Manfredi Maggiore 
email: maggiore@ece.utoronto.ca
  
Mario Sassano 
email: mario.sassano@uniroma2.it
  
Luca 
  
Luca Zaccarian 
email: zaccarian@laas.fr
  
  
  
  
  
  
  
Reduction Theorems for Hybrid Dynamical Systems

HAL is

Introduction

Over the past ten to fifteen years, research in hybrid dynamical systems theory has intensified following the work of A.R. Teel and co-authors (e.g., [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]), which unified previous results under a common framework, and produced a comprehensive theory of stability and robustness. In the framework of [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF], a hybrid system is a dynamical system whose solutions can flow and jump, whereby flows are modelled by differential inclusions, and jumps are modelled by update maps. Motivated by the fact that many challenging control specifications can be cast as problems of set stabilization, the stability of sets plays a central role in hybrid systems theory.

For continuous nonlinear systems, a useful way to assess whether a closed subset of the state space is asymptotically stable is to exploit hierarchical decompositions of the stability problem. To illustrate this fact, consider the continuous-time cascade-connected system

ẋ1 = f 1 (x 1 , x 2 ) ẋ2 = f 2 (x 2 ), (1) 
with state (x 1 , x 2 ) ∈ R n1 × R n2 , and assume that f 1 (0, 0) = 0, f 2 (0) = 0. To determine whether or not the equilibrium (x 1 , x 2 ) = (0, 0) is asymptotically stable for [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF], one may equivalently determine whether or not x 1 = 0 is asymptotically stable for ẋ1 = f 1 (x 1 , 0) and x 2 = 0 is asymptotically stable for ẋ2 = f 2 (x 2 ) (see, e.g., [START_REF] Seibert | Global stabilization of nonlinear cascaded systems[END_REF][START_REF] Vidyasagar | Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability[END_REF]). This way the stability problem is decomposed into two simpler sub-problems.

For dynamical systems that do not possess the cascade-connected structure [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF], the generalization of the decomposition just described is the focus of the so-called reduction problem, originally formulated by P. Seibert in [START_REF] Seibert | On stability relative to a set and to the whole space[END_REF][START_REF]Relative stability and stability of closed sets[END_REF]. Consider a dynamical system on R n and two closed sets Γ 1 ⊂ Γ 2 ⊂ R n . Assume that Γ 1 is either stable, attractive, or asymptotically stable relative to Γ 2 , i.e., when solutions are initialized on Γ 2 . What additional properties should hold in order that Γ 1 be, respectively, stable, attractive, or asymptotically stable? The global version of this reduction problem is formulated analogously. For continuous dynamical systems, the reduction problem was solved in [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF] for the case when Γ 1 is compact, and in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] when Γ 1 is a closed set. In particular, the work in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] linked the reduction problem with a hierarchical control design viewpoint, in which a hierarchy of control specifications corresponds to a sequence of sets Γ 1 ⊂ • • • ⊂ Γ l to be stabilized. The design technique of backstepping can be regarded as one such hierarchical control design problem. Other relevant literature for the reduction problem is found in [START_REF] Iggidr | Semidefinite Lyapunov functions stability and stabilization[END_REF][START_REF] Kalitin | B-stability and the Florio-Seibert problem[END_REF].

In the context of hybrid dynamical systems, the reduction problem is just as important as its counterpart for continuous nonlinear systems. To illustrate this fact, we mention three application areas of the theorems presented in this paper. Additional theoretical implications are discussed in Section 3.

Recent literature on stabilization of hybrid limit cycles for bipedal robots (e.g., [START_REF] Plestan | Stable walking of a 7-DOF biped robot[END_REF]) relies on the stabilization of a set Γ 2 (the so-called hybrid zero dynamics) on which the robot satisfies "virtual constraints." The key idea in this literature is that, with an appropriate design, one may ensure the existence of a hybrid limit cycle, Γ 1 ⊂ Γ 2 , corresponding to stable walking for the dynamics of the robot on the set Γ 2 . In this context, the theorems presented in this paper can be used to show that the hybrid limit cycle is asymptotically stable for the closedloop hybrid system, without Lyapunov analysis.

