
HAL Id: hal-01994902
https://laas.hal.science/hal-01994902

Submitted on 25 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Online task space trajectory generation
Daniel Sidobre, Wuwei He

To cite this version:
Daniel Sidobre, Wuwei He. Online task space trajectory generation. Robot Motion Planning Online,
Reactive, and in Real-time (Workshop IROS 2012), Oct 2012, Vila Moura, Portugal. �hal-01994902�

https://laas.hal.science/hal-01994902
https://hal.archives-ouvertes.fr

Online task space trajectory generation

Daniel Sidobre1 and Wuwei He2

Abstract— As the kinematic of the robots becomes complex
and the task to realize are more and more demanding, we
need tools to better define and manipulate the movements of
the robots. To cope with this problem, we propose a family
of trajectory, which we name the Soft Motion trajectories,
defined by polynomial functions of degree three. Based on these
trajectories we propose a set of tools to generate trajectories
and control the robots. We present some experimental results
showing the interest of the approach that unify the data
exchanged from the planning level to the control level of the
robot.

I. INTRODUCTION

As machines become more and more complex and precise,
they can not settle for following a path, they need better
defined moves to design and think motions. The concept of
trajectories that defines the position as a function of times
allows building more powerful tools to animate machines.
Some systems already use trajectories, but not in an inte-
grated way from planning to control. This paper focuses
on trajectories defined as series of segments of polynomial
function of degree three and proposes a set of tools to
generate and manipulate them.

The classical approach utilized by most of machines
consists in defining a path and expect that the system can
follow it. Unfortunately, many of these paths cannot be
followed efficiently and precisely. For instance some paths
are defined as polygonal lines that require the system stops at
each vertices or approximates the lines around the vertices.
It is well known that the path must be at least of class C2 to
be feasible. But this smoothness condition is practically not
sufficient as the maximal speed depends on the local radius
of curvature of the path.

The use of a trajectory to define a move gives all the
necessary elements to verify that the move is feasible.
Using a dynamic simulator, all the physical characteristic
of the move can be verified: collisions, maximum velocity,
maximum power, maximum torque etc.

From a control point of view, trajectories are also very
interesting because they allow simpler control strategies.
Torsten Kroeger showed the possibility to switch very easily
between different controller [1]. For robot interacting with
humans, trajectories allow to express easily the safety and

This work has been supported by the European Community’s Seventh
Framework Program FP7/2007-2013 “SAPHARI under grant agreement no.
287513 and by the French National Research Agency project ANR-07-
ROBO-0011 “ASSIST” and ANR-10-CORD-0025 “ICARO”.

1D. Sidobre is with CNRS, LAAS, 7 avenue du colonel Roche, F-31400
Toulouse, France; and Univ de Toulouse, UPS, LAAS, F-31400 Toulouse,
France daniel.sidobre@laas.fr

2W. He is with CNRS, LAAS, 7 avenue du colonel Roche, F-31400
Toulouse, France Wuwei.He@laas.fr

comfort constraints as kinematic limits. Thanks to advances
in computers sciences, the trajectories can now be manipu-
lated very efficiently.

This paper is organized as follows. Trajectory generality
are presented in section II. A set of trajectory generators are
described in section III. The section IV details a method
to approximate trajectories with polynomial third degree
trajectories. A solution to generate trajectories from polygo-
nal lines is described in section V. A trajectory controller
is presented in the section VI. Experimental results are
presented in section VII. Finally we give some concluding
remarks in section VIII.

II. TRAJECTORIES

To clarify the subject, we first introduce trajectories and
give their main properties. Then, we detail the model of
trajectories based on series of cubic polynomial functions
and introduce different tools to manipulate them.

Trajectories are time functions defined in geometrical
spaces, like essentially Cartesian space and joint space. The
rotations can be described using different coordinates system:
quaternion, vector and angle etc. The books from Biagiotti
[2] on one hand and the one from Kroger [1] on the other
hand summarize background trajectory material.

