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Human Robot Interaction

Daniel Sidobre1, Xavier Broquère1, Jim Mainprice1,
Ernesto Burattini2, Alberto Finzi2, Silvia Rossi2,

Mariacarla Staffa3

Abstract

To interact with humans, robots will possess a software architecture much more
complete than current robots and be equipped with new functionalities. The pur-
pose of this chapter is to introduce some necessary elements to build companion
robots that interact physically with humans and particularly for the exchange of
object tasks.

To obtain soft motion acceptable by humans, we use trajectories represented
by cubic functions of time that allow mastering and limiting velocity, acceleration
and jerk of the robot in the vicinity of the humans. During a hand-over task and to
adapt its trajectory to the human behavior, the robot must adjust the time motion
law and the path of the trajectory in real time. The necessity of real time planning
is illustrated by the task of exchanging an object and in particular by the planning
of double grasps. The robot has to choose dynamically a consistent grasp that
enables both robot and human to hold simultaneously the exchanged object.

Then, we present a robotic control system endowed with attentional models
and mechanisms suitable for balancing the trade-off between safe human-robot in-
teraction (HRI) and effective task execution. In particular, these mechanisms allow
the robot to increase or decrease the degree of attention toward relevant activities
modulating the frequency of the monitoring rate and the speed associated to the
robot movements. In this attentional framework, we consider pick-and-place and
give-and-receive attentional behaviors. To assess the system performances we in-
troduce suitable evaluation criteria taking into account safety, reliability, efficiency,
and effectiveness.
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1 Introduction
Until very recently, it was impossible to consider humans and robots living together.
But now, robots start to become companions or co-workers of humans, opening an
important research domain to build safe and intuitive cooperation. In this chapter we
intend to introduce some elements to build such robots that are able to intuitively inter-
act with humans.

In the context of Human Robot Interaction (HRI), intuitive and natural exchanges
of objects between robots and humans represent a canonical task. But as we will see,
such a robot system is much more complex than the current industrial robots that repeat
the same tasks separated from humans by cages. We present some bricks that are
necessary to give to the robots the necessary autonomy to react to the human motions
and behavior. We focus the presentation on three key points. Firstly the necessity for
a software architecture to coordinate and synchronize the different pieces of software.
Then, we details the importance of the geometric reasoning in the case of the dynamic
choice of a double grasp. In fact, to exchange an object, both the robot and the human
must grasp simultaneously the object. So the robot must adapt its grasp and its motion
to the human behavior in real time.

This introduces the importance of motion, which is then addressed from the geo-
metric aspect of paths to the kinematic aspect of trajectories. Usually, motion planners
compute a path, which is then executed by the robot controller, generally at a constant
speed or across a dynamic simulator. But in both cases the time evolution is not taken
into account at the planning level. For real time interaction with humans, the robot
must master its time evolution and control where and when it hands over an object. To
do this, we propose to integrate a simple model of trajectories based on series of cubic
functions in a more standard random motion planner.

Finally, the human motions and the external environment should be continuously
monitored by the robotic system looking for interaction opportunities while avoiding
dangerous and unsafe situations. In this context, attentional mechanisms can play a cru-
cial role: they can direct sensors towards the most salient sources of information, filter
the available sensory input, and provide implicit sensory-motor coordination mecha-
nisms to orchestrate and prioritize concurrent activities. In this work, we propose to
deploy an attentional system to modulate the robotic arm motion and perception. The
attentional system is expected to monitor and regulate multiple concurrent activities in
order to achieve an effective coordination and interaction with the human movements
in the operative space. We assume a frequency-based model of the executive attention,
where each behavior is endowed with an adaptive internal clock that regulates the sens-
ing rate and action activations. The frequency of sensor readings is here interpreted as
a degree of attention towards a behavior: the higher the clock frequency, the higher the
resolution at which the behavior is monitored and controlled. In this context, we con-
sider attentional models for pick and place, give and receive, search and track (humans
and salient objects).
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2 Software Architecture
Clearly, to interact with humans, robots must be able to adapt in real time their move-
ments to the behavior of the humans. Moreover, the robots must ensure safety and
comfort for the humans all the while realizing socially acceptable movements. As tasks
are not entirely defined in advance, but computed and adapted in real time, the robot
must have all the software components to compute and adapt all the elements of an
interactive manipulation task from supervision and task planning level to the hardware
control one. The software architecture of such a robot is a key point for the efficiency
of the communication between software modules achieving the tasks. According to the
evolution of the task and to the behavior of the human, the system should react at the
right level to provide the correct response in an acceptable time. In such a context the
data exchanged between the software modules must be relevant and concise to make
their processing fast enough. Also we propose to build the architecture around the
concept of trajectory to take into account the time and synchronize the movements.

At the lower level, the robot must respond with reflex actions like reducing velocity
or recoiling when the human approaches the robot. But for more important changes,
the robot must replan its action and then switch from the previous trajectory to the
new one satisfying HRI constraints. For more reactive tasks like the exchange of an
object with a human, the robot must be able to compute and choose a good grasp and
to compute a trajectory to reach and grasp the object in real time. These different robot
behaviors must be integrated in the global robot architecture.

In this section, we present a quick review of the state of the art and then introduce
our architecture to control a robot interacting with human.

Figure 1: The Jido robot interacting with a human. The robot model of the scene
is displayed on the wall-screen. The Kinect monitors the human kinematics and the
human gaze is perceived using a motion capture system. Robot motions take the human
into account at planning and execution level.
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The introduction of robots that work among humans gives rise to new concepts and
designs that were studied in recent years. The physical hardware as well as software
components of the robot need to be designed by considering human’s safety [1, 52].
Besides ensuring safety in robot hardware with compliant designs [39, 6, 68], the mo-
tions of the robot need to be “planned” and ”executed” in a “human-aware” way by
limiting the velocity at potential collision impact [33].

In [61] we have proposed a planning and control framework for synthesizing safe
and socially acceptable robot motions. This framework was shown to generate human-
aware motion for a static model of the human. In [45], we have extended the approach
using a sampling-based “human-aware“ path planner, which was based on a set of geo-
metrical HRI constraints [60]. These constraints, taking as input the human kinematics
and state, lead to safety, visibility and ”arm comfort” costmaps defined over the robot
configuration space. Sampling-based costmap planning techniques [40] were used to
find good quality paths regarding the computed HRI cost criterion. Using users studies,
Cakmak et al. [18, 17] have shown the importance of spatial and temporal pose of the
robot for the exchange.

Executing motion bounded in jerk, acceleration and speed is also a way to produce
human friendly robot motions. In [30], Flash and Hogan showed that the motion of
the humans is by default limited in jerk and acceleration. Moreover human-robot ob-
ject exchange studies [37] suggest that robot motion with minimum-jerk profile of the
end-effector are preferred. In [11, 12], we have introduced a soft motion framework
bounding the robot motion in jerk, acceleration and speed to ensure the human safety
(speed) and comfort (jerk and acceleration).

The motion planning and execution frameworks of [61, 45] do not account for pos-
sible human motions during the trajectory execution. In motion planning literature,
algorithms for dynamic environments have been introduced to take into account such
changes in the robot workspace [9, 28, 69]. However, the human behaviors, which are
considered in this chapter, do not lead to the same constraints as the moving obsta-
cles taken into account by dynamic environments motion planning methods. In [9], a
continuous set of homotopic paths is determined in which the initial path is deformed.
Virtual forces are applied to the initial path by a control algorithm, the process can be
viewed as an elastic band being stretched to gain optimality regarding clearance and
length criteria. More recently in [28, 69], RRT-like algorithms have been introduced
for motion planning with a limited time horizon well suited for dynamic environments.
When executing the robot trajectory the human may come closer to the robot as shown
in Figure 1, changing the safety and legibility constraints that have been taken into ac-
count by the path planner. Also, in handover situations the human may want to change
the object transfer position (OTP), making the target configuration irrelevant to the
task.

The HRI constraints [60] modeled as cost functions represent the amount of danger
and how the human feels about a given robot configuration. Hence, as the danger of
injuries increases and humans are frightened with high velocities, we propose to slow
down the robot motion for high cost configurations by modifying on-line the timing-
law without stopping the robot motion. This reactive scheme enables a safe and legible
behavior according to human movements but it is not always efficient to account for the
changes in the HRI costs. Hence we also propose to use the path perturbation variant of
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[45] to optimize the executed solution regarding the current safety and comfort costs. In
order to guarantee the jerk, acceleration and velocity bounds, we introduce an efficient
way to replace a soft motion trajectory by a new one.

2.1 Architecture
From the high level decisional system that plans tasks and supervises execution to the
actuators and sensors levels, the robot needs to compute many elements and dissem-
inate data. As the robot must react at different levels, the architecture should irrigate
software modules with the right flow of data, which is composed of sensors data, mod-
ule results and decisions. The Figure 2 shows the architecture that we propose for tasks
like pick and give or receive and place. This architecture and the associated modules
can be improved and extended, but the properties described are sufficient to demon-
strate the proposed functionalities. At the top level, task planner and supervision are
intended to plan a task like “clear the table” or “pick this object and give it to this
person” and then supervise the execution of the plan.

An important part of the data exchanged represents movements, which can be de-
scribed by trajectories. As the human environment is changing, the robot must adapt
its trajectories in real time. For example, if the human is approaching the robot, the
velocity of the trajectory should be slowed. We present further in sect. 4.2 an inter-
esting solution consisting in the use of series of cubic functions of time to represent
trajectories.

The “path planner” uses RRT and T-RRT (see paragraph 4) to plan path as broken
line for the whole robot in Cartesian or joint spaces. It is used to plan a first path and
then to compute new paths in real time. For example if the robot is grasping an object
from a human, and the “grasp planner” proposes a better grasp, this module computes
a new path.

The “trajectory planner” transforms a broken line in soft motions satisfying the
bounds in jerk, acceleration and velocity. It runs the “collision checker” and adapts
jerk, acceleration and velocity limits from the costs associated to the position and be-
havior of the humans.

The human aware manipulation planner module (MHP) brings together the “path
planner”, the “grasp planner” and the “trajectory planner” to build a valid trajectory
from the definition of the task and from the state of the robot provided by the SPARK
module.

The SPARK module maintains a 3D model of the robot and of its environment
(pose of objects, behavior of humans, position and posture of humans, visibility, etc.).
This model is composed of known models and updated from data provided by the robot
sensors.

