasing ac-
tivities during the execution of a GIVE behavior with re-
spect to the velocity and the distance of a human hand.
The GIVE motor schema (red circles in Figure 6.a) starts
to be active after cycle 230 when the human is in the in-
teraction space and the human hand is reachable (σ t

gv[4]<
Kreachability). In this case, it produces a movement to-
wards the human hand. Before that cycle, the perceptual

schema is active at low frequency (period = pgv max) in or-
der to check for the user presence in the interaction space.
Around cycle 400, some abrupt movements of the human
hand cause an increase of the clock frequency. These ef-
fects are attenuated from cycle 450, when the hand stands
still. The final high frequency is associated with the ob-
ject exchange, when the human hand is very close to the
robot end effector.

As for RECEIVE, this is active when a human enters in
the interaction space (cdist(r, p) ≤ 3m) holding an object
(distance dgo between the object and the end effector less
than a suitable threshold), the robot end effector is visi-
ble (cvisib(h,r) < Kvisibility) and the target human hand is
reachable (creach (h, t) < Kreachability). Therefore, also in
this case the input vector is σ t

rc = 〈cdist(r, p), cvisib(h,r),
cdist(r, p), creach(h, t), dgo〉). Since this behavior is simi-
lar (and inverse) to the one provided by GIVE, the sam-
pling rate for RECEIVE is regulated by a function which is
analogous to the one represented by the equation (16) (set
with different parameters) and the adaptive velocity mod-
ulation is inversely proportional to the current period, as
in equation (18).

2.2.3 Executive Module

The attentional behaviors described so far are monitored
and filtered by the executive system, which is to de-
cide about task execution, task switching, and behav-
ior inhibition depending on the current task, the execu-
tive/interactive state, and the attentional context. The ex-
ecutive system receives data from the attentional system
and manages task execution by orchestrating the human-
aware motion planner and the arm movement. In partic-
ular, it continuously monitors the active (released) behav-
iors along with the associated activities (clocks frequen-
cies), and, depending on the current task, it decides: when
to switch from one task to another; when to interrupt the
task execution; and how to modulate the execution speed.

Initially, the executive system is in an idle state. Once
an event activates the attentional behaviors, it can switch
from the idle state to one of the following four possible
tasks: pick, place, give, and receive. In order to acti-
vate a task, the executive system should select not only
the associated behavior, but also the most appropriate ob-
ject for manipulation and the human that should be en-
gaged in the task. Therefore, a task is instantiated by a
triple (behavior, human, ob ject) and, given a task, we
refer to its associated behavior as its dominant behav-
ior. Once a task is activated, the executive system should
monitor if its dominant behavior remains active during the
overall execution. Moreover, it should also decide when
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Figure 6: Execution of GIVE: a) activations (vertical bars) and releasing (red circles). b) human hand velocity profile.
c) hand end-effector distance.

to switch to another task if something wrong occurs or
a conflict between behaviors is detected (e.g., the acti-
vation of RECEIVE can conflict with PICK, analogously,
GIVE can conflict with PLACE). These conflicts are man-
aged with the following policy: the executive system re-
mains committed with the current task unless the fre-
quency associated with the conflicting behavior exceeds
the frequency of the executed one by a suitable threshold:
pt

bold
− pt

bnew
> Knew,old . This simple policy allows us to

gradually switch from one task to another if the old dom-
inant behavior gets less excited, while the new one be-
comes predominant. Notice that this mechanism allows
the robot to keep a stable and predictable behavior re-
ducing also potentially swinging behaviors due to sensors
noise. Actually, the swinging behaviors are mitigated not
only at the executive level, but also at the behavior-based
level. Indeed, even if the system is close to a thresh-
old that can activate/deactivate a releaser due to noise,
the behavior activations are gradually increased/decreased
avoiding high discontinuity in the attentional state. As an
additional mechanism to filter out the outliers, the execu-
tive system switches from a task to another only if a re-
peated indication of this kind is observed. Notice that the
target of the task can be switched as well depending on the
values of the costmaps (e.g. GIVE selects the human hand
with minimal reachability values). In our setting the ex-
ecutive system always enables the target suggested by the

dominant behavior, however, a thresholding mechanism,
analogous to the one for task switching, can be exploited
to regulate target commitment.

Furthermore, the executive system monitors the AVOID
behavior to prevent collisions with objects and humans.
Indeed, the arm velocity modulation is obtained as the
minimal between the one proposed by the dominant be-
havior and the one suggested by the AVOID: α(t) =
min(αav(t),αtask(t)). Moreover, AVOID can directly by-
pass the executive system (see Figure 5) to stop the mo-
tion in case of dangerous interactions/manipulations.

2.3 The human-aware manipulation plan-
ner

Once a task is selected by the attentional executive sys-
tem, an associated manipulation task has to be generated
by the manipulation planner. The planning process pro-
ceeds by first computing a path P using a “human-aware”
path planner [30, 44, 43], which relies on a grasp plan-
ner to compute manipulation configuration and secondly
by processing this path using the soft motion generator
[10, 11] to obtain a trajectory T R(t). In this section we
overview the main components of this framework.
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(a) Easy grasp (b) Difficult grasp

Figure 7: Ease grasp (a) and difficult grasp (b) depending
on obstacles in the workspace.