Given a system whose position is defined by a set of
coordinate X if the coordinates are in Cartesian space or
Q if the coordinates are in joint space, a trajectory T is a
function of time defined as:

T : [tI , tF] −→ Rn (1)
t 7−→ T (t) = X(t) (2)

The trajectory is defined from the time interval [tI , tF] to
Rn where n is the dimension of the motion space. The T (t)
function can be a direct function of time or the composition
C(s(t)) of a function giving the path C(s) and a function
s(t) describing the time evolution along this path.

At first glance the latter offer more possibilities as the time
evolution is independent of the geometrical path and so the
two elements can be modified independently. Unfortunately,
this approach is limited by the difficulty to integrate the
derivative of the path to obtain the curvilinear abscissa.
Without this parameterization, the function s(t) doesn’t give
the tangential velocity and the kinematic of the motion is
difficult to manipulate and interpret. So, as the former has
a simpler expression, it provides simpler solutions to define
and manipulate trajectories.

A trajectory T (t) defined from tI to tF can be defined by
a series of trajectories defined between intermediate points.
Given, tu which satisfies tI < tu < tF , an equivalent

Workshop on Robot Motion Planning:
Online, Reactive, and in Real-time
2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS 2012
Vilamoura, Algarve, Portugal, October 7-12, 2012

Fig. 1. Jerk profile for a series of segments of cubic polynomial trajectory

representation of T (t) is defined by the series of two
trajectories T1 and T2 defined respectively by :

T1 : [tI , tu] −→ Rn T2 : [tu, tF] −→ Rn

t 7−→ T1(t) = T (t) t 7−→ T2(t) = T (t) (3)

Similarly a trajectory can be defined by a series of sub-
trajectories if some continuity criteria specified for the tra-
jectory and its derivative are verified. Generally this criterion
is defined as a differentiability class Ck with k ≥ 2.

The possible choices to define trajectory functions are very
large, but as we intend to compute motions in real time, we
choose a simple solution like polynomial functions. As we
need C2 functions, we choose polynomial function of third
degree and name this trajectories Soft Motion trajectories.
Using a long series of polynomial function, trajectories
following very complex path can be defined. It is also
possible to approximate or interpolate a set of points to define
Soft Motions trajectories.

In the sequel, we firstly present Soft Motion trajectories
and then a set of consistent trajectory generator to solve
robotic problems.

Series of 3rd degree polynomial trajectories

We define Soft Motion trajectories as series of 3rd

degree polynomial trajectories. Such a trajectory is com-
posed of a vector of one-dimensional trajectories: T (t) =
(1Q(t), 2Q(t), · · · , nQ(t))T for joint motions or T (t) =
(1X(t), 2X(t), . . . , nX(t))T in Cartesian space. Without
loss of generality, we suppose that all jX(t) or all jQ(t),
0 ≤ j < n share the same time intervals and that tI = 0.
A one dimensioned trajectory jX(t) is defined by its initial
conditions (jX(0) = jXI , jV (0) = jVI and jA(0) = jAI)
and K elementary trajectories jXi(t) defined by the jerk jJi

and the duration Ti where 1 ≤ i ≤ K and
∑K

i=1 Ti = tF−tI .
By integration we can define the acceleration jA(t), the
velocity jV (t) and then the position jXi(t).

Assuming k ≤ K is such that
∑k−1

i=1 Ti ≤ t <
∑k

i=1 Ti,
the trajectory jX(t) and its derivative are defined by :

jJ(t) = jJk (4)

jA(t) = jJk

(
t−

k−1∑
i=1

Ti

)
+

k−1∑
l=1

jJl Tl + jAI (5)

jV (t) = jJk

2

(
t−

k−1∑
i=1

Ti

)2

+
k−1∑
l=1

jJl Tl

(
t−

l∑
i=1

Ti

)

+
k−1∑
l=1

jJl T
2
l

2
+ jAIt+ jVI (6)

jX(t) = jJk

6

(
t−

k−1∑
i=1

Ti

)3

+
k−1∑
l=1

jJl Tl

2

(
t−

l∑
i=1

Ti

)2

+
k−1∑
l=1

jJl T
2
l

2

(
t−

l∑
i=1

Ti

)
+

k−1∑
l=1

jJl T
3
l

6

+ jAI

2
t2 + jVIt+ jXI (7)

This general expression of the trajectories and their deriva-
tives can be used directly to control a arm, for example, but
it is not easy to obtain directly. So we will now describe
different generators to build them.