The trajectory controller that monitors the execution of the trajectories is build on
top of the controller provided by the robot manufacturer.

The “attentional system” uses sensors data that are preprocessed by the SPARK
module to monitor and interpret the humans positions and behaviors. Given a model of
the human behavior and the configuration of the robotic system, the attentional system
can change the task that the robot is doing or the way the robot executes the task. For
example, it can adapt the frequency of the clock that regulates the execution/control of
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Figure 2: Architecture: from a robot movement defined by the task planner and su-
pervision module and the state of the robot maintained by the SPARK element, the
MHP module computes in real time a trajectory for the trajectory controller and the
Attentional System monitors the execution.

the task. Finally, from the trajectory and state of the scene it can modify the trajectory,
move the end position or adapt the cost to accelerate or decelerate the motion law. This
possibilities are described in the Section 5.

In this architecture, the “grasp planner” has an important place as the choice of the
initial grasp impacts all the task. For example, the position of the platform of the robot
must be chosen so that the arm can achieve the grasp while avoiding obstacles. In the
next section we detail a grasp planner developed in this context.

3 Grasp Planning
As the choice of a grasp to grab an object greatly determines the success of the task,
we present here some aspects of the grasp planner module. For a complex object and
simple tasks like pick and place or pick and give to a human, a lot of constraints have
to be taken into account. But one essential point for human robot interaction (HRI) is
the necessity of double grasp in many situations. Of course, both hands are required to
lift a heavy object, but during the exchange of an object with a human the object is also
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grasped by two hands. Sometimes, the robots needs to change the hand that holds an
object and transitorily uses double grasp.

Grasp planning basically consists in finding a configuration for the hand(s) or end
effector(s) that will allow picking up an object. If we consider a complete robotic
platform, not only the grasp configuration is needed but also the configuration of the
robot base and arm. To replace our work in the existing one, we give a brief overview
of the state of the art concerning grasp planning in the next section.

3.1 Related Work
Most of the early grasp planning methods did not take into account finger nor arm kine-
matics and are often referred as contact-level techniques [51, 29, 26]. The contacts are
regarded as freely-moving points with no link to any mechanical chain. Many grasp
stability criteria have been introduced for this model of point/surface contact, the most
common being certainly the force closure criterion [29, 5]. Force closure criterion is
verified if a grasp can resist arbitrary force/torque perturbation exerted on the grasped
object and is tested for a specific set of contacts (positions and normals). To integrate
the notion of robustness of the grasp stability with respect to the contact positions, the
concept of independent regions of contact has been introduced [51]. These regions are
such that a grasp always verifies force closure as long as the contacts stay within the
region. The computation of these regions has been solved for different object surfaces
modelization (2D discrete surface [22], 2D polygonal surface [23], 3D polyhedral sur-
face [55, 56]).

All these contact-level techniques were not very well-suited for real applications.
Therefore, many new methods have appeared that integrate considerations on finger
and/or arm kinematics.
Miller et al. [48] proposed to decompose the object into a set of primitives (spheres,
cylinders, cones and boxes). With each primitive is associated a pregrasp configuration
of the hand. A set of parameters is sampled in order to test the different possible ap-
proaches of the hand, then, for each approach, the fingers are closed on the object until
collision. The quality of the obtained grasp is then computed according to the measure
described in [29].
The idea of object decomposition was widely used and is still the base of many grasp
planners. It offers a heuristic to reduce the possible relative palm/object poses to test.
In [32], the authors decompose the object model into a superquadric decomposition tree

employing a nonlinear fitting technique. Grasps are then planned for each superquadric
with a heuristic approach close to the one in [48]. The grasps are then simulated on
the original object model using the GraspIt! dynamics simulator [47], to sort them by
quality.
Huebner et al. [38] proposed a technique to build a hierarchy of minimum volume
bounding boxes from 3D data points of the object envelop. This method offers a in-
teresting robustness with respect to the quality of the object 3D model, acquired from
sensors (here laser scan).
In [36], the object is decomposed into a set of boxes called OCP (Object Convex Poly-
gon). Each box of the OCP is compared to a GRC (Grasping Rectangular Convex),
which gives an estimation of the maximum size of the object that the hand can grasp.
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Different GRCs are defined corresponding to different grasping styles. Xue et al. [66]
presented a method to optimize the quality of the grasp while taking into account the
kinematics of the fingers during the optimization phase. They use a swept volume pre-
computation associated with a continuous collision detection technique to compute, for
a given hand/object relative pose, all the possible contacts of each finger on the object
surface. After obtaining an initial grasp provided by the GraspIt! software [47], they
locally optimize the quality of the grasp in the finger configuration space.

Some works gave more focus on arm and/or robot base inverse kinematics issues.
Berenson et al. [4] are interested in finding grasp configurations in cluttered envi-
ronments, for a given robot base position in the object range. From different object
approaches, the authors precompute a set of grasps, all verifying the force closure
property. Instead of trying to solve the arm inverse kinematics and checking for col-
lisions for each grasp of the set in an arbitrary order, the authors propose to compute
a grasp scoring function for each grasp. The function is used to evaluate the grasps
that are more likely to succeed the inverse kinematics and collision tests and is based
upon a force closure score, a relative object-robot position score and an environment
clearance score.

The authors of [25] focused on path planning for the robot base (or body) and arm
and presented a planning algorithm called BiSpace. Like in [4], they first compute a
set of grasp configurations for the hand alone. Once one or more collision free config-
urations for the hand are found, they become the start nodes of several RRTs (Rapidly
Random-exploring Tree [44]) that will explore the hand workspace while another RRT
is grown from the robot base start configuration, that explores the robot configuration
space.

Some recent works were inspired by results in neuroscience [57, 65] which have
shown that humans mainly realize grasping movements that are restricted in a configu-
ration space of highly reduced dimensionality. From a large data set of human pregrasp
configurations, Santello et al. [57] performed a principal component analysis revealing
that the first two principal components account for more than 80% of the variance. Cio-
carlie et al. [20] called the components eigengrasps and use them as a base to represent
the reduced configuration space of the hand. They also add the six DOF’s of the wrist
pose. Then, they use a simulated annealing based optimization method, in eigengrasp
space, to find the best grasp according to an energy function. The energy function takes
into account two parameters. First, the distance between specified points on the hand
and the object surface. Secondly, a quality metric based on the one in [29].

A frequent difficulty associated with grasp planning concerns the 3D model recon-
struction of the object to be grasped. This reconstruction is not an easy task and the
resulting model can be very noisy. In order to avoid the need for 3D-model recon-
struction, Saxena et al. [58] proposed a method to find good grasps of objects being
seen for the first time, that does not require such a model. This method is based on a
learning approach that uses image features to predict good points where to grasp the
object. These features are based on edges, textures and colors. A set of generated syn-
thetic images of various objects is used to learn the feature values of region labeled as
grasping points. For a novel object, a probabilistic model of the grasping point features
is used to find grasping points in the image. A triangulation is then performed that uses
images from different points of view to find the region where to grasp the object in 3D
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space.

3.2 The Grasp Planner
As explained above, for HRI, grasp planning has several uses and is not only devoted
to basic pick-and-place tasks. In particular, in a planning point of view, the context
is very important in order to choose a valid grasp. Therefore, the proposed approach
does not rely exclusively on a heuristic that can introduce a bias on how the object is
grasped. Our objective is to build a grasp list to capture the variety of the possible
grasps. It will then allow finding a grasp, even in a cluttered environment, for an ob-
ject with a complex shape. In the following, we illustrate the method with the Schunk
Anthropomorphic Hand (SAH) depicted on Fig. 3 as it is the one used in our labo-
ratory. It has four fingers. Each finger, except for the thumb, has four joints. Only
the three first joints are actuated, the last one being coupled with the third one. The
thumb has an additional actuated joint to place it in opposition to the other fingers. The
method however applies to other hand kinematic structures, after some small numeric
adaptations.

Figure 3: Left: The Schunk Anthropomorphic Hand used to illustrate our grasp plan-
ning method. Right: A grasp is defined by a transform matrix Tgrasp, the finger joint
parameters of each finger i (q i

1,q i

2, . . .) and a set of contact points (p1, p2, . . .).

A single grasp is defined for a specific hand type and for a specific object. The
object model is supposed to be a triangle mesh: A set (array) of vertices (three coor-
dinates) and a set of triangles (three indices in the vertex array). It is assumed to be a
minimum consistent i.e. has no duplicate or isolated vertices nor degenerate triangles.

3.2.1 Grasp Definition

In the following, we define a grasp by (See Fig. 3):

• A transform Tgrasp between the object and the hand frame.

• A set of finger joint parameters (q i

1,q i

2, . . .) where i is the ID of the finger.

• A set of contact points (p1, p2, . . .) that can be deduced from the two previous
items.
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A contact contains the following information:

• Position: both a 3D vector and a set (triangle index + barycentric coordinates) to
store the position.

• Normal: the plane normal of the triangle the contact belongs to.

• Coulomb friction: used further to compute the grasp stability.

• Finger ID: to store which finger is responsible of the contact.

• Curvature: it is interpolated from the curvature of the vertices of the triangles.

As the main concern of the grasp planner is motion planning, it is not possible to
rely on the computation of an only grasp or to compute grasps according to a heuristic
that could introduce a bias on the choice of the grasp. It is preferable to compute a
grasp list that aims to reflect the best the variety of all possible grasps of the object.
Our algorithm applies the following steps that will be detailed further:

• Build a set of grasp frame samples.

• Compute a list of grasps from the set of grasp frames.

• Perform a stability filter step.

• Compute a quality score for each grasp.

3.2.2 Grasp Frame Sampling

For manipulation planning, it is important to avoid biasing the possible approach of the
hand when we compute the grasp. Therefore, we choose to sample the possible grasp
frames uniformly. This is done by the mean of a grid. We have chosen, for our hand,
a grasp frame that is centered on the intersection of the finger workspaces so that it
is roughly centered where the contacts may occur. We set as an input the number of
positions and the number of orientations, each couple position-orientation defining a
frame. The positions are uniformly sampled in the object axis-aligned bounding box
with a step computed to fit the desired number of position samples. The orientations
are computed with an incremental grid like the one in [67]. For each grasp frame, a set
of grasps will be computed.