2.3.1 Grasp planner

As the choice of a grasp to grab an object greatly deter-
mines the success of the task, we developed a grasp plan-
ner module for interactive manipulation [38]. Even for
simple tasks like pick and place or pick and give to a hu-
man, the choice of the grasp is constrained at least by the
initial and final position accessibility and by the grasp sta-
bility [6]. The manipulation framework is able to select
different grasps depending on the clutter level in the envi-
ronment (see Figure 7). Grasp planning basically consists
in finding a configuration for the hand(s) or end effec-
tor(s) that will allow to pick up an object. In a first stage,
we build a grasp list to capture the variety of the possi-
ble grasps. It is important that this list doesn’t introduce a
bias on how the object can be grasped. Then, the planner
can rapidly choose a grasp according with the particular
context of the task.

2.3.2 Path planner

The human-aware path planning framework [30] is based
on a sampling-based costmap approach. The framework
accounts for the human explicitly by enhancing the robot
configuration space with a function that maps each con-
figuration to a cost criterion designed to account for HRI
constraints. The planner then looks for low cost paths in
the resulting high-dimensional cost space by constructing
a tree structure that follows the valleys of the cost land-
scape. Hence, it is able to find collision free paths in clut-
tered workspaces (Figure 10) and account simultaneously
for the human presence explicitly.

In order to define the cost function, the robot is assigned
a number of points of interest (e.g. the elbow or the end
effector). The interest-points positions in the workspace
are computed using forward kinematics FK(q,gi), where
q is the robot configuration and gi the i-th interest-point.
The cost of a configuration is then computed by looking

up the cost of the N points of interest in the three costmaps
presented in Section 2.1, and summing them as follows:

cost(h,q) =
N

∑
i=1

3

∑
j=1

w jc j(h,FK(q,gi)) (19)

where h is the human posture model, q is the robot con-
figuration and wi are the weights assigned to the three
elementary costmaps c j of Section 2.1. The tuning of
those weights can be achieved by inverse optimal con-
trol [1], it is out of scope of this paper. When the hu-
man is inside the interaction area evaluated by the robot
centric distance costmap, planning is performed on the re-
sulting configuration space costmap with T-RRT [26, 30],
which takes advantage of the performance of two meth-
ods. First, it benefits from the exploratory strength of
RRT-like planners resulting from their expansion bias to-
ward large Voronoi regions of the configuration space.
Additionally, it integrates features of stochastic optimiza-
tion methods, which apply transition tests to accept or re-
ject potential states. It makes the search follow valleys
and saddle points of the cost landscape in order to com-
pute low-cost solution paths. This human-aware planner
outputs solutions that optimize clearance and visibility re-
garding the human as well handover motions from which
it is easy to take the object at all times.

In a smoothing stage, we employ a combination of the
shortcut method [5] and of the path perturbation variant
described in [30]. In the latter method, a path P(s) (with
s∈R+) is iteratively deformed by moving a configuration
qperturb randomly selected on the path in a direction deter-
mined by a random sample qrand . This process creates a
deviation from the current path, hoping to find a better
path regarding the cost criteria. The path P(s) computed
with the human-aware path planner consists of a set of via
points that correspond to robot configurations. Via points
are connected by local-paths (straight line segments).

2.3.3 Trajectory generation

Given the optimized path described by a set of robot con-
figurations {qinit , q1, q2, ..., qtarget}, the Soft Motion Tra-
jectory Planner [10, 11] is used to bound the velocity,
the acceleration and the jerk evolutions in order to pro-
tect humans. Just as in [42], the trajectory is obtained
by smoothing the path at the via points, it is composed
for each axis of a series of segments of cubic polynomial
curves. The duration of each segment is synchronized for
all joints. The trajectory T R(t) obtained is checked for
collision and, in case of collision at a smoothed via point,
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Figure 8: The Jido platform from LAAS-CNRS.

the initial path can be used. In this case the trajectory must
stop at the via point.

2.3.4 Reactive adaptation of the velocity

To improve the reactivity, the evolution along the trajec-
tory T R(t) is adapted to the environment context using a
time scaling function τ(t); the trajectory realized is then
T R(τ(t)). In the absence of human around the robot, it
can simply be chosen as τ(t) = t. The function τ(t) de-
pends on the function α(t) presented in the Section 2.2.2.

To maintain dynamic properties of τ(t), we use the
smoothing method introduced in [10]. The function of
time αs(t) represents the smoothed value of α(t). The
function αs(t) is updated at each sampling time (period
∆t) of the trajectory controller and directly used to adapt
the timing law τ(t) along the trajectory as follows:

τ(0) = 0
τ(t) = τ(t−∆t)+αs(t)∆t (20)

Note that in the case of absence of human, we have
αs(t) = 1 and τ(t) = t. The αs(t) function is analog to the
velocity of the time evolution τ(t). This method adapts
the timing law for all joints of the robot that are slowed
down synchronously.

In our framework, this mechanism in exploited by the
attentional executive system which is able to modulate the
speed along the executed trajectory by controlling the pa-
rameter α(t) taken as input by the controller.