Furthermore, as we show in Section 5, the problem of estimating the unknown frequency of a sinusoidal signal can be cast as a reduction problem involving three sets Γ 1 ⊂ Γ 2 ⊂ Γ 3 . More generally, we envision that the theorems in this paper may be applied in hybrid estimation problems as already done in [START_REF] Bisoffi | Hybrid cancellation of ripple disturbances arising in AC/DC converters[END_REF], whose proof would be simplified by the results of this paper.

Finally, it was shown in [START_REF] Invernizzi | Geometric tracking control of underactuated VTOL UAVs[END_REF][START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF][START_REF] Roza | A class of position controllers for underactuated VTOL vehicles[END_REF] that for underactuated VTOL vehicles, leveraging reduction theorems one may partition the position control problem into a hierarchy of two control specifications: position control for a point-mass, and attitude tracking. Reduction theorems for hybrid dynamical systems enable employing the hybrid attitude trackers in [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF], allowing one to generalize the results in [START_REF] Invernizzi | Geometric tracking control of underactuated VTOL UAVs[END_REF][START_REF] Roza | A class of position controllers for underactuated VTOL vehicles[END_REF] and obtain global asymptotic position stabilization and tracking.

Contributions of this paper. The goal of this paper is to extend the reduction theorems for continuous dynamical systems found in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF][START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF] to the context of hybrid systems modelled in the framework of [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. We assume throughout that Γ 1 is a compact set and develop reduction theorems for stability of Γ 1 (Theorem 4.1), local/global attractivity of Γ 1 (Theorem 4.4), and local/global asymptotic stability of Γ 1 (Theorem 4.7). The conditions of the reduction theorem for asymptotic stability are necessary and sufficient. Our results generalize the reduction theorems found in [9, Corollary 19] and [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Corollary 7.24], which were used in [START_REF] Teel | Observer-based hybrid feedback: a local separation principle[END_REF] to develop a local hybrid separation principle.

We explore a number of consequences of our reduction theorems. In Proposition 3.1 we present a novel result characterizing the asymptotic stability of compact sets for cascade-connected hybrid systems. In Proposition 3.3 we consider a hybrid system with an output function, and present conditions guaranteeing that boundedness of solutions and convergence of the output to zero imply attractivity of a subset of the zero level set of the output. These conditions give rise to a notion of detectability for hybrid systems that had already been investigated in slightly different form in [START_REF] Sanfelice | Invariance principles for hybrid systems with connections to detectability and asymptotic stability[END_REF]. Finally, in the spirit of the hierarchical control viewpoint introduced in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF], we present a recursive reduction theorem (Theorem 4.9) in which we consider a chain of closed sets

Γ 1 ⊂ • • • ⊂ Γ l ⊂ R n ,
with Γ 1 compact, and we deduce the asymptotic stability of Γ 1 from the asymptotic stability of Γ i relative to Γ i+1 for all i. Finally, the theory developed in this paper is applied to the problem of estimating the frequency of oscillation of a sinusoidal signal. Here, the hierarchical viewpoint simplifies an otherwise difficult problem by decomposing it into three separate sub-problems involving a chain of sets Γ 1 ⊂ Γ 2 ⊂ Γ 3 .

Organization of the paper. In Section 2 we present the class of hybrid systems considered in this paper and various notions of stability of sets. The concepts of this section originate in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF][START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF][START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF]. In Section 3 we formulate the reduction problem and its recursive version, and discuss links with the stability of cascade-connected hybrid systems and the output zeroing problem with detectability. In Section 4 we present novel reduction theorems for hybrid systems and their proofs. The results of Section 4 are employed in Section 5 to design an estimator for the frequency of oscillation of a sinusoidal signal. Finally, in Section 6 we make concluding remarks.

Notation. We denote the set of positive real numbers by R >0 , and the set of nonnegative real numbers by R ≥0 . We let S 1 denote the set of real numbers modulo 2π. If x ∈ R n , we denote by |x| the Euclidean norm of x, i.e., |x| = (x ⊤ x) 1/2 . We denote by B the closed unit ball in R n , i.e., B :

= {x ∈ R n : |x| ≤ 1}. If Γ ⊂ R n and x ∈ R n , we denote by |x| Γ the point-to-set distance of x to Γ, i.e., |x| Γ = inf y∈Γ |x -y|. If c > 0, we let B c (Γ) := {x ∈ R n : |x| Γ < c}, and Bc (Γ) := {x ∈ R n : |x| Γ ≤ c}. If U is a subset of R n ,
we denote by Ū its closure and by int U its interior. Given two subsets U and V of R n , we denote their Minkowski sum by

U +V := {u+v : u ∈ U, v ∈ V }.
The empty set is denoted by ∅.