3.2.3 Grasp List Computation

As the proposed grasp planning method does not restrict the possible hand poses or
surfaces of contact on the object, it requires a lot of computation. Therefore, we have
to introduce some data structures to reduce the computation times. Except for colli-
sion test, the most expensive computation is the finger inverse kinematics. One has to
be able to know the fastest possible if, for a specified hand pose (relative to the ob-
ject), a finger can establish a contact on the object surface and, if it is the case, where.
The contacts can only occur in the intersection of the finger workspace and the object
surface. For each finger, it is consequently crucial to find this intersection or at least
an approximation. We use two data structures to model the object surface and finger
workspaces.
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Figure 4: The object mesh is uniformly sampled with a point set (top images). The
point set is then partitioned using a kind of kd-tree (bottom images).

3.2.4 Object Surface Model

We propose to approximate the object surface with a contact point set, keeping trace of
where it is on the object mesh to be able to get some local information (surface normal
and curvature) later. The set is obtained by a uniform sampling of the object surface.
The sampling step magnitude is chosen from the fingertip radius. A space-partitioning
tree is built upon the point set in order to have a hierarchical space-partitioning of the
points (Fig. 4). It is similar to a kd-tree. Starting from the original set of points, we
compute the minimal axis-aligned box containing all the points. Such a box is usually
referred as Axis-Aligned Bounding Box or AABB. This first AABB is the tree root.
The root AABB is then splitted in two along its larger dimension. This leads to two
new nodes, children of the root, containing each a subset of the original point set. The
splitting process is then recursively applied to each new node of the tree. The process
ends when a node AABB contains only one point.

We then need to find the intersection of each finger workspace with the object sur-
face tree. So we introduce another data structure to approximate the finger workspace
and compute this intersection quickly.

3.2.5 Finger Workspace Model

As spheres are invariant in rotation, they are interesting to build an approximation of
the finger workspace. Starting from a grid sampling of the finger workspace (Fig. 5),
we incrementally build a set of spheres fitting strictly inside the workspace. First,
points of the grid are marked as being boundary points (on the workspace envelope) or
inner points (strictly inside the workspace volume). For each inner point, the smallest
distance to the boundary points is computed, referred as dmin. The inner point having
the biggest dmin is the center of the first sphere S1, of radius dmin. For all the inner
points that are not inside S1, a new dmin is computed, that is the minimum of the
old dmin and the minimal distance to S1. The point that has the biggest dmin is the
center of the second sphere S2, of radius dmin. This process is repeated until we have
reached the maximal desired sphere number or the last computed sphere has a radius
less than a specified threshold. We keep the ordering of the construction so that the
sphere hierarchy starts from the biggest ones, corresponding to workspace parts that
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are the farthest to the finger joint bounds. These bounds were first slightly reduced
(Fig. 5) in order to eliminate configurations where the fingers are almost completely
stretched.

Figure 5: The finger workspace, discretized with a grid (forefinger workspace, left
image). The grid is converted to a volumetric approximation as a set of spheres (right
image).

Once we have both the contacts tree and the workspace sphere hierarchy, it is very
fast and easy to determine the intersection of the two sets and so the contact points.

3.2.6 Intersection Between Object Surface and Finger Workspace

All the operations that have to be performed are sphere-box intersection tests. The
intersection is tested from the biggest to the smallest sphere, guaranteeing that the best

parts of the workspace will be tested first, i.e. the ones farthest to singularities due to
the joint bounds. Starting from the tree root, we test if there is a non-null intersection
between a AABB-node and the sphere. If not, we stop exploring this branch, otherwise
we test the sphere against the two node children, until we arrive to a leaf node, i.e. a
single point. We then just have to test if the point is included in the sphere volume.
Fig. 6 shows the contact point candidates for two different grasp frames with the same
object. At this stage, we just know that the points will pass the finger inverse kinematics
test. No collision tests have been performed yet. For a given grasp frame, the grasp is

Figure 6: The potential finger contacts, drawn in red, green, blue and magenta for the
thumb, forefinger, middle finger and ring finger respectively. On the left image, no
contact can be found for the ring finger because of its limited workspace.

computed finger by finger, that means that, if we have the contact and configurations of
the fingers 1 to i�1, we search a contact point for finger i and test collision only with
the fingers 1 to i as the other finger configurations are not yet known. We start from
the thumb as no stable grasp can be obtained without it. If a finger can not establish a
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contact, it is left in a rest (stretched) configuration. If we have three contacts or more,
we can proceed to the stability test. Note that, at this stage, we have a collision-free
grasp, i.e. no collision between the hand and the object and do not yet consider collision
with the environment or the robot arms or body.

3.2.7 Stability Filter and Quality Score

The stability test is based on a point contact with friction model, that explains why at
least three contacts are required. From the contact positions and normals, we compute
a stability score. It is based on a force closure test and stability criterion [7]. All the
grasps that do not verify force-closure are rejected. We also compute and add a second
score that is the distance to the mass center of the object. The stability score is not
sufficient to discriminate good grasps so we build a more general quality score.

Several aspects can be taken into account to compute a grasp quality measure [63].
A trade-off is often chosen with a score that is a weighted sum of several measures.
We chose to combine the previous stability criterion with two other criteria: A finger
force ellipsoid major axis score and a contact curvature score. The idea behind the first
one is that it is preferable to favor contact such that the contact normal is in a direction
close to the direction of the major axis of the force ellipsoid, corresponding to the better
force transmission ratio. Fig. 7 shows the force ellipsoids computed for a configuration
of the SA Hand.

Figure 7: Left: the finger force ellipsoids must fit the contact normal to ensure a good
grasp. Right: the mean curvature of the object surface is used as a quality criterion
on the contact position. Surface color varies from red (low curvature) to blue (high
curvature), through green.

The curvature score is used to favor contacts where the mean curvature of the object
surface is low. In real situation, it will reduce the impact of a misplaced contact as the
contact normal will be susceptible to smaller change in a low curvature area than in a
high curvature one. Fig. 7 shows, on some objects, how low curvature areas are prefer-
able to establish contacts. Curvature is computed for each vertex and then interpolated
for each point on the surface from its barycentric coordinates. The curvature is then
normalized to be always included in [0;1].

3.2.8 Double Grasp Planning

A double grasp is a grasp involving both hands. It is computed from two single grasp
lists L1 and L2, obtained for each hand. The model for double grasp simply derives
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from the single grasp model: it is defined by a valid grasp for each hand and the two
associated quality.

Each single grasp pair sg1 and sg2, belonging to L1 and L2 respectively, is tested.
All colliding pairs are rejected. The list can be filtered once we have more information
about the environment or task to realize. For instance, if the task is to pick up an
object with one hand, give it to the other hand before placing it on a support, we can
remove all the grasps that lead to a collision with the environment for the given initial
and final object poses. For instance, all the grasps that take the object from below will
be removed as they lead to a collision between the object support (e.g. a table) and
the hand. For each double grasp, a score is then computed based on two scores: The
quality of each single grasp and an inverse kinematics (IK) score.

• The minimum of sg1 and sg2 quality is used as a stability score for the double
grasp.

• An IK score is computed for sg1 and sg2. It is based on how natural is the way to
grasp the object in its start and goal configuration using sg1 and sg2. The score
is a distance of the arm configuration to a predefined rest configuration. For the
double grasp, we take the minimum of the IK scores of sg1 and sg2.

After normalizing these two scores separately for all the computed double grasps, we
sum them for each double grasp to obtain its score.

Fig. 8 shows a double grasp computed with our algorithm.

Figure 8: An example of double grasp computed for right and left SAHs with friction
cones displayed in colors.

3.2.9 Double Grasp for Object Transfer

First, a double grasp list must be computed for the object of interest. This list is com-
puted for a hand pair composed of the robot hand and a human hand (his/her right hand
a priori). The human hand model is of course a simplification as our modelization only
deals with rigid bodies. We use the SAH as it is already available, but with a scaled
kinematic structure to approximate the human hand.

Let note a double grasp of the list dg = (sgr, sgh) where sgr is a grasp of the robot
hand while sgh is a grasp of the human hand. For a given object, placed on a support in
a particular environment, we remove, from the previously computed double grasp list,
all the double grasps such that sgr does not allow the robot to grasp the object. From
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each remaining double grasp, knowing the positions of both human and robot, we can
deduce how to hand over the object to the human as the grasp gives the direction of the
human wrist to grasp the object. The robot still has to choose a double grasp from the
list and an exchange pose for the object. The choice of the double grasp is based on the
notion of intention legibility. It must be easily interpreted as an object transmission.
The best double grasps appear then to be the ones where the wrist directions of human
and robot are opposed. The choice of the exchange pose is based on the notion of
comfort. It must allow the human to grasp the object with a comfortable wrist/arm
direction, i.e. directed from the human position to the object position (Fig. 9).

Figure 9: A good object transmission must be easily interpretable from the human point
of view and must not require an uncomfortable arm movement for the human.

3.2.10 Dual Arm Manipulation

Dual hand/arm grasps are at least required in two situations, when the object to carry
is too heavy to be carried with only one hand and when the robot has to transfer the
object from one hand to the other to take advantage of the workspaces of the two arms.
In this re-grasping case, a first solution consists in placing the object on a support and
then picking it up again with the other hand. But a better solution is to use the second
hand to realize a temporary dual-handed grasp before removing the first hand.

For a given manipulation task, the robot will start with a one-handed grasp gi and
end with a one-handed grasp g f . The regrasping task will be achieved with the help of
a double grasp obtained by combining gi and g f . As the hands must not collide during
the regrasping task, gi and g f must be chosen appropriately. Grasps that were ideal in
the case of single-handed manipulation are generally no more usable for dual-handed
manipulation. Indeed, for stability reason it is preferable to use contacts that are close
to the object center of mass. This leads to configurations where the hand is centered on
the object, that do not let enough room to take the object with the other hand. When the
robot uses dual-handed grasps, it will modify the initial and final single-handed grasps
in order to take the object on its extremities. Such an example is depicted in Fig. 10
where the DLR’s robot Justin [54] manipulates a horse statuette. The best grasps, in
term of stability, are on the body of the horse. However, it is not possible to place two
hands on this part of the object. Consequently, the robot has to choose to grasp the
extremities of the object (leg and head on the example).

15



Figure 10: If the robot (DLR, [54]) has to realize a regrasping task, it must select initial
and final grasps that let enough room to perform a dual-handed grasp.