3 Experiments

In this section, we present a case study along with some
preliminary experimental results collected to illustrate the
behavior and the performance of the overall HRI system
during a typical interaction context (a complete evaluation
of the system is left as a future work).

Figure 9: The main GenoM modules of the software ar-
chitecture of the Jido Robot.

3.1 Setup
To illustrate our approach, we present the results carried
out on the LAAS-CNRS robotic platform Jido. Jido is
built up with a Neobotix mobile platform MP-L655 (how-
ever, mobile robotics tasks are not considered in this pa-
per), and a Kuka LWR-IV arm (see Figure 8). It is
equipped with one pair of stereo cameras and a Kinect
is used to track the human body.

The Figure 9 depicts the main elements of the software
architecture of the robot. This architecture is based on
GenoM modules [22]. An important module, Spark, is
responsible for perception and interpretation of the envi-
ronment combining sensory data and modules results. In
particular, it maintains the 3D model of the environment
tracking positions and velocities of humans and salient
objects. A representation of the 3D model is displayed
on the large screen in the back of the scene as illustrated
in Figure 8. Mhp is the motion planner and lwr is the tra-
jectory controller module. Niut is in charge of tracking
the human kinematics using the Kinect. Using markers,
Viman identifies and localizes objects while Platine con-
trols the orientation of the stereo camera pair. Attentional
module includes both the Attentional BBA and the Exec-
utive.

3.1.1 Parameters Settings

The attentional system parameters have been set as fol-
lows. The far workspace is in the interval (3m,5m] meters
from the robot base, the interaction space is in (1m,3m],
while the proximity space is in [0.1m,1m]. For each be-
havior clock, the period spans the interval [1,10], while
psr is constant and set at 10. The maximum speed of the
human pelvis vmax is equal to 3m/s, while max speed of
the robot end effector is 2m/s. In TRACK and AVOID,
the variable to be tuned are only βtr, βav, and γav, while
γtr and δav are about 1/vmax, hence 0.3 (to scale the ve-
locity with respect to its maximum value), instead γtr and
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λav are used to normalize the values within the allowed
interval. βtr emphasizes the effect of the human posi-
tion on the tracking attention, while βav and γav also reg-
ulates the balance between the influence of the σav[1] and
σav[2]. As for GIVE and RECEIVE, βgv and βrc regulates
the importance of velocity and position in the period up-
date. In PICK and PLACE, we set dmaxpk = 0.7m and
dmaxpl = 0.7m because the robot arm extension is about
0.793m (kuka lightweight) which is used as a reference to
define a maximal distance for targets to be reached. The
costmap-related thresholds Kvisibility and Kreachability have
been set to 0.5, since the costmap values are normalized
in [0,1] and this setting was natural and satisfactory. Con-
cerning the Executive System, the KNew,Old was set to 3
(30% of the maximum allowed period) after manual tun-
ing searching for the best regulation trading off between
task commitment (for high values of KNew,Old the switch
is never enabled) and task switching (for low values of
KNew,Old the switch is enabled too often). All the param-
eters values associated with the attentional system have
been collected in Table 1.

Attentional BBA

SEARCH & TRACK
psr = 10 βtr = 4.5
γtr = 0.33 δtr =−11.5

AVOID
βav = 2.01 γav = 1.08
δav = 0.33 λav = 1.67

GIVE & RECEIVE βgv = 0.8 βrc = 0.75
PICK & PLACE dmaxpk = 0.7m dmaxpl = 0.7m

Costmap thresholds
Visib. & Reach. Kvisibility = 0.5 Kreachability = 0.5

Executive System
Task Switcher KNew,Old = 3

Table 1: Attentional system set up used in the experi-
ments.

3.2 Results

Given the setting described above, we tested: the human
aware planning system performance in a simplified sce-
nario (a simple pick and give scenario); the attentional
system effectiveness in monitoring and controlling activ-
ities during tasks of object handover (activation reduc-
tion vs. safety and performance); finally, we assessed the
overall attentional system and the way it affects the over-
all human-robot interaction (quantitative and qualitative
analysis).

Figure 10: The human aware manipulation planner is able
to handle free (left) and cluttered (right) environments.

3.2.1 Human Aware Planning System

In the first experimental test, our aim is to assess the per-
formance of the human-aware planning and control sys-
tem during pick and give tasks (Figure 10). With respect
to previous implementation of the human-aware planning
and control system, the version used here introduces an
enhanced T-RRT method to deal with cluttered environ-
ments (see Section 2.3.2) and a better connection with the
controller, which is based on the timing law to regulate
the speed (see Section 2.3.4).

We assume that the CAD models of the environment
are known, while the pose of the objects and obstacles in
the environment are updated in real time using the stereo
cameras and markers. The position and posture of the
humans are updated using the Kinect sensor.

We consider a scenario, where the robot is involved
in a pick-and-give task. This task is activated when the
following two conditions are verified: there is an ob-
ject in a reachable position and a human within the robot
workspace, who is not holding any objects.

Indeed, as soon as the stereo camera pair detects an ob-
ject on the table the PICK behavior becomes dominant.
Then, once the Kinect detects a human, the GIVE behav-
ior is activated. Both the PICK and GIVE behaviors are
associated with planned trajectories generated by the mo-
tion planner.