Preliminary notions

In this paper we use the notion of hybrid system defined in [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] and some notions of set stability presented in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF]. In this section we review the essential definitions that are required in our development.

Following [START_REF] Goebel | Hybrid dynamical systems[END_REF][START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] A hybrid time domain is a subset of R ≥0 × N which is the union of infinitely many sets [t j , t j+1 ]×{j}, j ∈ N, or of finitely many such sets, with the last one of the form [t j , t j+1 ] × {j}, [t j , t j+1 ) × {j}, or [t j , ∞) × {j}. A hybrid arc is a function x : dom(x) → R n , where dom(x) is a hybrid time domain, such that for each j, the function t → x(t, j) is locally absolutely continuous on the interval I j = {t : (t, j) ∈ dom(x)}. A solution of H is a hybrid arc x : dom(x) → R n satisfying the following two conditions. Flow condition. For each j ∈ N such that I j has nonempty interior, ẋ(t, j) ∈ F (x(t, j)) for almost all t ∈ I j , x(t, j) ∈ C for all t ∈ [min I j , sup I j ).

Jump condition. For each (t, j) ∈ dom(x) such that (t, j+ 1) ∈ dom(x),

x(t, j + 1) ∈ G(x(t, j)), x(t, j) ∈ D.
A solution of H is maximal if it cannot be extended.

In this paper we will only consider maximal solutions, and therefore the adjective "maximal" will be omitted in what follows. If (t 1 , j 1 ), (t 2 , j 2 ) ∈ dom(x) and t 1 ≤ t 2 , j 1 ≤ j 2 , then we write (t 1 , j 1 ) (t 2 , j 2 ). If at least one inequality is strict, then we write (t 1 , j 1 ) ≺ (t 2 , j 2 ).

A solution x is complete if dom(x) is unbounded or, equivalently, if there exists a sequence

{(t i , j i )} i∈N ⊂ dom(x) such that t i + j i → ∞ as i → ∞.
The set of all maximal solutions of H originating from

x 0 ∈ R n is denoted S H (x 0 ). If U ⊂ R n , then S H (U ) := x0∈U S H (x 0 ).
We let S H := S H (R n ). The range of a hybrid arc x : dom(x) → R n is the set rge(x) := y ∈ R n : ∃(t, j) ∈ dom(x) y = x(t, j) .

If U ⊂ R n , we define rge(S H (U )) := x0∈U rge S H (x 0 ) . Definition 2.1 (Forward invariance) A set Γ ⊂ R n is strongly forward invariant for H if rge(S H (Γ)) ⊂ Γ.
In other words, every solution of H starting in Γ remains in Γ. The set Γ is weakly forward invariant if for every x 0 ∈ Γ there exists a complete x ∈ S H (x 0 ) such that x(t, j) ∈ Γ for all (t, j) ∈ dom(x).

If Γ ⊂ R n is closed, then the restriction of H to Γ is the hybrid system H| Γ := (C ∩Γ, F, D ∩Γ, G). Whenever Γ is strongly forward invariant, solutions that start in Γ cannot flow out or jump out of Γ. Thus, in this specific case, restricting H to Γ corresponds to considering only solutions to H originating in Γ, i.e., S H|Γ = S H (Γ). Definition 2.2 (stability and attractivity) Let Γ ⊂ R n be compact.

Γ is stable for H if for every ε > 0 there exists δ > 0 such that

rge(S H (B δ (Γ))) ⊂ B ε (Γ).
The basin of attraction of Γ is the largest set of points p ∈ R n such that each x ∈ S H (p) is bounded and, if x is complete, then |x(t, j)| Γ → 0 as t + j → ∞, (t, j) ∈ dom(x).

Γ is attractive for H if the basin of attraction of Γ contains Γ in its interior.

Γ is globally attractive for H if its basin of attraction is R n .

Γ is asymptotically stable for H if it is stable and attractive, and Γ is globally asymptotically stable if it is stable and globally attractive.