It is also possible to perform regrasping to just modify the grasp of one hand. Let
us suppose the robot holds the object with the right hand and with a grasp gright . The
robot also needs to change the grasp. It can take the object with its left hand and a
grasp gle f t , release the first grasp, possibly re-orient the object, and grasp the object
with right hand again but with a different grasp g

0
right

. Two dual-handed grasps will
thus be required: [gright , gle f t ] and [g0

right
, gle f t ]. The grasp selection uses the same

principle as above but is more combinatorially complex.
This technique has been implemented for the robot Justin1 equipped with two

SAHs, within our simulator, (Fig. 10) to plan pick-and-place tasks that require regrasp-
ing.

We have presented a grasp planner for single and double grasp that allows choos-
ing a grasp in real time according to the behavior of the human. As we have seen,
grasp planning is complex and greatly determines the succes of a manipulation task. In
particular, the choice of a grasp compatible with the whole task is crucial. In the next
section, we introduce how to plan and adapt a displacement after the move is defined
in an interactive context.

1Justin is a robot of DLR that gracefully made the model available for LAAS-CNRS
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4 Motion Planning
The HRI introduces real challenges for the motion planning problem. While motion
planning is not yet largely used in industry where most robots are still programmed by
learning, for HRI we need to plan and adapt in real time motions that take into account
human movements and behaviors. Traditional motion planners plan only a path that
a controller executes at constant velocity. To take into account human motion, we
propose here to plan trajectories that satisfy the HRI constraints: safety and comfort.

From an elementary task like “pick an object”, “place an object” or “give an ob-
ject”, the motion planner must precise initial and final conditions for each move, plan a
trajectory and then adapt the trajectory in real time. For example, to plan the first move-
ment of a pick and give task, the planner must firstly choose an initial grasp that takes
into account the double-grasp needed to give the object and then adapt the movement
to the human behavior.

In this section, we present a first skeleton of a planner for human-robot interactive
motions.

4.1 Planning The Path
The first step of the motion planning is the computation of the path P . In our case, the
motion planner is based on the planner initially proposed by Sisbot [60]. The motion
planner takes explicitly into account the constraints of HRI to synthesize navigation
movements (movement of the platform) and handling (fixed robot platform). HRI con-
straints are for example the human-robot distance or field of view of the human. This
planner is based on case studies in HRI [42] and on existing theories on the proxemic
behavior of humans [34]. The HRI constraints are represented by cost functions based
respectively on the posture of the human, his/her field of view and his accessibility.
These costs are represented by costs maps defined in the working space of the robot.
In [60], to solve a manipulation task like passing an object to a human, the path of the
object is first planned using grids methods defined in the workspace. Then the path
of the robot is planned from the inverse kinematic of the robot. However, as the path
of the object is defined by the first step of the method, the original planner is not effi-
cient in cluttered environment. We use the extension proposed by Mainprice [45]. This
extension consists in extending the capabilities of the planner through the use of plan-
ning algorithms based on random sampling to compute the moves taking into account
human in cluttered environments.

4.1.1 Random Path Planner

When the robot shares the workspace with humans, the path planner must take into ac-
count the costs of HRI constraints. We perform this planning with the T-RRT method
[40] which takes advantage of the performance of two methods. First, it benefits
from the exploratory strength of RRT-like planners [43] resulting from their expan-
sion bias toward large Voronoi regions of the space. Additionally, it integrates features
of stochastic optimization methods, which apply transition tests to accept or reject po-
tential states. It makes the search follow valleys and saddle points of the cost-space
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Figure 11: T-RRT constructed on a 2D costmap (left). The transition test favors the
exploration of low-cost regions, resulting in good-quality paths (right).

in order to compute low-cost solution paths (Fig. 11). This planning process leads to
solution paths with low value of integral cost regarding the costmap landscape induced
by the cost function.

In a smoothing stage, we employ a combination of the shortcut method [3] and of
the path perturbation variant described in [45]. In the latter method, a path P(s) (with
s 2 R+) is iteratively deformed by moving a configuration qperturb randomly selected
on the path in a direction determined by a random sample qrand . This process creates a
deviation from the current path, The new segment replaces the current segment if it has
a lower cost. Collision checking and kinematic constraints verification are performed
after cost comparison because of the longer computing time.

The path P(s) computed with the human-aware path planner consists of a set of via
points that correspond to robot configurations. Via points are connected by localpaths
(straight line segments). Additional via points can be inserted along long path segments
to enable the path to be better deformed by the path perturbation method. Thus each
localpath is cut into a set of smaller localpaths of maximal length lmax.

4.1.2 Taking into Account Geometric Constraints

We use costmaps to model the HRI. These costs are important when the configuration
of the robot is not safe or comfortable for the human. We retain three constraints:

• Safety constraint (Fig. 12(a)): This constraint ensures the safety of interaction
by monitoring the distance between the robot and the human. The human is
modeled by approximating the bounding volume of his/her body (regardless of
the geometry of the arm). To reduce the risk of collision between the human and
the robot, this safety constraint keeps the robot away from the head and body.
The distance to be considered is the minimum distance between the robot (all
parts of the robot are taken into account) and the simplified model of human
(cylinder + sphere). When this distance is small, the cost is high and conversely
when the distance increases the cost decreases to a minimum threshold after
which it becomes null.

• Visibility constraint (Fig. 12(b)): This constraint aims at limiting the effect of
surprise that may experience a human while the robot moves in the workspace. A
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human feels less surprised if the robot remains visible and the interaction is safer
and more comfortable. Thus, each point of the workspace has a cost proportional
to the angle between the gaze of the human and his/her position in the Cartesian
space;

• Constraint of ”comfort of the human’s arm”: The third constraint is taken into
account for object exchange tasks between robot and human. It allows determin-
ing an object transfer point (OTP) in the workspace. This constraint is also taken
into account during the path planning of the exchange task to facilitate the ex-
change of the object at any time during the move. For this, the robot must reason
on the kinematic and the accessibility capabilities of the human. The assumed
reachable volume of the human can be pre-computed using generalized inverse
kinematics. For each point inside the reachable volume of the human, the deter-
mined configuration of the torso remains as close as possible to a given resting
position. Collision detection with the environment is then used to validate these
postures. At each valid position, a comfort cost is assigned through a predictive
model for human posture introduced in [46].

(a) Simplified model of the
human for the safety cost.

(b) Visibility model of a hu-
man.

Figure 12: Cost models of safety and visibility.

Each constraint is represented by a three-dimensional cost map, these basic costmaps
are then combined with a weighted sum:

cost(h,q) =
3

Â
i=1

wici(h,q) (1)

where wi are the weights, h the human posture, q the robot configuration and ci, the
costs.

In the current implementation, the weights are empirically defined and cost func-
tions are evaluated ”on the fly” during planning.
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4.1.3 Path Planning

According to the presence or the absence of the human in the scene, the path planning
is performed using T-RRT if human is present or RRT if not.

In both cases, the path resulting P(s) (s 2 R+) is composed of a set of robot
configurations (nodes) connected by straight lines (edges). Consider the example of
a two-dimensional system solved by the method RRT. the Figures 13(a) and 13(b) re-
spectively represent the initial and final positions of the yellow puck. The path obtained
is shown in Fig. 13(c) (green lines connecting the spheres). The spheres represent the
intermediate configurations of the path.

(a) Initial configuration (b) Final configuration (c) Obtained path

Figure 13: Example of a the planning of a path in a 2 dimension space.

4.2 From the Path to the Trajectory
We propose to generate a trajectory from a path using the soft motion trajectory planner
designed by Broquère [12, 11, 10].

4.2.1 Trajectory Model

Figure 14: The jerk evolution for the j axis of the TR(t) trajectory.

A trajectory TR(t) is represented by a combination of n series of cubic polynomial
curves. The use of polynomial cubic defined by the Soft Motion Trajectory Planner
provides a solution in the context of HRI where the task introduces numerous con-
straints. From the trajectory generation point of view the safety constraint is ensured
by bounding the velocity and the comfort constraint by bounding the jerk and the ac-
celeration.
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The trajectory jTR(t) corresponds to the evolution of the j axis and is composed
of N cubic polynomial segments (curves) (Fig. 14). We consider that each axis has the
same number of segments since they can be divided.

Functions jJk(t), jAk(t), jVk(t), jXk(t) respectively represent the jerk, acceleration
and velocity evolution over the k segment for the j axis. Ti is the initial time of the
trajectory and TF the final one.

A segment is defined by the Eq. (2) and depends on its duration Tk and on five
parameters:

• the initial time tlk with tlk = tI +Âk�1
i=1 Ti,

• the initial conditions (3 parameters: jAk(tlk), jVk(tlk), jXk(tlk)),

• the jerk value jJk

8t 2 [tlk, tlk +Tk] :

jXk(t) =
jJk

6
(t � tlk)

3 +
jAk(tlk)

2
(t � tlk)

2 + j Vk(tlk)(t � tlk)+ j Xk(tlk) (2)

where jJk, jAk(tlk), jVk(tlk), jXk(tlk) and tlk are constant 2 R.
The initial conditions of the trajectory jTR(t) are:

jA1(tI) = j AI

jV1(tI) = j VI (3)

jX1(tI) = j XI

and the final conditions:

jAN(tF) = j AF

jVN(tF) = j VF (4)

jXN(tF) = j XF

where tF � tI = ÂN

i=1 Ti.
The multidimensional trajectory is then a composition of trajectories as:

TR(t) = [1T R(t) 2T R(t) ... nT R(t)]T (5)

where n is the number of axis.
From the N couples ( jJk,Tk) and the initial conditions (3) of the trajectory jTR(t)

we can compute the kinematic state along the j axis at a given time with (6), (7) and
(8). In order to simplify the notation, the j index representing the axis will be omitted.

8t 2 [tlk, tlk +Tk], with tI = 0:
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4.2.2 The Kinematic Constraints

The trajectory generation method is based on constraints satisfaction (velocity, accel-
eration and jerk). Each constraint is supposed constant along the planned motion. In
the multidimensional case, each axis can have different constraints. We also suppose
that the constraints are symmetrical:

jJmin = � jJmax

jAmin = � jAmax (9)

jVmin = � jVmax.

Hence, the jerk, acceleration and velocity must respect:

| jJ(t)|  jJmax

| jA(t)|  jAmax (10)
| jV (t)|  jVmax.