In this experiment, to assess the planner performance
we measured: the time to plan the trajectory and the time
to execute it for both the pick and the give phases. To
verify the human aware planner capabilities we varied the
human and obstacle positions (see Figure 10(a)). Table 2
presents the results; these data are the synthesis of 53
trials. Notice that the attentional regulation of speed is
here switched off. The visibility and distance property are
equally tuned.

The collected data shows that the planning time in-
creases when the environment becomes more cluttered
and the trajectory more complex. However, the times ob-
tained with the T-RRT method are compatible with a re-
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Duration Pick Give Totalplanning execution planning execution
Mean 1.29s 6.61s 2.75s 10.20s 20.85s
Min 0.72s 5.00s 0.99s 5.58s 12.29s
Max 5.45s 24.52s 12.18s 22.34s 64.49s
STD 0.81s 3.51s 2.01s 3.75s 5.5s

Table 2: Planning and execution performance.

active and natural human-robot interaction when the envi-
ronment is reasonably uncluttered. For cluttered environ-
ment, like the one of the Figure 10(b), the path computed
by the planner can become long and complex.

3.2.2 Attentional HRI

In a second experiment, we tested the attentional system
by measuring its performance in attentional allocation and
action execution. For this purpose, we defined a second,
more complex, scenario in which the robot should mon-
itor and orchestrate the following tasks: pick an object
from a table, give one object to a human, receive an object
from a human or place an object in a basket. In this case,
the velocity of the arm is adapted with respect to the posi-
tions and the activities of humans in the scene. The robot
behavior should be the following. In the absence of a hu-
man, the robot should monitor the scene to detect humans
and objects. When an object appears on the table, the
robot should pick it. In the absence of humans the picked
object should be placed in the basket. If a human comes
to hand over an object, the robot should receive it (if the
robot holds another object, it should place it before receiv-
ing the new one). If a human is ready to receive an object,
the robot should give the object it holds or try to pick an
object in order to give it to the human. All these behaviors
should be orchestrated, monitored, and regulated by the
attentional system. Figure 11 shows a sequence of snap-
shots representing a pick and give sequence; after picking
a tape box on a table, the robot gives it to the human.

Five subjects participated to this experiment: three
graduate and two PhD students, two females and three
males with an average age of 28. The subjects were
not specifically informed about the robot behavior. They
were only told that the robot was endowed with certain
skills/behaviors such as give or take an object, and that
their attitude in the space could somehow have an influ-
ence its behavior, but they actually did not know what to
expect during the interaction.

In this scenario, we assessed the performance of the
attentional system in terms of behavior activations and

velocity modulation: the attentional system should fo-
cus the behaviors activations on relevant situations only,
while the velocity should be reduced only when neces-
sary (e.g., in case of danger, when accuracy is needed or
to provide a more natural behavior). To assess the atten-
tional system efficiency in attention allocation, we con-
sidered the percentage of behavior activations (with re-
spect to the total number of cycles) and the mean value of
the velocity modulation function (represented by α(t) see
Section 2.3.4) for each interaction phase associated with
the execution of a task (i.e., give, receive, pick, place). In
particular, for each phase we illustrate the activations of
two behaviors: the dominant behavior (i.e., the one char-
acterizing the executed task, e.g., PICK during the pick
task) and the AVOID behavior. The idea is that the atten-
tional system is effective if it can reduce these activations
without affecting the success rate and the safety associ-
ated with each phase. Analogously, the mean value of the
velocity modulation function α(t) should be maximized
preserving success rate, safety, and quality of the inter-
action. In our setting, activations, velocity, and success
rate are measured with quantitative data (log analysis and
video evaluation). As for safety and quality of interac-
tion, we collected the subjective evaluation of the testers
using a questionnaire, which was compiled after each test
session.

The quantitative evaluation results are illustrated in Ta-
ble 3 and Table 4, while the qualitative results can be
found in Table 6. The collected data are here the means
and standard deviations (STDs) of the 20 trials (4 for each
participants) for each phase. Table 3 presents the results
obtained by evaluating the logs associated with the tri-
als: we segmented and tagged (comparing them to the
corresponding data in the video) each interaction phase
(pick, place, give, receive) measuring the associated per-
formance. In this case we measured behavior activations
of the dominant behavior (Table 2, first row), the activa-
tions of avoid (Table 2, second row) and velocity atten-
uation cost(t) = 1−α(t). Instead, in Table 4 we show
the duration of the interaction and the system reliability.
These data are obtained by evaluating the videos of the
recorded tests. In this table, Time is for the time needed
to achieve the overall task from behavior selection till the
success or the failure; Failures is for the percentage of
failures with respect to the number of attempts. Here, a
failure represents any situation in which the task was not
accomplished (e.g., robot not able to grasp the object, to
give, or to receive the object, wrong selection of place,
falling object during execution).

By considering the quantitative results in Table 3 and
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Figure 11: A complete sequence of pick and give. 1: The robot perceives the human and an object. 2: The robot
moves the arm towards the object. 3: Just after grasping the object, the robot starts moving towards the human. 4: The
arm avoids an obstacles. 5: The robot moves the arm towards the human. 6: The human grasps the object handing
over by the robot.