III. TRAJECTORY GENERATORS

As different motion problems exist, we need a coherent set
of trajectory generator. To classify these trajectory generators
we use the different types of motions we wish to define Soft
Motions for. The first one is the point-to-point motion that
can be done in minimum time or in an imposed time. A
point-to-point move is a move where the mobile starts from
rest and stops after the move. A more general problem is
defined between two general situations; in this case the initial
and final conditions are arbitrary. The motions can also be
defined by a set of via point to approximate or interpolate.
A very interesting problem is to approximate any trajectory
by a Soft Motion one. Finally Soft Motions can be classified
by the dimension of the motion space.

In the following sections, we present generators for each
of these trajectory problems, beginning by the simpler to
build the more complex.

A. One-dimensional generator

To cope with system physical limits using 3rd degree
polynomial functions, we can limit the jerk, the acceleration
and the velocity:

−Jmax ≤ J(t) ≤ Jmax (8)
−Amax ≤ A(t) ≤ Amax (9)
−Vmax ≤ V (t) ≤ Vmax (10)

This limits define a domain for the one dimensional systems
presented in the figure 2 bottom using the Acceleration-
Velocity frame. In this diagram, motions with constant jerk
draw parabolas.

A canonical generation of trajectory problem is defined in
this domain by initial and final conditions:

X(tI) = XI V (tI) = VI A(tI) = AI (11)
X(tF) = XF V (tF = VF A(tF) = AF (12)

The quasi-optimal solution in minimum time to this problem
is presented in [3], [4]. The well known canonical case of
long point-to-point motion is depicted in figure 2. In this

Fig. 2. Top: Position, velocity, acceleration and jerk for a point-to-point
move in function of time. Bottom: the same move in the frame Acceleration-
Velocity with the bounds of the validity domain.

Fig. 3. Graphic user interface of the Soft Motion planner displaying a
general short motion.

case the motion is composed of seven segments of 3rd

degree polynomial functions. This is the maximum number
of segments as either the point with maximal velocity or
with minimal velocity can be reached with three segments
from any situation and similarly to return to any situation.
From a computation point of view, the figure 3 exhibit the
worse case where the intersection of three parabola has to
be computed. This case generates a polynomial equation of
degree 6 numerically solved by Raphson-Newton method.

0

1

0

1

0

1

Fig. 4. Valid interval of time for a set of axes and the time Timp

corresponding to the move in minimum time.

B. N-dimensional point-to-point generator

The generation of trajectories in multidimensional spaces
is far more complex as we will see in the next section, but
the point-to-point motion is a particular case that can be
bring back to a unidimensional problem. Suppose the line
joining the initial and final points in RN is defined relatively
to a basis {vi}0<i≤N by a vector v =

∑N
i=1 αivi with∑N

i=1 α
2
i = 1. The velocity, the acceleration and the jerk

are respectively limited for each axis i by ViM , AiM and
JiM .

The minimum time trajectory is directly obtained by
projecting on each axis the solution of the one-dimensional
problem defined on the line segment by the limits [4]:

Jmax = min
16i6N

1
αi
JiM (13)

Amax = min
16i6N

1
αi
AiM (14)

Vmax = min
16i6N

1
αi
ViM (15)

For each segment of the trajectory, one of the velocity
acceleration, or jerk functions of one of the N initial axes is
saturated. The others are inside their validity domain.

C. N-dimensional general generator

In this case, initial and final velocity and acceleration are
no longer zero and the problem can no longer be linearized.
In a first step, we compute the minimum time movement
using the method of the paragraph III-A for each axis and
select the longest one Tmin = max1≤i≤n Topti. The mini-
mum time movement for the move cannot be lower than this
time Tmin. In some case, it is possible to compute for each
of the other axes a move in this time Tmin. Unfortunately
the minimum time for the move can be larger than Tmin as
it is not always possible to increase the time of a motion for
all values. For example, suppose a one axis mobile moving
at Vmax during a short time ti so it travels a distance of Xi.
Therefore, we wish to increase ti of δt. For some δt = δl
we obtain a limit case where the movement is composed of
two segments, the first with the jerk −Jmax and the last with

Fig. 5. The initial trajectory Tin and the approximated T .