4.3 Basic Concepts of the Trajectory Generation
This section describes breifly the core of the trajectory generator bounding the jerk, the
acceleration and the velocity. Details can be found in [12, 11, 10]. The three introduced
methods do not use optimization steps, they are designed to be used on-line in a control
loop to modify the trajectory and, for example, track and catch an object handled by
the human.

4.3.1 The Canonical Case: the Kinematically Constrained Point-to-Point Mo-
tion

In the basic case a motion between two points where initial and final kinematic condi-
tions are null, the Figure 15 represents the optimal point-to-point motion (according to
the imposed kinematic constraints). This point-to-point motion is composed of seven
segments of cubic polynomial functions at most [12].

In the multidimensional case each axis has also seven cubic polynomial segments
at most. Computation details can be found in [10].
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Figure 15: Jerk, acceleration, speed and position curves and motion in the acceleration-
velocity frame for a single axis.

4.3.2 The Minimal Time Motion Between Two Non-null Kinematic Conditions

From the canonical point-to-point case we extend the monodimensional algorithm to
compute minimal time motion between two non-null kinematic states (non-null accel-
eration and velocity). An overview of this algorithm is presented in [12] and the details
in [10]. This kind of motion is composed of a set of elementary motions saturated in
jerk, acceleration or velocity. The number of elementary motions is also seven at most.
For the multidimensional case, we propose in [10] a solution to synchronise the axis
motions.

4.3.3 The Time Imposed Motion Between Two Non-null Kinematic Conditions:
the 3-Segment Method

The method for computing a motion with an imposed duration was previouly presented
in [11]. This method does not bounds the jerk, acceleration nor velocity. It uses three
cubic polynomial curves to define such a motion. This simple definition provides a
solution to compute analytically the motion.
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4.3.4 Smoothing an Input Function

Figure 16: Example of the smoothing of a set function.

We use the method proposed in [12] to compute online a smooth movement from an
input defined by acceleration and velocity. At each update of the set function, a move is
computed from the current state of the system. This move is bounded by the kinematic
constraints (Jmax, Amax and Vmax). Under this kinematic constraints, the minimal time
motion is defined by the critical movement associated to the critical length dc [12].

Thus, in order to allow a mono-dimensional system to reach its set value in minimal
time, the critical movement is computed at each iteration.

An example of a smoothed signal is plotted in the Fig. 16. The blue dotted curve is
the input and the green curve is the smoothed velocity. The method acts like a filter for
the acceleration.

4.4 Trajectory Generation
The trajectory generation is based on the three main methods introduced in the previous
section. The input is the path P computed by the path planner (Sect. 4.1.1).
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Figure 17: From the path P to the smoothed trajectory T R.
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The first step is to calculate a trajectory passing through all the nodes of the path P .
This trajectory, which we call T Rpt p consists of point-to-point movement (Sect. 4.3.1)
and therefore includes stop motions at each configuration defining a node.

The second step consists in smoothing these stop motions to obtain a shorter tra-
jectory in time T R. Smoothing uses the same 3D model than the research phase of the
path. Thus, collisions are tested during the computation of the transition moves at each
node. If a collision appears during the smoothing of the stop move at node qi, then the
movement will not be smoothed for this node and the stopping move will be kept.

In the following, we detail a method for smoothing stop motions based on the com-
putation of a fixed time movement using the 3-segment method presented in previous
work.

4.4.1 Smoothing of the Stop Motions

We propose a method based on the minimum time algorithm for trajectory generation
(Sect. 4.3.2) [12] and on the 3-segment method (Setion 4.3.3) to smooth the stopping
motions [11].

The trajectory T Rpt p (Fig. 17) between the first two nodes qinit and q1 is a point-
to-point motion in a straight line of duration T(qinit q1). Similarly the motion between
q1 and q2 is a point-to-point motion of duration T(q1q2). The stop motion is smoothed
between the points M1,2 et M2,1.

Notation: We note the points that limit the smoothing Mi, j, the index i is the index
of the point-to-point motion (the first of the trajectory has an index of 1). The index
j 2 {1,2} is 1 if this point is the final extremity of the transition motion with the
previous point-to-point motion and conversely for j = 2.

Choice of the Points Mi, j

Let us consider the transition motion in the neighborhood of q1 located at time tq1:

tq1 = tI +T(qinit q1) (11)

To simplicity, we choose tI = 0 as the time origin of the trajectory.
The time positions tM1,2 and tM2,1 of the points M1,2 and M2,1 are determined from

a given parameter t such that:

M1,2 = T Rpt p(tq1 �max(t,
T(qinit q1)

2
)) (12)

M2,1 = T Rpt p(tq1 +max(t,
T(q1q2)

2
)). (13)

So when t is null, the movement stops at the point q1. When t satisfies (14), the
transition motion connects the midpoints of the line segments (qinit ,q1) and (q1,q2)
because of the symmetry of the velocity profile about this point.

t � max

✓
T(qinit q1)

2
,

T(q1q2)

2

◆
(14)
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In practice, unless otherwise specified, by default we choose the points Mi, j such
that the transition movement begins at the end of the constant velocity segment of the
first point-to-point movement (P1,P2); the transition movement ends at the beginning
of the constant velocity segment of the second point-to-point movement (P2,P3).

Notice that, for a given value of the parameter t , the Euclidean distance between
the points Mi, j and the corresponding point qi varies according to kinematic parameters
of the point-to-point movement.

4.4.2 Computation of the Transition Movement

Let us consider a trajectory of dimension n. The instants tMi�1,2 and tMi,1 , start and end of
the transition movement at the configuration qi, are identical for all n dimensions. The
computation method is described by Algorithm 1. The first step consists in computing,
for each axis, the optimal time motion to determine the duration Timp of the transition
movement. The method 3-segment to compute the movement in fixed time is then
applied to each axis.

Algorithm 1: Computation of a transition movement near of a node qi

begin
Determining the switching points Mi�1,2 et Mi,1 (eq. 13 and 12)
for each dimension ni do

Computation of the one-dimensional movement in minimum time
(Section 4.3.2)
Computation of the duration of the one-dimensional movement in
minimum time Topt [i]

end
Determination of the duration of the transition movement
Timp = max(8 i 2 [1,n] | Topt [i])
for each dimension ni do

Computation of triplets of cubic curve segments from the method
3-segments (Section 4.3.3)

end
end

Figure 18 illustrates an application of the method for the case of a movement
defined by three points P1, P2, P3 and by the kinematic constraints Vmax = 0.1m/s,
Amax = 0.3m/s et Jmax = 0.9m/s. The transition movements are computed for different
values of the parameter t .

The proposed method ensures the continuity in velocity and acceleration for each
dimension. The initial and final velocities of the transition movements can be different
and acceleration not zero. The duration of the transition movement is computed by tak-
ing into account the kinematic constraints of each dimension using the minimum time
algorithm (Sect. 4.3.2). Therefore this method guarantees that changes in velocity, ac-
celeration and jerk are limited. However, in some cases, constraints can be exceeded by
the 3-segment method. In practice, we introduce a percentage (10%) of exceeding for
each constraint. If, for a transition movement, the exceeding of kinematic constraints

26



Figure 18: Transition movement for two lines that form an angle of about 127 (top),
graph of position, velocity and acceleration as function of time for a point-to-point
motion for t = 0 (bottom-left) and t = 1s (bottom-right)

is too large, this movement is not smoothed to comply with the constraints of human
comfort.

4.5 Application to Robot Manipulators
To better explain the method, we apply it to an example of task of grasping an object,
the grey tape cassette of the Fig. 19. The path of the center of the end effector of
the robot (hand) is described by the green line segments in Fig. 20. On this path, the
spheres represent the initial, final and intermediate configurations (nodes). The path of
the point-to-point trajectory T Rpt p is identical to the path planned. This trajectory stops
at each intermediate node. The smoothed path T R is represented by the black curve. We
note that the trajectory stops at the first node as a smoothing in its neighborhood would
have introduced to a collision2 between the hand of the robot and the environment. The
planning of the path of the trajectory was performed in the Cartesian space of the robot
by considering the platform was fixed. The following section presents the methodology
to take into account the redundancy of the robot.

4.6 Planning in the Cartesian Space
4.6.1 Generation of the smoothed trajectory T R in Cartesian space

To represent the complete configuration of the robot in Cartesian space, we propose to
use a vector Xi with:

2Note: Another solution would be to compute a path that goes farer from the obstacle but it is not the
purpose here.
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Figure 19: Initial configuration and grasp configuration of the robot Jido.

Figure 20: Trajectories T Rpt p et T R in the Cartesian space to grasp the cassette

• the position of the robot base,

• the pose of the end effector(s),

• the configuration of the redundancy axis of the arms if they have more than six
degrees of freedom (DOFs),

• the configuration of the hand(s),

• the configuration of the head.

In the following, we consider that the platform is fixed. For a system operating
in 3D space, six independent parameters are used to define the position of the end
effector. For the planning, the system is decomposed into passives and actives parts
corresponding respectively to dependent and independent variables [24, 35]. Thus a
robot manipulator with six DOFs, is decomposed as follows: the independent variables
(active) are the six DOFs (position and orientation) of the end effector and the joint
variables are the dependent variables (passive) .

In the case of our Jido3 robot, as the robot arm is composed of seven DOFs, it is
therefore redundant. In addition to the pose of the end effector, an articulation of the

3Jido is an MP-L655 platform from Neobotix, equipped with a KUKA LWR arm.
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arm is chosen and becomes an active variable. Notice that, if the motion of a holonomic
platform was considered, then these DOFs would be active variables.

During the planning of the path in the Cartesian space, only the active variables are
sampled using, according to the circumstances, the RRT or the T-RRT algorithm. The
passive variables are computed in a second step by solving the inverse kinematics of
the arm prior to test the validity of the sampled configuration of the robot (bounds and
collision) (See section 4.1.1). During the test of the validity of a local path between
two configurations, the inverse kinematic function is also called.

To perform the interpolation between two configurations, we represent the posi-
tion of the end effector by a displacement: three parameters for the position and three
parameters for the orientation (vector and angle representation with the norm of the
vector equal to the angle [12]). We have implemented a local method of interpolation
between two configurations. This method takes as parameters two local configurations
(with their kinematic conditions) and the imposed kinematic constraints (Jmax, Amax et
Vmax) for each active axis. After applying the local method between each intermediate
configuration, the obtained trajectory T Rpt p is composed of point-to-point movement
of dimension n (n is the number of active axes), that is for Jido n = 22 parameters (6
for the end effector, 1 for the axis of the redundant manipulator, 13 for hands and 2 for
the head).