Let Γ ⊂ R n be closed. Γ is stable for H if for every ε > 0 there exists an open set U containing Γ such that rge(S H (U )) ⊂ B ε (Γ).
The basin of attraction of Γ is the largest set of points p ∈ R n such that for each

x ∈ S H (p), |x| Γ is bounded and, if x is complete, then |x(t, j)| Γ → 0 as t + j → ∞, (t, j) ∈ dom(x).
Γ is attractive if the basin of attraction of Γ contains Γ in its interior. [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] to give Lyapunov characterizations of asymptotic stability. In this paper we use weaker definitions to obtain more general results. Specifically, the results of this paper whose assumptions concern asymptotic stability of closed sets (assumptions (ii) and (ii') in Corollary 4.8, assumptions (i) and (i') in Theorem 4.9) continue to hold when the stronger stability properties of [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] are satisfied.

Γ
To illustrate the differences between the above mentioned stability and attractivity notions for closed sets, in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Definition 3.6] the uniform global stability property requires that for every ε > 0, the open set U of Definition 2.2 be of the form B δ (Γ), i.e., a neighborhood of Γ of constant diameter, hence the adjective "uniform." Moreover, [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Definition 3.6] requires that δ → ∞ as ε → ∞, hence the adjective "global." On the other hand, Definition 2.2 only requires the existence of a neighborhood U of Γ, not necessarily of constant diameter, and without the "global" requirement. In particular, the diameter of U may shrink to zero near points of Γ that are infinitely far from the origin, even as ε → ∞. Similarly, the notion of uniform global pre-attractivity in [10, Definition 3.6] is much stronger than that of global attractivity in Definition 2.2, for it requires solutions not only to converge to Γ, but to do so with a rate of convergence which is uniform over sets of initial conditions of the form B r (Γ). △ Definition 2.6 (local stability and attractivity near a set) Consider two sets Γ 1 ⊂ Γ 2 ⊂ R n , and assume that Γ 1 is compact. The set Γ 2 is locally stable near Γ 1 for H if there exists r > 0 such that the following property holds. For every ε > 0, there exists δ > 0 such that, for each x ∈ S H (B δ (Γ 1 )) and for each (t, j)

∈ dom(x), it holds that if x(s, k) ∈ B r (Γ 1 ) for all (s, k) ∈ dom(x) with (s, k) (t, j), then x(t, j) ∈ B ε (Γ 2 ). The set Γ 2 is locally attractive near Γ 1 for H if there exists r > 0 such that B r (Γ 1 ) is contained in the basin of attraction of Γ 2 .
Remark 2.7 The notions in Definition 2.6 originate in [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF]. It is an easy consequence of the definition, and it is shown rigorously in the proof of Theorem 4.7, that local stability of Γ 2 near Γ 1 is a necessary condition for Γ 1 to be stable. In particular, if Γ 1 is stable, then Γ 2 is locally stable near Γ 1 for arbitrary values1 of r > 0. Moreover, local attractivity of Γ 2 near Γ 1 is a necessary condition for Γ 1 to be attractive. Finally, it is easily seen that if Γ 2 is stable, then Γ 2 is locally stable near Γ 1 , thus local stability of Γ 2 near Γ 1 is a necessary condition for both the stability of Γ 1 and the stability of Γ 2 . △ According to Definition 2.6, the set Γ 2 is locally attractive near Γ 1 if all solutions starting near Γ 1 converge to Γ 2 . Thus Γ 2 might be locally attractive near Γ 1 even

Γ 2 Γ 1 B r (Γ 1 ) B δ (Γ 1 ) B ε (Γ 2 ) x 1 x 2 x 3 x 4 Figure 1: An illustration of local stability of Γ 2 near Γ 1 .
Continuous lines denote flow, while dashed lines denote jumps. All solutions starting sufficiently close to Γ 1 remain close to Γ 2 so long as they remain in B r (Γ 1 ). In the figure, the solution from x 1 remains in B r (Γ 1 ) and therefore also in B ε (Γ 2 ). The solution from x 2 jumps out of B r (Γ 1 ), then jumps out of B ε (Γ 2 ). The solution from x 3 flows out of B r (Γ 1 ), then flows out of B ε (Γ 2 ). Finally, the solution from x 4 jumps out of B r (Γ 1 ), then flows out of B ε (Γ 2 ). when it is not attractive in the sense of Definition 2.2. On the other hand, the set Γ 2 is locally stable near Γ 1 if solutions starting close to Γ 1 remain close to Γ 2 so long as they are not too far from Γ 1 . This notion is illustrated in Figure 1.