Jmax. For a δt < δl an infinity of solution exists to do the
move in ti + δt, but for δl < δt < δu there is no solution.
δu corresponds to the necessary time to the mobile to stop
going beyond the final point, to go back and return. As we
choose an initial motion at Vmax it is not possible to do the
move in a time less than ti. Figure 4 shows the choice of
the minimum valid time Timp for a set of axes. In the case
of the picture, the minimum time for each axis is Topt of
the first axis and the minimal time feasible is Tstop of the
second axis.

So we can determine the minimum time Timp for an N-
dimensional move. But an infinity of solutions exists. Our
system proposes one solution, but an optimum criterion is
still to build hoping it gives simple computations. The shape
of the path defining the trajectory depends on this choice.
For motion planning in presence of obstacles this choice has
an important influence.

Now we have a solution to generate a trajectory to define a
move between two situations. In the following we introduce
generators that master the shape of the trajectory between
the initial and final situations.

IV. TRAJECTORY APPROXIMATION:

We now wish to define any motion with a set of polyno-
mial trajectories of third degree. To do this, we propose to
approximate any trajectory by a Soft Motion trajectory.

Suppose Tin is an arbitrary trajectory defined, for example,
by a path P and a motion law u = u(t). Both the path P
and the law u can be defined by a large variety of curves
(Bézier, NURBS, sinusoid etc.). If the differentiability class
of this trajectory is at least C2, a good approximation can
be computed. But in case of discontinuity, we must accept a
higher error. This error can be balanced between a geometric
error and a time error. In case of geometric errors, the initial
and realized paths are different but outside these difficult
zones the trajectory can be precisely realized. In case of time
errors, the mobile can stop to stay on the path and ensure
velocity and acceleration continuity, but such a modification
introduces a delay for the remaining trajectory.

A. The three segments method

If we consider a portion of the trajectory Tin defined by
an initial instant ti,I and a final instant ti,F , Tin defines the
initial and final situations to approximate: (XI , VI , AI) and
(XF , VF , AF).

An interesting solution to approximate this portion of tra-
jectories is to define a sequence of three trajectory segments
with constant jerk that bring the mobile from the initial
situation to the final one in the time Timp = tF − tI . We

Fig. 6. Jerk profile for the axis j of the trajectory T .

choose three segments because we need a small number of
segments and there is no always solution with one or two
segments.

The system to solve is then defined by 13 constraints :
the initial and final situations (6 constraints), the continuity
in position velocity and acceleration for the two switching
situations and the time. Each segment of trajectory is defined
by four parameters and one time. If we fix the three duration
T1 = T2 = T3 = Timp

3 , we obtain a system with 13
parameters where only the three jerks are unknown. As the
final control system is periodic with period T , the times
Timp/3 must be a multiple of the period T and Timp chosen
to be a multiple of 3T .

The 3 jerks are then defined by: J1

J2

J3

 = A−1.

 B1

B2

B3

 (16)

with

A−1 =
1

Timp

1 −9 27

−7/2 27 −54

11/2 −18 27

 (17)

and

B1 = AF −AI

B2 = VF − VI −AITimp

B3 = XF −XI − VITimp −AI

T 2
imp

2
More details can be found in [5] and [4].

B. Distance between trajectories:
An important characteristic of the approximation is the

maximum error between the two trajectories. As several dis-
tances exist to compare trajectories, we choose the Hausdorff
distance and the synchronous Euclidean distance. Another
interesting measure of the difference is the synchronous
Euclidean distance between the velocities.

The synchronous Euclidean distance is defined by:

dSE = max
t∈[tI ,tF]

√√√√ n∑
j=1

(jT (t)−j Tin(t))2 (18)

The synchronous euclidean distance between velocities is
defined by:

dSEV = max
t∈[tI ,tF]

√√√√ n∑
j=1

(
djT (t)
dt

− djTin(t)
dt

)2

(19)

The Hausdorff distance is defined by:

dHaus = max(sup
tin∈[tI ,tF]

inf
t∈[tI ,tF]

d(Tin(tin), T (t)), (20)

sup
t∈[tI ,tF]

inf
tin∈[tI ,tF]

d(T (t), Tin(tin))) (21)

Depending on the type of problem, one of these distances
is generally more appropriated. If the geometry of the path
is important as for example for machining application, the
Hausdorff distance is a good choice. For moves in free space,
coordination is more important and so the synchronous Eu-
clidean distance is suitable. The distance between velocities
is more sensible to identify the variation due to the motion
law.