Pick Give Place Receive
Dom. 0.28±0.15 0.18±0.04 0.27±0.09 0.11±0.05
Avoid 0.26±0.12 0.61±0.25 0.31±0.15 0.72±0.25
cost 0.49±0.20 0.62±0.24 0.45±0.17 0.59±0.20

Table 3: Activations and velocity attenuation during dif-
ferent interaction phases (pick, give, place, receive). The
activation rates of the dominant behavior (Dom.) and of
the obstacle avoidance behavior (Avoid) are defined with
respect to the total number of cycles. The velocity atten-
uation (cost(t) = 1−α(t)) represents the percentage of
velocity subtracted by the attentional system.

Pick Give Place Receive
Time 12.3±6.3s 14.0±1.4s 12.3±3.4s 15.8±6.1s

Failures 10% 10% 9% 20%

Table 4: Duration of the interaction and reliability analy-
sis from video and log evaluation.

Table 4, we can observe that for each phase, the percent-
age of the activations of both the dominant behavior and
the AVOID behavior remains pretty low with respect to the
total number of cycles (Table 3), hence the attentional sys-
tem, as expected, is effective in reducing the number of
activations. However, this reduction does not affect the ef-
fectiveness of the system performance. Indeed (see Fail-
ures in Table 4), the system failures remain low for each
phases, therefore the attentional system seems effective
in focusing the behaviors activations on task/contextual
relevant activities for each interaction phase. Indeed, de-
pending on the attentional state of the system some be-
havior should be more active than others. We recall here
that this mechanism not only allows us to save and focus
control and computational resources, but also, and more
crucially, to orchestrate the execution of concurrent be-
haviors by distributing resources among them. In our sce-
nario, behaviors involving human interaction have to be
frequently activated, but only when this is required. As
we expected, during the give and receive phases the num-
ber of activations of AVOID are greater than the ones for
PICK and PLACE. Indeed, during pick and place, the at-
tentional system should only monitor the presence of hu-
mans in the interaction area, focusing the activations only
in the presence of potentially dangerous situation. As
for velocity attenuation (Table 3), the values for cost(t)
seem slightly higher during give/receive phases than dur-
ing pick/place, this is because the interaction with the hu-
man needs more caution. In particular, the human hand

14



proximity and movements during the object exchange de-
termine a modulation of the velocity profile. However (as
already observed by [20]), if the robot motion is readable
for the human, the handover tasks is usually facilitated by
the human collaborative behavior, hence the mean value
of the velocity attenuation is not that intense. This can
also be observed in the time to achieve the goal (Table 4),
where the mean durations for the give and receive phases
are slightly higher, but the slow-down effect of the interac-
tion is not emphasized in a noticeable difference in perfor-
mance. Here, the human cooperative behavior during the
handover seems facilitated by a natural interaction. This
is considered by the qualitative evaluation.

The quality of the interaction was assessed by asking
the subjects to fill a specific HRI questionnaire after each
of the 20 tests. The aim of this questionnaire, inspired by
the HRI questionnaire adopted in [19], is to evaluate the
naturalness of the interaction from the operator’s point of
view.

The questionnaire is structured as follows (see Table 5):

• a personal information section containing the per-
sonal data and the technological competences of the
participants. Here, we categorize subjects by their
bio-attributes (age, sex), the frequency of computer
use and their experience with robotics;

• a general feelings section containing questions to as-
sess the perceived intuitiveness of our approach. In
order to measure the level of confidence of the hu-
man with respect to the interaction, we asked about
its safety, naturalness, and about the understanding
level with respect to both the human and the robot
point of view.

Each entry could be evaluated with a mark from 1 (very
bad) to 10 (excellent).

Table 6 presents the results obtained for each interac-
tion phase (pick, place, give, receive); here, safety, natu-
ralness, human and robot legibility are means of the marks
given by the evaluators. In the table we also report the
0.95 confidence intervals.

By considering results in Table 4 and Table 6, we ob-
serve that the task is perceived as reliable for each phase,
while, as expected, the perceived safety is higher during
the pick and give phases (usually the human remains far
from the robot during the pick hence this phase is per-
ceived as very safe, while the operation of give is legi-
ble for the users), but it is lower during the receive and
place phases. In particular, the receive phase is assessed
as slightly less natural and this also affects the evaluation
of safety (an unnatural behavior is not readable for the

Section Question
Personal Age?
Information Gender?

How familiarized are you with robotic ap-
plications?

General Safety: Did you feel safe during interac-
tion?

Feelings Naturalness: How did you feel about the
naturalness of the interaction?
Human Legibility: Did you understand the
robot behavior?
Robot Legibility: Did the robot react ac-
cordingly with your behavior?

Table 5: HRI questionnaire [1:very bad, 2:bad; 3:inade-
quate, 4:not enough, 5:almost enough, 6:sufficiet, 7:de-
cent, 8:good, 9:very good, 10:excellent].