The smoothed trajectory T R in Cartesian space is then obtained by the method
described in the previous section applied to the active axes (Sect. 4.4).

4.6.2 Conversion of the Trajectory in the Joint Space of the Robot

As most of the robot controllers operate in the joint space, it is important to provide
a solution to convert Cartesian trajectories into joint ones. To perform this transfor-
mation, the trajectories of passive axes are obtained by discretizing the trajectory T R

defined in Cartesian space and performing inverse kinematics for each sample. The
trajectory T R is discretized at the period of operation of the robot controller. This al-
lows obtaining the position, and by derivation, the velocity and the acceleration of all
the DOFs of the robot.

However, this discretization removes the notion of time and requires a large amount
of data to represent the trajectory.

We can use the approximation method of trajectory presented in Section [11] and
[10] to approximate this discretized trajectory and thus obtain a compact description
of the trajectory. Unlike the approximation in the Cartesian space, the trajectory er-
ror taken into account by the approximation algorithm is the maximum error of the
trajectory of each DOF.

The obtained approximated trajectory T Rapp is a function of time, it is composed
of series of segments of cubic curves for each joint variable of the robot.

However, movements of the passive axes are not planned, they can exceed the kine-
matic limits of the robot. In this case, the trajectory cannot be directly performed. To
adapt the trajectory when the task allows it, we replace the time parameter t of the
trajectory by applying a function a , R�! R. The function a will make it possible to
change the time increment during the execution of the trajectory and therefore allow
slowing down the execution.
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The period of the trajectory controller is denoted DT . In the case of a classical
execution, the application a is defined by:

a(t) = t (15)

or, in discrete notation:

a(kDT ) = a((k�1)DT )+DT (16)

The trajectory carried out is T Rapp(a(t)).
The introduction of the function a makes it possible to modify the motion law of

the trajectory T Rapp and thus to adapt the evolution of each joint of the robot in a
synchronized way.

To determine the function a in the case where one wishes to adapt the motion law,
we first determine for each instant of the trajectory T Rapp exceeding b the velocity
of each axis relatively to the corresponding maximum velocity (maximum values used
here are the default limits accepted by the system). We obtain:

8kDT 2 [tI , tF ],

b (kDT ) =

(
1 i f 8 j 2 [1,n], jV (kDT ) j V

mot
max

min

⇣
8 j 2 [1,n] | jV

mot
max

jV (kDT )

⌘
sinon (17)

where n is the number of controlled DOFs, jV (t) the evolution of the velocity of the
articulation j and jV

mot
max

, the maximum velocity of the articulation j.
Thus we obtain:

a(kDT ) = a((k�1)DT )+b (kDT )DT (18)

with a(0) = 0.
However, the trajectory T Rapp(a(t)) cannot be executed directly because it would

introduce discontinuities in velocity due to the discontinuity of b . To smooth the evo-
lution of b , we apply a variant of the method described in Sect. 4.3.4 that anticipates
the change in b . The smoothed function b is denoted by bsmooth. The smoothing is
performed in three steps by the Algorithm 2.
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Algorithm 2: Smoothing the variation of the motion law
begin

Applying the method in Sect. 4.3.4 on the evolution of b by varying the time
from tI to tF with a step of DT , the resulting curve is named b f orward :

b f orward(kDT ) =

⇢
b (kDT ) i f b (kDT )< b ((k�1)DT )

fsmooth(b ) otherwise (19)

Applying the method in Sect. 4.3.4 on the evolution of b by varying the time
from tF to tI with a step of �DT , the resulting curve is named bbackward :

bbackward(kDT ) =

⇢
b (kDT ) i f b (kDT )> b ((k+1)DT )

fsmooth(b ) otherwise (20)

bsmooth is finally obtained by taking the minimum between b f orward and
bbackward :

bsmooth(kDT ) = min(b f orward(kDT ),bbackward(kDT )) (21)

end
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The method presented above allows modifying the velocity of each joint of the
robot to satisfy the velocity bounds. We have supposed that the resulting path respects
the constraints of acceleration. Otherwise, it is possible to identify a function b acc

equivalent to b to take into account overtaking accelerations. In practice, for HRI, the
kinematic constraints of the trajectory are small in comparison to the capabilities of the
system and it is not necessary to check for overtaking of acceleration.

In this section we have presented a method to compute a trajectory from a path that
can be defined either in the joint space or in Cartesian space of the robot.
4.7 Adaptation of the Motion Law During the Execution
During the trajectory execution, humans located in the workspace of the robot can
move, so the robot can put them in danger. We propose to use the geometric models of
the robot and of the human, updated at each iteration during the execution to ensure the
safety and comfort of humans. We choose to take into account the weighted average
cost of the security and visibility constraints introduced in Sect. 4.1.2. The method to
adapt the motion law is the same as the one presented in the previous section. The costs
are high when the distance human-robot is short or when the robot is outside the field
of view of the human, the cost taken into account is costinv 2 [0,1] such that:

costinv(kDT ) = 1� cost(kDT ) (22)

The cost costinv is then smoothed on-line by the function fsmooth presented in Sect. 4.3.4.
When the trajectory T R(a(t)) is planned in Cartesian space, the law a(t) is evalu-

ated at each iteration:

a(kDT ) = a((k�1)DT )+ fsmooth(min(costinv(kDT ),bsmooth(kDT )).DT (23)

In this section, we have presented a human aware motion planner. In a first part we
have introduced some elements to take into account the relative position of the robot
and the human, and the human behavior. Using a ramdom motion planner and cost map
to represent the human constraints, this motion planner begins by computing a broken
line path that is then transformed in feasible trajectories. The trajectory generator al-
lows limiting velocity, acceleration and jerk. This generator is integrated in the motion
planner and firstly presented in the case of planning in the configuration space. It is
then extended to planning in Cartesian space.

The approach is general and can be applied to complex systems with two hands/arms.
We have proposed an original method to convert a Cartesian trajectory in a joint trajec-
tory. Finally, we have presented an approach to modify online the evolution of the time
law of the trajectory and shown its usefulness for taking into account the presence of
humans during the execution of the movement.

In the next section, we introduce an attentional system to monitor the robot activity
from the perspective of the software components.

5 Attentional System
A robotic system designed to physically interact with humans should adapt its behav-
ior to the human actions and the environmental changes in order to provide a safe,
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natural, and effective cooperation. The human motions and the external environment
should be continuously monitored by the robotic system searching for interaction op-
portunities while avoiding dangerous and unsafe situations. In this context, attentional
mechanisms [53, 21] can play a crucial role: they can direct sensors towards the most
salient sources of information, filter the available sensory input, and provide implicit
sensory-motor coordination mechanisms [41] to orchestrate and prioritize concurrent
activities.

In this project, we have deployed an attentional system suitable for balancing the
trade off between safe human-robot interaction and effective task execution. The at-
tentional system is to supervise and orchestrate the human-robot interaction activities
monitoring their safety and effectiveness. Our attentional execution monitoring sys-
tem is obtained as a reactive, behavior-based system, endowed with simple, bottom-up,
attentional mechanisms. We assume a frequency-based model of the executive atten-
tion [15, 16, 13] where each behavior is endowed with an adaptive internal clock that
regulates the sensing rate and action activations. The frequency of sensor readings is
here interpreted as a degree of attention towards a behavior: the higher the clock fre-
quency, the higher the resolution at which the behavior is monitored and controlled. In
particular, we consider robot manipulation tasks providing the attentional monitoring
strategies for behaviors like pick and place, give and receive, search and track (humans
and salient objects).

5.1 Related Work
Human aware manipulation [59, 61] and human-robot cooperation in manipulation
tasks [27] are very relevant topics in HRI literature, however cognitive control and
attentional mechanisms suitable for safe and effective interactive manipulation are less
explored. A number of recent contributions about close HRI are based on motivational
and cognitive models [8]. However, attentional mechanisms in HRI have been mainly
investigated focusing on visual and joint attention [50, 8] for social interaction. In
contrast, our main concern is on (supervisory) executive attention for monitoring and
action orchestration [53, 21]. Attentional mechanisms applied to autonomous robotic
systems have been proposed in the literature for vision-based mobile robotics (e.g.
[49, 19, 31]), but here we are interested in artificial attentional processes suitable for
monitoring the execution of multiple concurrent behaviors in human-interaction tasks
[14].

5.2 Attentional Model
Our aim is to develop an autonomous robotic system suitable for human-robot inter-
action in cooperative manipulation tasks. Achieving autonomy and safety in such an
environment requires adaptation. For this purpose, we propose to deploy an attentional
system, a kind of supervisory attentional system a la [53], to modulate the robotic arm
motion and perception. The attentional system is expected to monitor and regulate
multiple concurrent activities [41] in order to achieve an effective coordination and
interaction with the human movements in the operative space. More specifically, our
attentional model combines the following design principles:
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Figure 21: AIRM Model: each behavior is composed of an adaptive clock, a releasing
function, a perceptual schema and a motor schema.

• Behavior-based system. The executive control is obtained from the interaction
of a set of multiple parallel behaviors working at different levels of abstraction.

• Attentional monitoring. Attentional mechanisms are to focus monitoring and
control activities on relevant internal behaviors and external stimuli.

• Internal and external sources of salience. The sources of salience are behav-
ior and task dependent; these can be dependent by either internal states (e.g.
resources, processes, goals) or external stimuli (e.g. obstacles, unexpected vari-
ations of the environment).

• Adaptive sensory readings. For each behavior, the process of changing the rate
of sensory readings is interpreted as an increase or decrease of attention towards
a particular aspect of the environment the robotic system is interacting with.

• Emergent attentional behavior. The overall executive attention should emerge
from the interrelations of the attentional mechanisms associated with the behav-
iors.

5.2.1 A Frequency-based Model of Attention

The frequency-based model of the executive attention [15, 16] adopted in this chapter
can be represented in a schema theory framework in terms of Adaptive Innate Releasing
Mechanisms (AIRMs) [16]. In the following we briefly recall this model.