C. Error of approximation for a trajectory

We suppose now that Tin is bounded respectively in jerk,
acceleration and velocity by Jmax, Amax and Vmax. We
show in this paragraph that a relation exists between the
error of approximation, the time Timp and the bound Jmax.

Let Vin and Ain denote respectively the velocity and
acceleration of Tin. In a first time, we examine the case
where the trajectory Tin to approximate satisfies:

Tin(tI) = Tin(tF) = 0 (22)
Vin(tI) = Vin(tF) = 0 (23)
Ain(tI) = Ain(tF) = 0 (24)

One can verify that this initial and final conditions gives three
null jerks (See eq. 16).

The trajectory to approximate Tin that gives the maximum
error is symmetric. As the trajectory to approximate Tin

is kinematically bounded and due to the symmetry, the
maximum error between the two trajectories is at the middle
of the trajectory. Likewise, the maximum error is obtained for
a saturated function. For a short trajectory, the acceleration is
not saturated and the more difficult function to approximate
is defined by the four segments trajectory:

T1 = T4 = Timp ∗
2−
√

2
4

(25)

T2 = T3 = Timp ∗
√

2
4

(26)

and the jerks are J1 = J3 = Jmax J2 = j4 = −Jmax.
The maximum error between the two trajectories is then:

ε =
√

2− 1
48 ∗
√

2
= 0.0061× Jmax ∗ T 3

imp (27)

General case: Suppose T (t) is the approximation by the
3 segments method of the trajectory Tin(t)between tI and
tF .

We can write the Tin(t) trajectory as Tin(t) = T (t) +
(Tin(t)− T (t))

By design the trajectory T0(t) = Tin(t)−T (t) verifies the
conditions 22, 23, and 24.

So the approximation error of T0(t) on [TI , TF] by a
trajectory composed of three segments of cubic polynomial
trajectory is less than 0.0061× T 3

imp ∗ (2× Jmax).

Tj
pa

Ta
ca
Tj
na

Tv
c

Tj
nb
Ta
cb
Tj
pb

Tjpa TacaTjna TjpbTacbTjnbTvcTvc

Tv
c

Fig. 7. From a polygonal path to a Soft Motion trajectory.

As T (t) is approximated without error, Tin(t) that is the
sum T (t) + T0(t) can be approximated with an error less
than: 0.0061× T 3

imp × (2× Jmax).
This result is extremely interesting as it gives the length

of the interval to approximate a function while insuring the
approximation error is smaller than a defined limit.

D. Example of a circular trajectory:

To approximate a trajectory following a circle of radius
R at constant speed ωR, we can compute the maximum
time interval Timp to approximate the circle with a maximum
error of ε.

The trajectory of the motion is defined by:

Xx(t) = R× cos(ωt) (28)
XY (t) = R× sin(ωt) (29)

and the jerk by:

JX(t) = ω3R× sin(ωt) (30)

JY (t) = −ω3R× cos(ωt) (31)

So the constant jerk is ω3R and the maximum time interval
is then

T =
ε
√

3
0.0061× 2× J

=
ε
√

3
0.0061× 2× ω3R

(32)

For a mobile completing a turn in one second about a circle
of radius R = 0.1m with a maximum error of ε = 10−6,
T is T = 0.0149s corresponding to 68 points (6 points for
an error of ε = 10−3, T). This result can be used directly
when radius of curvature is known and the path is traversed
at constant speed.

V. GENERATING TRAJECTORY FROM POLYGONAL PATH

The main advantage of the Soft Motion trajectories is to
insure a continuity of data and reasoning from the high
planning level to the control level. Most of the motion
planners as, for example RRT planners [6], [7], produce only
paths in the form of polygonal lines. The assimilation of a
path to a trajectory commonly performed at planning level is
not acceptable for control. So these paths should be converted

in trajectories. We suppose the line segments of the path
are relatively long after a path planner optimization phase
and so the robot can reach the maximum velocity and stop
to traverse each segment. Given a set of kinematic limits
{Jmax, Amax, Vmax}, a trajectory stopping at each vertex is
easily build using the linear generator of paragraph III-B.