Definition 2.8 (relative properties) Consider two closed sets Γ 1 ⊂ Γ 2 ⊂ R n . We say that Γ 1 is, respectively, stable, (globally) attractive, or (globally) asymptotically stable relative to Γ 2 if Γ 1 is stable, (globally) attractive, or (globally) asymptotically stable for H| Γ2 .

Example 2.9 To illustrate the definition, consider the linear time-invariant system

ẋ1 = -x 1 ẋ2 = x 2 ,
and the sets Γ

1 = {(0, 0)}, Γ 2 = {(x 1 , x 2 ) : x 2 = 0}.
Even though Γ 1 is an unstable equilibrium, Γ 1 is globally asymptotically stable relative to Γ 2 . Now consider the planar system expressed in polar coordinates

(ρ, θ) ∈ R >0 × S 1 as θ = sin 2 (θ/2) + (1 -ρ) 2 ρ = 0.
Let Γ 1 be the point on the unit circle Γ 1 = {(θ, ρ) : θ = 0, ρ = 1}, and Γ 2 be the unit circle, Γ 2 = {(θ, ρ) : ρ = 1}. On Γ 2 , the motion is described by θ = sin2 (θ/2). We see that θ ≥ 0, and θ = 0 if and only if θ = 0 modulo 2π. Thus Γ 1 is globally attractive relative to Γ 2 , even though it is not an attractive equilibrium.

△

The next two results will be useful in the sequel (see also [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Proposition 3.32]). Lemma 2.10 For a hybrid system H := (C, F, D, G), if Γ 1 ⊂ R n is a closed set which is, respectively, stable, attractive, or globally attractive for H, then for any closed set Γ 2 ⊂ R n , Γ 1 is, respectively, stable, attractive, or globally attractive for H| Γ2 .

Proof. The result is a consequence of the fact that each solution of H| Γ2 is also a solution of H.

⋄ The next result is a partial converse to Lemma 2.10.

Lemma 2.11 For a hybrid system

H := (C, F, D, G), if Γ 1 ⊂ Γ 2 ⊂ R n are two closed sets such that Γ 1 is compact and Γ 1 ⊂ int Γ 2 , then: (a) Γ 1 is stable for H if and only if it is stable for H| Γ2 . (b) If Γ 1 is stable for H, then Γ 1 is attractive for H if and only if Γ 1 is attractive for H| Γ2 .
Proof. Part (a). By Lemma 2.10, if Γ 1 is stable for H, then it is also stable for H| Γ2 . Next assume that Γ 1 is stable for H| Γ2 . Since Γ 1 is compact and contained in the interior of Γ 2 , there exists r > 0 such that B r (Γ 1 ) ⊂ Γ 2 .

For any ε > 0, let ε ′ := min(ε, r). By the definition of stability of Γ 1 , there exists δ > 0 such that

rge(S H|Γ 2 (B δ (Γ 1 ))) ⊂ B ε ′ (Γ 1 ). ( 2 
)
Since B ε ′ (Γ 1 ) ⊂ B r (Γ 1 ) ⊂ Γ 2 , we have that solutions of H and H| Γ2 originating in B δ (Γ 1 ) coincide, i.e.,

S H|Γ 2 (B δ (Γ 1 )) = S H (B δ (Γ 1 )). (3) 
Substituting (3) into (2) and using the fact that ε ′ ≤ ε we get

rge(S H (B δ (Γ 1 ))) ⊂ B ε ′ (Γ 1 ) ⊂ B ε (Γ 1 ),
which proves that Γ 1 is stable for H. Part (b). By Lemma 2.10, if Γ 1 is attractive for H then it is also attractive for H| Γ2 . For the converse, assume that Γ 1 is attractive for H| Γ2 . Since Γ 1 is compact and contained in the interior of Γ 2 , there exists

ε > 0 such that B ε (Γ 1 ) ⊂ Γ 2 . Since Γ 1 is stable for H, there exists δ > 0 such that rge(S H (B δ (Γ 1 ))) ⊂ B ε (Γ 1 ) ⊂ Γ 2 .
The above implies that solutions of H and H| Γ2 originating in B δ (Γ 1 ) coincide, i.e.,