In Fig. 5.2.1, the AIRM is represented through a Schema Theory representation
[2], where each behavior is composed of a Perceptual Schema (PS), which reads and
processes incoming data from sensors, a Motor Schema (MS), producing commands
to be given to motors, and a control mechanism, based on a combination of a releas-

ing mechanism [64] and an internal adaptive clock. In particular, the releaser acts as
a trigger signal that enables or disables the activation of the MS, according to the sen-
sory data s(t). For example, a detected obstacle releases the obstacle avoidance MS.
Instead, sensor readings are sampled by the adaptive clock. That is, the robot reads
data just when necessary (reducing sensory readings and elaborations) with a period
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that can change according to the salience of the perceived stimuli. In this way, each be-
havior can independently monitor the environment and modulate its outputs following
the clock frequency changes.

Assuming a discrete time model for the adaptive clock, the way the clock adapts its
period is called monitoring strategy and it is characterized by:

• A period p
t for each behavior, ranging in an interval [pmin, pmax],

• An updating function f (t) : Rn ! R that changes the clock period p
t , according

to the parameters the behavior depends on (sensors, internal state, environmental
features, and the behavioral goal).

• A trigger function r(t, p
t�1), which enables/disables the data flow sr(t) from

sensors to PS, at every p
t�1 time unit:

r(t, p
t�1) =

⇢
1, if t mod p

t�1 = 0
0, otherwise (24)

• Finally, a support function f( f (t)) : R ! N that maps the values generated by
the updating function f (t) in the allowed range for the period [pmin, pmax]:

f(x) =

8
<

:

pmax, if x � pmax

bxc, if pmin < x < pmax

pmin, if x  pmin

(25)

Now, starting from the clock period at time 0, p
0 = pmax, the clock period at time t

is regulated as follows:

p
t = r(t, p

t�1)⇤f( f (t))+(1�r(t, p
t�1))⇤ p

t�1. (26)

That is, if the behavior is disabled, the value of the clock period at time t remains
unchanged at the previous value p

t�1. Instead, when the trigger function is equal to 1,
the behavior is activated and, subsequently, its activation period changes according to
the f( f (t)) function.

5.2.2 Attentional HRI

Based on the model introduced above, we have designed a behavior-based control sys-
tem endowed with attentional monitoring strategies for human-robot interaction. In this
model, the attentional mechanisms regulates the executive system trading off between
two conflicting requirements:

• safe interaction with the humans;

• effective cooperation in interactive tasks.

Each requirement is associated with a motivational drive that affects the attentional
and executive state of the robotic behavior. The first one corresponds to the fear of
hurting people, hence it determines caution, slow movements and intensive monitoring
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(in case of danger it blocks the robot motion), instead, the second one is associated
with a desire to interact with people and manipulate objects, thus this attitude provides
an attraction towards moving and close persons or objects.

Depending on the disposition, movements, and the attitude of a person in the robot
workspace, each behavior changes its activation frequency, affecting the overall atten-
tional state of the system. In this way, a person walking across the interaction area or
a fast movement of a human head (or hand) can modify the behaviors’ attentional state
causing an accelerated elaboration of the associated perceptual input (human move-
ments) and more frequent behaviors’ activations.
Test-bed domain. We have considered a robotic manipulator that is to cooperate with
humans in pick-and-place and give-and-receive (hand-over) tasks. Depending on the
context, the robotic system should: look for an operator to interact with; give or receive
an object to/from the operator; pick or place an object from/into a location. Each of
these tasks are to be monitored in order to avoid dangerous/unsafe situations.

In this context, the attentional mechanisms allow us to combine the robot attraction
towards human operators (to be effective and cooperative) and the robot repulsion from
unexpected events and abrupt environmental changes. For each behavior, the simple
perception-action response to an external stimulus may produce different patterns of
interactions depending on different internal states of the robot given by the combina-
tion of the fear of hurting the user and the desire of helping him.

Environment. In our setting, the robot base is kept fixed (the mobile base is not ex-
ploited) and close to a small table where the robot can pick and place objects. Depend-
ing on the proximity, we have defined three areas in the workspace: a proximity area
which is too close to the robot body and unsafe for HRI; an interaction area, where
physical human-robot interaction is possible (here we refer to both visual and physi-
cal interaction in the robotic arm workspace); a far workspace area where humans and
object are in the robot field of view, but too far for handover tasks.

5.3 Control Architecture
We have designed a control architecture suitable for the primitive interactive manip-
ulation tasks introduced above. The control system integrates modules for forward,
inverse kinematics, and visual servoing along with modules for face recognition, hand
detection/tracking, object recognition/tracking. Given these functionalities, the atten-
tional state of the robot is affected by the following sources of saliency: face, hands,
object detection, proximity.

5.3.1 Attentional Behaviors

The behavior-based architecture is depicted in Fig. 22. This model integrates atten-
tional behaviors for pick and place, give and receive, but also behaviors for search and
track (humans and objects) as well as behaviors regulating the avoid attitude of the
robotic system.

The robot attentional behavior is obtained as the combination of the following
primitive behaviors (see Fig. 22): AVOID, PICK and PLACE, GIVE and RECEIVE,
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Figure 22: Behavior-based architecture for HRI.

SEARCH and TRACK. For each behavior, we have to define the activation function and
the updating policy that represents the associated attentional model.

Behaviors settings. SEARCH controls the pan-tilt (PTU) providing an attentive scan
of the environment looking for humans and objects. It is active whenever the robotic
system is idling and no interesting things (objects or humans) are in the robot field of
view. Its activation is periodic, but not adaptive, hence it is associated with a constant
clock:

p
t

sr
= ksr. (27)

Once a human is detected in the robot workspace (through face detection and/or
hand detection), the TRACK behavior is enabled. This behavior allows the robot to
monitor human motions before they enter in the interaction space. TRACK focuses the
system attention on the operator movements, hence the adaptive clock should be regu-
lated in accordance with the human motion and position. Here, the input signal shm(t)
represents the human distance from the robot camera, in our test-bed it is the minimal
distance of human faces and hands. The TRACK clock period changes according to
shm(t) and the increment of shm(t), that is, the period ptr is updated as follows:

p
t

tr
= Qtr(shm(t),

shm(t)�shm(t � p
t�1
tr )

p
t�1
tr

), (28)
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where p
t�1
tr is the period at the previous clock cycle, Qtr(x,y) is a a function Qtr(x,y) =

ftr(ax+ (1�a)1/y+ b ), where a and b are behavior-specific parameters used to
weight the importance of position and velocity in the attentional model, while ftr(z) is
the scaling function that introduces suitable thresholds to keep the clock period within
the allowed interval [ptr min, ptr max]. Intuitively, a human that moves fast and close
needs to be carefully monitored (high frequency, foreground), while a human that
moves far and slow can be monitored in a more relaxed manner (low frequency, back-
ground).

The AVOID behavior checks for safety in human-robot interaction, it controls the
arm motion speed and can stop the motion whenever a situation is assessed as danger-
ous. AVOID is enabled when a human is detected in the robot interaction area. It is
endowed with an internal clock whose frequency depends on the operator proximity
and motion. The associated clock frequency changes proportionally to the situation
saliency. That is, if the operator is close and/or its position sop (i.e. minimal distance
of face and hands) becomes closer between successive readings of sensory data, then
the clock is accelerated, while it is decelerated if the operator moves away from the
robot. The period of this clock changes as follows:

p
t

av
= Qav(sop,

sop(t)�sop(t � p
t�1
av

)

p
t�1
av

), (29)

where Qav is defined as for TRACK. The output of this behavior results in a speed
deceleration associated with high frequencies:

speed =

(
max speed⇥p

t
av

pav max
if prox.sp. < sop  inter.sp.

0 sop  prox.space
(30)

where speed is the current speed, max speed is the maximum allowed value for the arm
speed, prox.sp. and inter.sp. are the proximity and the interaction space respectively.
Moreover, the arm will stop if the operator is inside the robot proximity space.

The PICK behavior is activated when the robot is not holding an object, but there
exists a reachable object in the robot interactive space. PICK moves the robot’s end-
effector towards the object, activates a grasping procedure and, once the robot holds
the object, moves this in a predefined safe position close to the robot body. For PICK,
the input signal sob j(t) represents the distance of the object from the robot end effector
which can be detected by the stereo camera. In this case the clock period is associated
with the distance of the object. That is, the period p

t

pk
is updated as follows:

p
t

pk
= fpk(a sob j(t)), (31)

with fpk(x) is the scaling function used to scale and map sob j(t) in the allowed range
of periods [ppk min, ppk max]. Furthermore, the clock frequency determines also speed
variations. In particular, the speed is related to the period according to the following
relation:

speed =
max speed ⇥ p

t

pk

ppk max

, (32)
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In this way, the arm moves with max speed at the beginning, when there is free space
for movements (and a low monitoring frequency), and smoothly reduces its speed to a
minimum value in order to execute a precision grip with more frequent camera infor-
mation (higher monitoring frequency).

As for PLACE, it is activated when the robot is holding an object in the absence
of interacting humans in the interactive space. It moves the robot end effector towards
a target position, it places the object and moves the robot arm back to a predefined
position close to the robot body. The clock period is regulated by a function analogous
to that of (31) with the distance to the target str as the input signal. Also in this case,
the speed is decelerated at high clock frequencies according to (32).

The GIVE and RECEIVE behaviors are activated by object and gesture detection.
These behaviors are responsible for monitoring and regulating the activities of giving
and receiving objects taking into account both the humans’ proximity and their move-
ments. In this case, the clock period is associated with the distance of both the objects
and the speed of the operator hand. In particular, GIVE is activated when the robot
holds an object and perceives a reachable human hand in its operative space. When
activated, this behavior moves the end effector in the direction of the operator’s hand
with a trajectory and velocity which depends on the human’s proximity and operator’s
hand movements. The GIVE sampling rate is regulated by the following function:

p
t

gv
= Qgv( gob j(ksob j(t)� eepos(t)k),gop(

sop(t)�sop(t�p
t�1
gv )

p
t�1
gv

) ), (33)

where sob j(t) and eepos(t) are the positions of the object and the end effector at
time t, sop(t) is the hand operator position, qgv, gob j, gop are suitable functions defined
as follows. The function gob j sets the period proportional to the object position, i.e., the
closer the object, the higher the sampling frequency:

gob j = (pgv max � pgv min)
d

maxd

+ pgv min, (34)

with d, maxd are, respectively, the distance (sob j(t)� eepos(t)) and the maximal dis-
tance between the end effector and the object. Instead, gop depends on the hand speed v

(in terms of the incremental ratio of the hand position towards the value of the period),
i.e., the higher the speed, the higher the sampling frequency. The following function is
used to set and normalize the values within the allowed interval [pmin, pmax]:

gop =

⇢
(pgv max � pgv min)(1� v)+ pgv min if v  1
pgv min otherwise (35)

Finally, the Qgv(x) combines the two functions g with a weighted sum regulated by
an a parameter

Qgv(x) = fgv(agob j +(1�a)gop)), (36)

also in this case the resulting period is limited within the allowed interval [pgv min,
pgv max] by the scaling function fgv.