In [5] we proposed to use a twofold strategy to smooth
this trajectories. The first idea is to smooth the vertex of
the polygonal line between the points where the robot must
begin to decelerate (ICT) and can stop to accelerate (FCT)
following precisely the path (see figure 7). Between the
two situations FCT and ICT the 3 segments method gives
a simple path. The second strategy take into account that
the initial polygonal trajectory that stop at the vertex has
no collision and can be used when the smoothed trajectory
causes a collision.

The time to go from FCT to ICT is defined by the method
presented in paragraph III-C. As we wish a continuous
motion, we use the 3 segments method of the paragraph IV.
The trajectory is then checked for collision.

This strategy to compute a smoothing segment of trajec-
tory can be improved by optimizing the choice of the initial
and final points defining the segment [4] as a shorter segment
generating a smaller error is preferable in some situations.
The trajectory computed by choosing initial and final points
between ICT and P1 and P1 and FCT respectively is
sometimes feasible.

VI. A TRAJECTORY CONTROLLER

We suppose each axe of the mobile is equipped with a low
level controller, for example a PID controller. This low level
controller can be directly fed from a trajectory definition
using the expressions 7 or 6.

In general, controllers can also get feedback from com-
plex localization systems: a mobile manipulator robot which
exchange an object with a human needs to localize itself,
the human and the object. To obtain its position this robot
can use different sensors (cameras, lasers, odometry) and
localization techniques based on different sensors, different
geometric elements and different filtering techniques. To
localize the object, it can use stereovision or point cloud
obtained from sensors like Kinect.

So, a general control problem can be defined by:
1) a frame in which the trajectory to follow, which is

generated by high level, is defined.
2) the current position, velocity and acceleration of the

mobile.
3) the current position, velocity and acceleration of the

target.
4) a trajectory to be executed by the controller.

A. The frame of a trajectory

Given a situation where a robot is supposed to grasp
an object handed by the human. At the beginning of the
task, a planner computes a trajectory for the robot. At this
instant, the trajectory can be expressed in any moving or
fixed frame equivalently. But after a short moment, because

ti

ti

tj

T

T

S

Fig. 8. Trajectory control: At instant ti, the mobile should be at point
Tti on the blue trajectory, but it is in point Sti because of the situation
change. The orange trajectory reaches the blue at the instant tj . The green
trajectory reaches the blue trajectory in a longer time and the purple one in
a shorter time.

of the movement of humans and robots, the trajectories
expressed in the alternative frames are different. For example,
the end of the trajectory defines an approaching path defined
to avoid collisions. This local path must be defined in a frame
associated to the object, so that the gripper approaches the
object along this path even though the object is moved by the
human. In the same way, if the beginning of the trajectory is
defined in the frame associated to the object and the human
rotate a little the object at the beginning, the start of the
trajectory can made a big move relatively to a fixed frame.

So each part of a trajectory must be associated to a frame
in which it must be controlled. The choice of the instant to
switch the controller from one frame to another must also
be defined. In the previous example, the system can switch
from the robot base frame to the object frame when the
gripper reaches some distance from the object. Eventually,
it is possible to define an intermediate segment of trajectory
controlled in a third frame, for example a frame associated
to the human hand.

When a robot is very close to an obstacle, controlling the
robot in a frame fixed to this obstacle is generally a good
solution to minimize the uncertainty and limit the risk of
collision.

In conclusion, the planner must generate a trajectory and
associate a control frame to each part of the trajectory.

B. Computing a control trajectory

Given a segment of trajectory that has to be controlled in
some frame, we present now a control strategy to cope with
the inherent uncertainty associated to the position. Because
of the large position error associated to the base position,
of the possibility to switch from a controller to another or
of the possibility to switch from a sensor to another, the
distance between the real position and the setting position
can be large.

The control problem is illustrated in figure 8 where some
mobile must follow the blue trajectory. At the instant ti,
the mobile should be in point Tti but it is in Sti . Only the
position is depicted on the figure but the system take also
into account velocity and acceleration.