Pick Give Place Receive
Safety 10±0.00 9.8±0.19 8.2±0.19 7.2±0.35

Naturalness 9.0±0.30 8.6±0.48 8.0±0.30 7.1±1.19
H Legibility 9.8±0.19 9.0±0.30 8.1±0.28 8.0±0.42
R Legibility 9.4±0.23 9.6±0.23 9.3±0.19 6.0±0.52

Table 6: Qualitative analysis from questionnaire evalua-
tion. For each data we report the associated 0.95 confi-
dence interval.

human, hence it can be assessed as dangerous). As for
the human legibility, for each phase the robot reacts to
the human behavior according to the human expectations.
On the other hand, from the robot legibility perspective,
the robot motion sometimes seems not natural and can be
misinterpreted, in particular this happens during receive
and place (this affects the perception of safety).

GIVE Safety Natural. H Legib. R Legib.

Time
r -0.78 -0.63 -0.32 -0.25
p < 0.0001 0.0014 0.0845 0.1438

Failures
r -0.56 -0.66 -0.71 -0.46
p 0.0051 0.0007 0.0002 0.0206

RECEIVE Safety Natural. H Legib. R Legib.

Time
r -0.73 -0.56 -0.78 -0.66
p 0.0001 0.0051 < 0.0001 0.0007

Failures
r -0.60 -0.36 -0.75 -0.41
p 0.0025 0.0594 < 0.0001 0.0362

Table 7: Correlation (r) and Significance Correlation Co-
efficient (p) of Qualitative (Safety, Naturalness, Human
Legibility and Robot Legibility) and Quantitative (Time
and Failures) values for GIVE and RECEIVE phases.
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Table 7 illustrates a correlation of qualitative and quan-
titative results. In particular, we adopted the Pearson cor-
relation index metric for data of Tables 4 and 6. In the
table, we also provide the significance of the correlation
coefficients (assuming the collected 20 samples for each
phase). As expected, we can find an evident inverse cor-
relation between the qualitative and quantitative values,
that is, the Time and Failures performances are inversely
connected with Safety, Legibility and Naturalness. In par-
ticular, we observe for both GIVE and RECEIVE behaviors
a strong correlation for time of execution and safety per-
ceived by participants, and for percentage of failures and
human legibility. These correlations are also supported by
a satisfactory significance value. The first strong correla-
tion can be explained by the fact that a short execution
time is usually associated with reduced activations of the
AVOID behavior, which is aroused in case of dangerous
human positioning or movements. Therefore, when the
execution is short, it is likely that few dangerous situations
have been encountered and the human tester felt safer.
The second inverse correlation shows that several failures
during the interaction (e.g., end-effector wrong position-
ing or objects falling) are related to a reduced legibility
of the robot behavior for the users. For the RECEIVE be-
havior we have also a strong and significant inverse corre-
lation between Time and Human/Robot Legibility values.
Indeed, if the robot is slow in reacting to the human inten-
tion of giving an object, the human can experience a dif-
ficulty in the interpretation of the robot behavior. This is
not observed during the dominance of the GIVE behavior
because the robot intention of giving something is usually
more legible for the interacting human. The other entries
of the table provide weaker correlations and less signifi-
cant values.

Summing up the results in Table 3, 4 and 6, the atten-
tional system seems effective in attentional allocation, ac-
tion selection, and velocity modulation (Table 3) while
keeping an effective interaction (Table 4) between the hu-
man and the robotic system. Moreover, in our case study,
the users usually perceived the interaction as safe, reli-
able, and natural (Table 6).

4 CONCLUSIONS
Interactive manipulation is an important and challenging
topic in social robotics. This capability requires the robot
to continuously monitor and adapt its interactive behavior
with respect to the humans’ movements and intentions.
Moreover, from the human perspective, the robot behav-
ior should also be perceived as natural and legible to al-

low an effective and safe cooperation with the robot. In
this work, we proposed to deploy executive attentional
mechanisms to supervise, regulate, and orchestrate the
human-robot interactive and social behavior. Our work-
ing hypothesis is that these mechanisms can improve not
only the interaction safety and effectiveness, but also the
behavior readability and naturalness. While visual and
joint attentional mechanisms have been already proposed
in social robotics as a way to improve the legibility of the
robotic behavior and social interaction, here we proposed
attentional mechanisms at the core of the executive con-
trol for both task selection and continuous sensorimotor
regulation.

In this direction, we presented an attentional control ar-
chitecture suitable for effective and safe collaborative ma-
nipulation during the exchange of objects between a hu-
man and a social robot. The proposed system integrates a
supervisory attentional system with a human aware plan-
ner and an arm controller. We deployed frequency-based
attentional mechanisms, which are used to regulate atten-
tional allocations and behavior activations with respect
to the human activities in the workspace. In this frame-
work, the human behavior is evaluated through costmap
based representations. These are shared by the atten-
tional system, the human aware planner, and the trajectory
controller to assess HRI requirements like human safety,
reachability, interaction comfort, and field of view. In this
context, the attentional system exploits the cost assess-
ment to regulate activity monitoring, task selection, and
velocity modulation. In particular, the executive system
decides attentional switches among tasks, humans, and
objects providing a continuous modulation of the robot
speed. This dynamic process of attentional task switching
and speed modulation should support a flexible, natural,
and legible interaction.