The clock frequency regulates not only the sampling rate, but also the velocity of
the arm movements. More specifically, the execution speed is related to the period
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according to an inversely proportional relation (32). This means that the higher the
sampling rate, hence the attention, the slower the hand movement. Intuitively, here we
assume that when attention is needed the movement should be more carefully moni-
tored, thus slower.

As for the RECEIVE behavior, it is activated when the robot perceives a human in
the operative space holding a reachable an object in his/her hand. The behavior sam-
pling rate is regulated by a function analogous to (33) (set with different parameters)
with an adaptive velocity inversely proportional to the current period, as in (32).

5.4 Execution Example
We now illustrate how the system works in typical interactive situations. In Fig. 23
we plotted part of the execution of the RECEIVE behavior. In particular, Figure 23.a
represents the variation of the distance between the end effector of the robotic arm and
the operator’s hand. In the execution cycle 80, the robot has almost reached the human
hand, however the operator moves his/her arm away. The execution of the behavior
ends at the execution cycle 162 when the robot delivers the object to the operator.
Figure 23.b represents the hand speed variation of the same execution, as evaluated by
the RECEIVE behavior. The hand is almost stationary between the cycle 30 and the

a)

b)

c)

Figure 23: a) End effector-hand distance; b) Hand speed as evaluated by the Receive
Behavior; c) Activations of the Receive behavior.

cycle 70, then it starts moving with different speeds until it stands still at cycle 162 and
receives the object. Finally, Figure 23.c represents the activations of the behavior at
each cycle. Whenever there is a bar in the plot, this means that the behavior perceptual
schema is active. Let us note that both the distance and the hand speed are sampled
and evaluated only when the behavior perceptual schema is active. The frequency of
activation will increase when the distance is small (for example between cycles 40 and
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80) or when the hand speed is high (for example between cycles 105 and 125) following
the updating function of the behavior.

5.5 Evaluation Criteria and Experimental Results
To evaluate the performance of the attentional system and of the HRI system, we in-
troduce some evaluation criteria considering safety, reliability, effectiveness and effi-
ciency.

• Safety is measured counting dangerous human-robot interaction events (i.e. a
safe robot should avoid collisions between human and a moving robot and it
should minimize interactions where the two are too close).

• Reliability is evaluated considering unrecoverable world/robot states encoun-
tered during the tests (the robot is stuck, the object falls down, the object is
not reached or located by the robot).

• Effectiveness is assessed considering the time needed to achieve the task (the
system should minimize the time to achieve the task).

• Efficiency is associated with the number of behavior activations needed to achieve
the task (for us, an attentional system is efficient, when it can distribute computa-
tional resources among different processes, focusing only on relevant activities).

Parameters Setting. Given the attentional model introduced in the previous section, the
overall attentional behavior is obtained once we tune the parameters associated with
the behaviors’ monitoring strategies.

To assess the performance of the system with respect to the previous set of criteria
we introduc a suitable optimization function:

f = M1⇥NSa f e +M2⇥NRel +M3⇥TE f f e +M4⇥NE f f i.

Here, M1 > · · · > M4 specify the priorities in terms of weights; NRel represents the
number of unrecoverable situations with respect to the number of accomplished ac-
tivities (pick, place, etc.); Nsa f e the HRI unsafe situations with respect to the executed
activities; TE f f e is for the time spent to achieve the tasks with respect to the overall mis-
sion time; NE f f i is for the number of behavior activations with respect to the maximal
possible activations (for each behavior pmin).

This function can be exploited, on the one hand, to learn the system parameters
and, on the other hand, to validate the overall system behavior. Different learning
algorithms can be deployed for parameter learning (e.g. genetic algorithms, particle
swarm optimization, simulated annealing etc.), currently, we are investigating Differ-
ential Evolution algorithms (DE) [62] which are particularly suitable for both bounded-
ness and granularity problems, indeed DE manages unrestricted and unbounded range
of values. More details about DE methods used to set attentional monitoring strategies
can be found in [13].
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Effectiveness Efficiency Reliability Safety
AIRM P1VMED AIRM P1VMED AIRM P1VMED AIRM P1VMED

Receive 7.66s±0.54s 9.69s±0.31s 14.5±1.57 41.7±1.42 100% 100% 100% 100%
Give 4.87s±1.4s 7.27s±2.9s 6.05±2.65 14.65±5.59 83% 80% 90% 84%
Pick 9.14s±2.07s 10.48s±0.67s 16.2±6.58 32.65±5.99 77% 54% 100% 100%
Place 6.03s±1.05s 8.96s±0.6s 12.95±5.03 58.65±10.17 100% 100% 100% 100%

Table 1: Evaluation of the Effectiveness, Efficiency, Reliability, and Safety criteria.

Experimental Setup. In order to evaluate the performance of the AIRM architecture we
compare it with a classical non-rhythmic architecture (P1Vmed) in which the behav-
iors perceptual schema are always active. For the adaptive version (AIRM) we consider
adaptive concurrent clocks with pmin = 1, pmax = 10 and speed = max�speed⇥p

pmax
for all

the behaviors. For the (P1Vmed), we assume that the behaviors’ perceptual schema
are always active (i.e., pmin and pmax are both equal to 1) and the arm speed is set to a
constant value (speed = max�speed

2 ). Moreover, in the case of the AIRM architecture,
the updating policies of the behaviors are those specified in the previous section. The
range of values for the speed is [0;0.3] m/s. For the experiments, we have used the
UNINA robotic platform, endowed with a 7DOF robotic arm (Cyton Arm by Energid:
payload 300 g, hight 60 cm, reach 48 cm, joint speed 60 rpm), a gripper (size 3.25 cm)
as end effector, and a kinetic device. In this context, the proximity, interaction, and
workspace distances were set, respectively, at 20 cm from the robot body, 10�50 cm,
and 50 cm to 6 m.

Empirical Results. During the empirical evaluation, we have tested each behavior 20
times with 5 different operators unaware of the robot behavior. Operators are required
to observe the robot and move around in the case of Pick and Place behaviors, and
interact, without any specific requirement, for the Give and Receive behaviors. In
these final cases all the hand movements, made by the operators, were spontaneous.
For each test we have evaluated the parameters defined above: effectiveness, efficiency,
reliability, and safety.

Notice that not only are the attentional mechanisms associated with better perfor-
mance in terms of effectiveness and efficiency (Fig. 24 and Table 1), but we also ob-
served better results regarding reliability and safety (Tab. 1) compared with the non-
adaptive architecture in which the perceptual schemas are always active (P1Vmed). In
particular, the adaptive modulation of the robotic arm speed allows us to accomplish
the task faster than keeping the speed to a constant value, furthermore the adaptive tra-
jectory is safer and more comfortable from the operator point of view. As we expected,
a small number of activations has a big impact in the efficiency for the adaptive sys-
tem. This is particularly evident in the Place behavior, since interaction and precision
are not requested, the task can be accomplished with minimal activations. The criti-
cal operations for the Safety and Reliability are the Give and Pick operations. As for
safeness, we have observed that the Give interaction requires more care in HRI (where
the robot has to pass an object to the operator) than the Receive one (where the robot
has to receive an object from the operator) causing more frequent unsafe interactions.

42



Figure 24: Effectiveness (time taken) and Efficiency (activations) evaluation criteria.

The same happens for reliability, indeed, passing an object to a human is more difficult
than receiving an object. Although in these cases the success rate is not equal to 100%
(as in the cases of Receive and Place behaviors), the architecture endowed with AIRMs
seems more reliable than the P1Vmed standard architecture. For example, in the pick-
ing behavior the slower speed of the adaptive architectures permits a more accurate
grip of the object.

In this section, we have illustrated a human-robot interactive system endowed with
attention mechanisms used to coordinate simple manipulation tasks. In the proposed
attentional model, each behavior is equipped with an adaptive clock and an updating
policy that changes the frequency of sensory readings (focusing the attention towards
relevant aspects of the external environment) and modulates the emergent behavior in
terms of variations of the robot arm speed. We have defined a simple control archi-
tecture for HRI considering pick-and-place and give-and-receive attentional behaviors.
To assess the system performance we have also introduced suitable evaluation criteria
taking into account safety, reliability, efficiency, and effectiveness. The role of the at-
tentional system is to find a trade-off between safety, effectiveness, and reliability in
human-robot interaction and cooperation.
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6 Conclusion
We have presented some concepts to build an interactive robot capable to share the
workspace with humans and to become a companion or a co-worker. We have focused
on the exchange of object between human and robot, which is a fundamental task for
HRI. We have adressed firstly the architecture aspect and shown the importance of the
communication between the different software modules. The grasp planning has then
been studied to exhibit the importance of double grasp to exchange an object.

Then, we have presented how to plan and adapt robot motion to take into account
the human and his/her behavior. The motion planner we have presented produces tra-
jectories as series of cubic functions in joint or Cartesian space. This trajectory can
then be adapted or modified to cope with the human changes in real time.

The last section has presented an attentional mechanism used to coordinate manip-
ulation tasks. We have shown its interest to trade off between safety, effectiveness, and
reliability in HRI and cooperation.

Of course, this approach of HRI is not complete and lots of points still need to
be investigated like the exchange of information, the manipulation of more complex
objects with two hands or the accomplishment of more complex tasks. For example,
for a robot and a human intuitively exchange an object, they must exchange tactile
information and the robot must be capable to generate and understand this information.
This point is a challenge to build reliable and efficient robots that pick-and-give or
receive-and-place objects in industrial environment. So, we can see that to realize
simple daily tasks in interaction with human, robots need a lot of functionalities from
human attention systems and supervision to tactile dialog and control. But such a robot
cannot only share the space safely with humans but also do tasks for humans or help
humans do tasks in an intuitive way. In this sense, the main result of this work is to
have demonstrated the possibility to build intuitive and safe manipulator robots.
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