From this initial situation, the controller must compute a
control trajectory that reaches the input trajectory as soon

Motion capture
markers

3D model
(spark)Kinect

(niut)

Objects
localisation

(viman)

Kuka LBR-IV
(lwr)

Stereovision
(platine)

Neobotix
mobile base

(jloco)

Fig. 9. A human interacting with the robot Jido and the main elements of
the system.

as possible while complying with constraints. This can be
done simply by computing a trajectory to reach the input
trajectory for each instant tk for k > i until a valid trajectory
is obtained. The computed control trajectory is drawn in
orange in the figure 8. Due to real time constraints, it must
be necessary to define a more efficient strategy in case of
important error and k large.

The error between the real situation and the desired one at
an instant can be due to many reasons. The strategy to build
a control trajectory that reaches the input trajectory can be
different in function of the problem. The previous solution
is the solution when the objective is really the trajectory, but
in some case the path is more important than the time and
it can be preferable to choose a shorter path to minimize
the Hausdorff error to the path. The purple trajectory of the
figure 8 shows an example of such a trajectory. Of course in
this case we accept a delay for the mobile. Later the mobile
can or cannot catch up with this delay depending on the
problem and conditions.

Similarly, a smoother trajectory could be preferable, the
green trajectory of the figure 8 gives an example.

This control trajectory are computed with the three seg-
ments algorithm presented in section IV-A as the initial and
final situations are precisely defined.

C. Target tracking

Trajectory control can also be used in the absence of input
trajectory. For example for the robot reach a relative position
between the robot hand and an object, the local control
trajectory can be directly defined between the current state
of the robot hand (position, velocity, acceleration) and the
future state of the target. The future state of the target is
estimated assuming a continuous and regular motion.

In this case the time to reach the target is not imposed and
the trajectory generator presented in section III-A is used. If
we need that all the axes move synchronously, the method
presented in section III-C can be used.

This approach can also be used at the end of a controlled
trajectory move to maintain the relative position of the hand.

Fig. 10. A spiral trajectory approximated. Left the jerk, the acceleration
and the velocity profiles.

VII. EXPERIMENTAL RESULTS

To illustrate the implementation of this tools based on Soft
Motion trajectories, we present results carried out with our
Jido robot. Jido is built up with a Neobotix mobile platform
MP-L655 and a Kuka LWR-IV arm. Jido is equipped with
one pair of stereo cameras and a Kinect motion sensor. The
figure 9 describes the main elements of its architecture. To
integrate the software, we use GENOM1 [8], a development
environment for complex real time embedded software, and
robotpkg2, a compilation framework and packaging system
for installing robotics software.

To simplify the robot software, the different modules are
organized around the SPARK module, which receives the
data from all the software modules and builds a model of
the scene. An example of this model is presented in the
background of the figure 9. SPARK processes internal data
from software modules that interface sensors and actuators
(position of the arm and hand, position of the stereovision
plate, odometer etc) and data about environment and humans
(Kinect, motion capture, stereovision etc). The advantage of
this centralized approach is the possibility for the module
SPARK to compute accurate positions and kinetic parameters
using different input data and filtering techniques. The robot
is also equipped with a collision checker that verifies in line
the risks of collision and stop the robot if necessary. In the
actual implementation this module cannot take into account
moving objects in the environment.

A human aware planner [9] computes a trajectory for the
robot from the SPARK model and a description of the task
to achieve. The use of position from SPARK can avoid some
switch of controller input, but it introduces a delay to filter
and fusion inputs.

The figure 10 shows the result of the approximation
of a spiral trajectory. The original spiral was made using
inkscape3, so it is defined by a series of Bézier curves and
a motion law defined as a one dimensional point-to-point
trajectory. The error of approximation is depicted in figure
11.

1http://www.openrobots.org/wiki/genom
2http://homepages.laas.fr/mallet/robotpkg/
3http://inkscape.org/

http://www.openrobots.org/wiki/genom
http://homepages.laas.fr/mallet/robotpkg/

Fig. 11. The approximation error of the spiral curve.

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70

X
Y
Z

Fig. 12. A plot of the trajectory realized by the jido arm following a box
handle by an human.