We presented a case study used to describe the system
at work and to discuss its performance. The collected re-
sults illustrate how the attentional control system behaves
during typical interactive manipulation scenarios. In par-
ticular, our results suggest that, despite the reduction of
the behaviors activations, the system is able to keep a safe
and effective interaction with the humans. Indeed, the
attentional allocation mechanisms seems to suitably fo-
cus and orchestrate the robot behaviors according to the
human movements and dispositions in the environment.
Moreover, from the human perspective, the attentional in-
teraction is perceived as natural and readable. Namely, the
attentional system provides the capability of dynamically
trading-off among naturalness, legibility, safety, and ef-
fectiveness of the interaction between the human and the
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robot.
In this work, we mainly focused on the role of the exec-

utive attention and attention allocation in simple HRI sce-
narios, on the other hand we have deliberately neglected
other attentional mechanism, which are commonly de-
ployed in social robotics. For instance, a visual attentional
system is usually considered as a crucial component that
supports a social and natural interaction between the hu-
man and the robot [7, 8]. These models are complemen-
tary with respect to the ones presented in our framework
(temporal distribution of attention versus orienting atten-
tion in space) and can be easily integrated. For example,
in our case study, the SEARCH behavior can be extended by
introducing saliency-based methods [25] to monitor and
scan the scene. Visual perception is also associated with
other important mechanisms for human-robot social in-
teraction and nonverbal communication [29] such as joint
attention [39, 28, 32], anticipatory mechanisms [23], per-
spective taking [47], etc.. Our behavior-based approach
allows us to incrementally introduce analogous models
within more sophisticated interaction behaviors to be or-
chestrated by our attentional framework. For example, we
are currently investigating how to integrate more sophis-
ticated human-intention recognition system in our atten-
tional framework [37]. Of course, when the social be-
havior and the interaction scenario becomes more sophis-
ticated, task-based attentional mechanisms and top-down
attentional regulations comes into play [13]. For exam-
ple, in the presence of complex and structured coopera-
tive tasks [2], the executive switching mechanism should
take into account both the behavioral attentional activa-
tions (bottom-up) and the interaction schemata required
by the task (top-down). The investigation of these issues
is left as a future research activity.
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path planning on configuration-space costmaps.
IEEE Transactions on Robotics (2010)

[27] Kahneman, D.: Attention and Effort. Prentice-Hall,
Englewood Cliffs, NJ (1973)

[28] Kaplan, F., Hafner, V.V.: The challenges of joint at-
tention. Interaction Studies 7(2), 135–169 (2006).
DOI 10.1075/is.7.2.04kap

[29] Lang, S., Kleinehagenbrock, M., Hohenner, S.,
Fritsch, J., Fink, G.A., Sagerer, G.: Providing the
basis for human-robot-interaction: A multi-modal
attention system for a mobile robot. In: Proc. Int.
Conf. on Multimodal Interfaces, pp. 28–35. ACM,
Vancouver, Canada (2003)

[30] Mainprice, J., Sisbot, E., Jaillet, L., Cortés, J.,
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A APPENDIX

The overall control architecture has been implemented
within the LAAS architecture exploiting the GenoM
(Generator of Modules) [22] development framework. In
the following, we first introduce the main concepts of the
GenoM framework, then we illustrate the implemented
control architecture, finally we provide some details about
the implementation of the attentional module.

GenoM. The GenoM framework allows to design real-
time software architectures. It permits to encapsulate the
robot functionalities into independent modules, which are
responsible for their execution. Each GenoM module can
concurrently execute several services, send information
to other modules or share data with other modules us-

ing data structures called posters. The functionalities are
dynamically started, interrupted or parameterized upon
asynchronous requests sent to the modules. There are ex-
ecution and control requests: the first starts an actual ser-
vice, whereas the latter controls the execution of the ser-
vices (see Figure 12). Each request is associated with a
final reply that reports how the service has been executed.
For each module, the algorithms must be split into sev-

Figure 12: GenoM module structure and state machine.

eral parts: initialization, body, termination, interruption,
etc. Each of these elementary pieces of code is called a
codel. In the current version of GenoM, these codels are
C/C++ functions. A running service is called an activ-
ity. The different states of an activity are shown in Figure
12(right). On any transition, one can go into the INTER
state. In case of a problem, one can go into the FAIL state,
or even directly into the ZOMBIE state (frozen). Activi-
ties can control a physical device (e.g., sensors and actua-
tors), read data produced by other modules (from posters)
or produce data. The data can be transferred at the end
of the execution through the final reply, or at any time by
means of posters.

System Architecture. A description of the GenoM
modules involved in the attentional control cycle is pro-
vided in Figure 13. Here, we can distinguish the SPARK
module, which is responsible for perceptual analysis
and costmap generation, the MHP module, which is re-
sponsible for the robot motion planning and execution
(path/grasp/motion planning and smoothing), and the AT-
TENTIONAL module, which is responsible for atten-
tional regulation and task switching.

Attentional System. The attentional system is imple-
mented as a GenoM module that has an executive cycle of
10 milliseconds. An abstract illustration of the codel asso-
ciated with the attentional system is provided by the Algo-
rithm 1. Here, the attentionalControlMain() is activated
at each cycle (i.e., every 10 milliseconds) and returns an
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Figure 13: Architecture of the system.