S H (B δ (Γ 1 )) = S H|Γ 2 (B δ (Γ 1 )). ( 4 
)
Since Γ 1 is attractive for H| Γ2 , the basin of attraction of Γ 1 is a neighborhood of Γ 1 , and therefore there exists δ > 0 small enough to ensure (4) and to ensure that B δ (Γ 1 ) is contained in the basin of attraction. By (4), B δ (Γ 1 ) is also contained in the basin of attraction of Γ To illustrate the reduction problem, suppose we wish to determine whether a compact set Γ 1 is asymptotically stable, and suppose that Γ 1 is contained in a closed set Γ 2 , as illustrated in Figure 2. In the reduction framework, the stability question is decomposed into two parts:

(1) Determine whether Γ 1 is asymptotically stable relative to Γ 2 ; (2) determine whether Γ 2 satisfies additional suitable properties (Theorem 4.7 in Section 4 states pre-

Γ 1 Γ 1 Γ 2 Γ 2 ?
Figure 2: Illustration of the reduction problem when Γ 2 is strongly forward invariant.

In the context of control systems, the sets Γ 1 ⊂ Γ 2 might represent two control specifications organized hierarchically: the specification associated with set Γ 2 has higher priority than that associated with set Γ 1 . Here, the reduction problem stems from the decomposition of the control design into two steps: meeting the highpriority specification first, i.e., stabilize Γ 2 ; then, assuming that the high-priority specification has been achieved, meet the low-priority specification, i.e., stabilize Γ 1 relative to Γ 2 . This point of view is developed in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF], and has been applied to the almost-global stabilization of VTOL vehicles [START_REF] Roza | A class of position controllers for underactuated VTOL vehicles[END_REF], distributed control [START_REF]Distributed circular formation stabilization for dynamic unicycles[END_REF][START_REF] Thunberg | Consensus and formation control on SE(3) for switching topologies[END_REF], virtual holonomic constraints [START_REF] Maggiore | Virtual holonomic constraints for Euler-Lagrange systems[END_REF], robotics [START_REF] Mohammadi | Maneuvering control of planar snake robots using virtual holonomic constraints[END_REF][START_REF] Ott | Prioritized multi-task compliance control of redundant manipulators[END_REF], and static or dynamic allocation of nonlinear redundant actuators [START_REF] Passenbrunner | Optimality-based dynamic allocation with nonlinear first-order redundant actuators[END_REF]. Similar ideas have also been adopted in [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF], where the concept of local stability near a set, introduced in Definition 2.6, is key to ruling out situations where the feedback stabilizer may generate solutions that blow up to infinity. In the hybrid context, the hierarchical viewpoint described above has been adopted in [START_REF] Bisoffi | Hybrid cancellation of ripple disturbances arising in AC/DC converters[END_REF] to deal with unknown jump times in hybrid observation of periodic hybrid exosystems, while discrete-time results are used in the proof of GAS reported in [START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF] for so-called stubborn observers in discrete time. In the case of more than two control specifications, one has the following. Recursive Reduction Problem. Consider a hybrid system H satisfying the Basic Assumptions, and

l closed sets Γ 1 ⊂ • • • ⊂ Γ l ⊂ R n ,
with Γ 1 compact. Suppose that Γ i enjoys property P relative to Γ i+1 for all i ∈ {1, . . . , l}, where P ∈ {stability, attractivity, global attractivity, asymptotic stability, global asymptotic stability}. We seek conditions under which the set Γ 1 enjoys property P relative to R n .

The solution of this problem is found in Theorem 4.9 in the next section. It is shown in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] that the backstepping stabilization technique can be recast as a recursive reduction problem. △ As mentioned earlier, the reduction problem may emerge from structural considerations, such as when the hybrid system is the cascade interconnection of two subsystems. Cascade-connected hybrid systems. Consider a hybrid system H = (C, F , D, G), where

C = C 1 × C 2 ⊂ R n1 × R n2 , D = D 1 × D 2 ⊂ R n1 × R n2
are closed sets, and F : R n1+n2 ⇒ R n1+n2 , G : R n1+n2 ⇒ R n1+n2 are maps satisfying the Basic Assumptions. Suppose that F and G have the upper triangular structure