Figure 12 shows the trajectory executed by Jido during a
task where the robot try to maintain its hand in a pre-defined
position relative to a box. The trajectory was recorded when
a human moved the box in front of the robot. The position
of the box is obtained by stereovision tracking a tag plotted
on the box.

The figure 13 shows Jido writing the word Dexmart. The
trajectory was defined by a path drawn using inkscape and
then approximated using the results of the section IV. The
input trajectory is traveled at constant velocity. The Soft
Motion approximation stops at cusp. The controller uses
impedance control to maintain a constant force in the normal
direction.

The figure 14 shows a trajectory build from a polygonal
line to grasp an object.

A significant advantage of using trajectory controller is
that the controller can work with different frequencies. For
example, the position can be measured every 0.1s by vision
and a low level controller that uses an impedance controller
can run at 1kHz. This possibility simplifies the design of the
controllers.

Fig. 13. Jido writing along a approximated trajectory.

Fig. 14. Left: A simulated move to a gripper grasp an object. Right: The
detail of the path defining the trajectory and the initial polygonal line.

VIII. CONCLUSION

In this paper we have presented a set of trajectory tools to
animate machines. A first interesting point is the proposal
to use polynomial third degree trajectories (Soft Motions
trajectories) because they define a simple and powerful class
of trajectories. We proposed a set of trajectory generators that
can be used to effectively build Soft Motions trajectories.

From these tools we described how to generate trajectories
at planning level and then how to control a robot in several
situations.

We can conclude with the hope to build a robot based on
Soft Motion trajectories. This robot will embed a trajectory
planner like the one we outlined but it should associate to
each generated trajectories the frames in which the move
must be controlled and the condition to switch between
controllers. We have proposed a set of basic controllers; this
set must be enlarged with force controllers. A tool to switch
between these controllers and manage the state of this meta-
controller should be defined and built.

Lastly, the coordination of the motions of a full robot
(base, arms, hands, head) or of two or more robots is also
very challenging, trajectories could help to synchronize this
motions.

REFERENCES

[1] T. Kröger, On-Line Trajectory Generation in Robotic Systems, 1st ed.,
ser. Springer Tracts in Advanced Robotics. Berlin, Heidelberg,
Germany: Springer, jan 2010, vol. 58.

[2] L. Biagiotti and C. Melchiorri, Trajectory Planning for Automatic
Machines and Robots. Springer, 2008.

[3] X. Broquère, D. Sidobre, and I. Herrera-Aguilar, “Soft motion trajectory
planner for service manipulator robot,” in IEEE/RSJ Int. Conf. on Intel.
Rob. And Sys., 2008.

[4] X. Broquère, “Planification de trajectoire pour la manipulation d’objets
et l’interaction homme-robot,” Ph.D. dissertation, LAAS-CNRS and
Université de Toulouse, Paul Sabatier, 2011.

[5] X. Broquère and D. Sidobre, “From motion planning to trajectory
control with bounded jerk for service manipulator robots,” in IEEE
Int. Conf. Robot. And Autom., 2010.

[6] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on
configuration-space costmaps,” IEEE Transactions on Robotics, 2010.

[7] S. M. LaValle and J. Kuffner, “Rapidly-exploring random trees:
Progress and prospects,” in Workshop on the Algorithmic Foundations
of Robotics, 2001.

[8] S. Fleury, M. Herrb, and R. Chatila, “Genom: A tool for the specifica-
tion and the implementation of operating modules in a distributed robot
architecture,” in IEEE/RSJ Int. Conf. on Intel. Rob. And Sys., 1997.

[9] E. A. Sisbot, L. F. Marin-Urias, R. Alami, and T. Siméon, “Human
aware mobile robot motion planner,” IEEE Transactions on Robotics,
2007.

	Introduction
	Trajectories
	Trajectory generators
	One-dimensional generator
	N-dimensional point-to-point generator
	N-dimensional general generator

	Trajectory approximation:
	The three segments method
	Distance between trajectories:
	Error of approximation for a trajectory
	Example of a circular trajectory:

	Generating trajectory from polygonal path
	A trajectory controller
	The frame of a trajectory
	Computing a control trajectory
	Target tracking

	Experimental results
	Conclusion
	References
	References