ACTIVITY EVENT (i.e., the EXEC state). During the
cycle, all the behaviors are checked and updated. For each
behavior, the attentional module checks if the perceptual
schema is active or not. If it is not active, the behavior
clock is increased by one tick (updateClock()). Other-
wise, if the perceptual schema is active, its acts as follows:
it reads the associated input data from the poster gener-
ated by the SPARK module (readData()); it defines the
next clock period according to the behavior monitoring
function (updateClockPeriod()); it assesses the releasing
function (checkReleaser()) to determine whether the mo-
tor schema is active or not; finally, the previous sensing
data is stored (storeLastSensing()) and the clock is reset
(resetClock()). Once each behavior has been updated, the
executive system is to select the current activity to be ex-
ecuted and the associated cost (selectActivity()).

The executive system is implemented by the
selectActivity() function (see Algorithm 2). It gets
the current executive state (IDLE, PICK, GIVE, RE-
CEIVE, PLACE), the attentional state (active behaviors
and the associated periods), and the associated cost
vector (velocity modulation suggested by each behavior).
If there exists at least one active behavior, the func-
tion checks for priorities (depending on the executive
state) and decides whether to keep the current activity
or to switch to another one. Once one activity has
been selected, a target human, location or object is set
(selectTarget()). Finally, the velocity modulation is
decided (setCost()) by minimizing the one associated
with the selected behavior and the one proposed by
AVOID (i.e., min(αav(t),αtask(t))).

Following the standard specifications of a GenoM
module, the attentional module is activated by the start
function attentionalControlStart() (used to initialize the

Algorithm 1 attentionalControlMain()
for (allBehaviors) do

if (perceptActive) then
readData();
updateClockPeriod();
checkReleaser();
if (releaserOn) then

updateCost();
end if
storeLastSensing();
resetClock();

else
updateClock();

end if
end for
taskAndCost = selectActivity();
reportCycleStatus(taskAndCost);
return EXEC;

Algorithm 2 selectActivity()
getTheExecTask();
getTheAttentionalState();
getTheCostVector();

if (activeBehaviors) then
priorityEvaluation();
taskSwitcher();
selectTarget();
setCost();

end if
return taskAndCost;
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Figure 14: Sequence diagram of a typical pick and place/give human-robot interactive activity. Messages labeled with
(∗) are periodically sent.

module, it returns EXEC) and it is closed by the end func-
tion attentionalControlEnd() (used to close the module,
it returns ETHER).

Interaction example. In Figure 14 we illustrate a se-
quence diagram that represents a typical pick and give in-
teraction. The diagram shows how the main components
of the global framework in Figure 1 (which is an abstract
version of Figure 13) interacts in the following scenario:
the robot picks an object from the table and tries to place it
in another position or to give it to a human. For the sake of
clarity, we distinguish between an ATTENTIONAL and
an EXECUTIVE timeline even though they belong to the
same module. On the ATTENTIONAL timeline we show
the names of the behaviors whose motor schemas are ac-
tive (recall that the perceptual schemas of the behaviors
are always periodically active). Moreover, to simplify
the presentation, only relevant messages are shown. In
the absence of a human or when the robot is idling, the
robot monitors the scene (search for human). The per-
ceptual schema of the SEARCH behavior receives data
from the SPARK module (e.g., no human). Notice that
in Figure 14, the messages labeled with (∗) are periodi-

cally transmitted. If an object appears on the table (object
position), in the absence of other stimuli, the robot tries
to pick it up (pick object). The EXECUTIVE, as soon as
the frequency of (pick object) increases, calls the PLAN-
NER for the trajectory generation. Once the planner sends
the trajectory to the arm controller, the attentional system
should modulate the arm velocity (speed modulation) dur-
ing the execution taking into account the information pro-
vided by all the active behaviors. The execution of the
trajectory terminates with the object picked (holding ob-
ject). When the robot is holding the object, in the absence
of humans, the robot tries to place it on a suitable loca-
tion (location position). The activation of PLACE behav-
ior (place object) affects the EXECUTIVE system, which
switches to the PLACE mode and invokes the generation
of an associated new trajectory (place trajectory). During
this trajectory execution the attentional system can affect
the speed modulation. If a human enters in the INTER-
ATION SPACE (human detected), TRACK will monitor
his/her position (human position) and GIVE will be acti-
vated (give object). In this particular configuration, both
PLACE and GIVE behavior are active. The task switcher
should choose the one or the other taking into account the
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Figure 15: Snapshot of the interface of the simulated en-
vironment, during a typical pick and place/give human-
robot interactive activity.

frequencies of the two behaviors while monitoring the ex-
ternal processes. If a human is ready to receive an object
and the frequency of GIVE becomes dominant, the EX-
ECUTIVE calls a task switch. It stops the execution of
PLACE and asks the planner to launch the behavior GIVE
(switch to give). Once again, during the execution, the at-
tentional system affects the behaviors activations and con-
sequently the arm speed modulation. In the presence of a
human, also the AVOID behavior can give its contribu-
tion with speed modulation halting the execution in case
of danger.

Interface. In Figure 15 we show the interface used to
visualize the system behavior. This snapshot shows the
case of the parallel activation of PLACE, GIVE and also
AVOID behavior presented above. In the right box we can
notice, that the active behaviors are these latter three, and
that the selected one, under the condition that the robot is
holding an object, is the GIVE behavior, because there is
a man in the scene who is asking for an object.
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