F (x 1 , x 2 ) = F 1 (x 1 , x 2 ) F 2 (x 2 ) , G(x 1 , x 2 ) = G 1 (x 1 , x 2 ) G 2 (x 2 ) , (5) where 
(x 1 , x 2 ) ∈ R n1 × R n2 . Define F1 : R n1 ⇒ R n1 and Ĝ1 : R n1 ⇒ R n1 as F1 (x 1 ) := F 1 (x 1 , 0), Ĝ1 (x 1 ) := G 1 (x 1 , 0). ( 6 
)
With these definitions, we can view H as the cascade connection of the hybrid systems

H 1 = (C 1 , F1 , D 1 , Ĝ1 ), H 2 = (C 2 , F 2 , D 2 , G 2 ),
with H 2 driving H 1 . The following result is a corollary of Theorem 4.7 in Section 4. It generalizes to the hybrid setting classical results for continuous time-invariant dynamical systems in, e.g., [START_REF] Seibert | Global stabilization of nonlinear cascaded systems[END_REF][START_REF] Vidyasagar | Decomposition techniques for large-scale systems with nonadditive interactions: Stability and stabilizability[END_REF]. Using Theorems 4.1 and 4.4, one may formulate analogous results for the properties of attractivity and stability.

Proposition 3.1 Consider the hybrid system

H := (C 1 × C 2 , F, D 1 × D 2 , G), with maps F, G given in (5),
and the two hybrid subsystems

H 1 := (C 1 , F1 , D 1 , Ĝ1 ) and H 2 := (C 2 , F 2 , D 2 , G 2 )
satisfying the Basic Assumptions, with maps F1 , Ĝ1 given in [START_REF]Distributed circular formation stabilization for dynamic unicycles[END_REF]. Let Γ1 ⊂ R n1 be a compact set, and denote

Γ 1 = {(x 1 , x 2 ) ∈ R n1 × R n2 : x 1 ∈ Γ1 , x 2 = 0}. ( 7 
)
Suppose that 0 ∈ C 2 ∪ D 2 . Then the following holds:

(i) Γ 1 is asymptotically stable for H if Γ1 is asymptotically stable for H 1 and 0 ∈ R n2 is asymptotically stable for H 2 .

(ii) Γ 1 is globally asymptotically stable for H if Γ1 is globally asymptotically stable for H 1 , 0 ∈ R n2 is globally asymptotically stable for H 2 , and all solutions of H are bounded.

The result above is obtained from Theorem 4.7 in Section 4 setting Γ 1 as in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF], and

Γ 2 = {(x 1 , x 2 ) ∈ R n1 × R n2 : x 2 = 0}.
The restriction H| Γ2 is given by

H| Γ2 = C 1 × {0}, F 1 (x 1 , 0) F 2 (0) , D 1 × {0}, G 1 (x 1 , 0) G 2 (0)
, 

from
H = (C 1 × C 2 , F, D 1 × D 2 , G), with C 1 = {1}, C 2 = R, D 1 = D 2 = ∅, and 
F (x 1 , x 2 ) = 1 x 2 .
All solutions of H have the form (1, x 2 (0, 0)), and are defined only at (t, j) = (0, 0). Since the origin (x 1 , x 2 ) = (0, 0) is not contained in C ∪ D, it is trivially asymptotically stable for H (see Remark 2.3). Moreover, there are no complete solutions, and all solutions are constant, hence bounded, which implies that the basin of attraction of the origin is the entire R2 . Hence the origin is globally asymptotically stable for H. On the other hand, H 2 is the linear time-invariant continuous-time system on R with dynamics ẋ2 = x 2 , clearly unstable. This example shows that the condition, in Proposition 3.1, that 0 be (globally) asymptotically stable for H 2 is not necessary. △ Proposition 3.1 is to be compared to [START_REF] Teel | Observer-based hybrid feedback: a local separation principle[END_REF]Theorem 1], where the author presents an analogous result for a different kind of cascaded hybrid system. The notion of cascaded hybrid system used in Proposition 3.1 is one in which a jump is possible only if the states x 1 and x 2 are simultaneously in their respective jump sets, D 1 and D 2 , and a jump event involves both states, simultaneously. On the other hand, the notion of cascaded hybrid system proposed in [START_REF] Teel | Observer-based hybrid feedback: a local separation principle[END_REF] is one in which jumps of x 1 and x 2 occur independently of one another, so that when x 1 jumps nontrivially, x 2 remains constant, and vice versa. Moreover, in [START_REF] Teel | Observer-based hybrid feedback: a local separation principle[END_REF] the jump and flow sets are not expressed as Cartesian products of sets in the state spaces of the two subsystems.

Another circumstance in which the reduction problem plays a prominent role is the notion of detectability for systems with outputs. Output zeroing with detectability. Consider a hybrid system H satisfying the Basic Assumptions, with a continuous output function h : R n → R k , and let Γ 1 be a compact, strongly forward invariant subset of h -1 (0). Assume that all solutions on Γ 1 are complete. Suppose that all x ∈ S H are bounded. Under what circumstances does the property h(x(t, j)) → 0 for all complete x ∈ S H imply that Γ 1 is globally attractive? This question arises in the context of passivity-based stabilization of equilibria [START_REF] Byrnes | Passivity, feedback equivalence, and the global stabilization of nonlinear systems[END_REF] and closed sets [START_REF] El-Hawwary | Reduction principles and the stabilization of closed sets for passive systems[END_REF] for continuous control systems. In the hybrid systems setting, a similar question arises when using virtual constraints to stabilize hybrid limit cycles for biped robots (e.g., [START_REF] Plestan | Stable walking of a 7-DOF biped robot[END_REF][START_REF] Westervelt | Feedback control of dynamic bipedal robot locomotion[END_REF][START_REF] Westervelt | Hybrid zero dynamics of planar biped robots[END_REF]). In this case the zero level set of the output function is the virtual constraint.

Let Γ 2 denote the maximal weakly forward invariant subset contained in h -1 (0). Using the sequential compactness of the space of solutions of H [11, Theorem 4.4], one can show that the closure of a weakly forward invariant set is weakly forward invariant. This fact and the maximality of Γ 2 imply that Γ 2 is closed. Furthermore, since Γ 1 is strongly forward invariant, contained in h -1 (0), and all solutions on it are complete, necessarily Γ 1 ⊂ Γ 2 . It turns out (see the proof of Proposition 3.3 below) that any bounded complete solution x such that h(x(t, j)) → 0 converges to Γ 2 .

In light of the discussion above, the question we asked earlier can be recast as a reduction problem: Suppose that Γ 2 is globally attractive. What stability properties should Γ 1 satisfy relative to Γ 2 in order to ensure that Γ 1 is globally attractive for H? The answer, provided by Theorem 4.4 in Section 4, is that Γ 1 should be globally asymptotically stable relative to Γ 2 (attractivity is not enough, as shown in Example 4.6 below).

Following 2 [5], the hybrid system H is said to be Γ 1 -detectable from h if Γ 1 is globally asymptotically stable relative to Γ 2 , where Γ 2 is the maximal weakly forward invariant subset contained in h -1 (0). Using the reduction theorem for attractivity in Section 4 (Theorem 4.4), we get the answer to the foregoing output zeroing question. Proposition 3.3 Let H be a hybrid system satisfying the Basic Assumptions, h : R n → R k a continuous function, and Γ 1 ⊂ h -1 (0) be a compact set which is strongly forward invariant for H, such that all solutions from Γ 1 are complete. If 1) H is Γ 1 -detectable from h, 2) each x ∈ S H is bounded, and 3) all complete x ∈ S H are such that h(x(t, j)) → 0, then Γ 1 is globally attractive.

Proof.Let Γ 2 be the maximal weakly forward invariant subset of h -1 (0). This set is closed by sequential compactness of the space of solutions of H [START_REF] Goebel | Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF]Theorem 4.4]. By assumption, any x ∈ S H is bounded. If x ∈ S H is complete, by [25, Lemma 3.3], the positive limit set Ω(x) is nonempty, compact, and weakly invariant. Moreover, Ω(x) is the smallest closed set approached by x. Since h(x(t, j)) → 0 and h is continuous, Ω(x) ⊂ h -1 (0). Since Ω(x) is weakly forward invariant and contained in h -1 (0), necessarily Ω(x) ⊂ Γ 2 . Thus Γ 2 is globally attractive for H. Since Γ 1 is strongly forward invariant, contained in h -1 (0), and on it all solutions are complete, Γ 1 is contained in Γ 2 , the maximal set with these properties. By the Γ 1 -detectability assumption, Γ 1 is globally asymptotically stable relative to Γ 2 . By Theorem 4.4, we conclude that Γ 1 is globally attractive. ⋄

Main results

In this section we solve the reduction problem, presenting reduction theorems for stability, (global) attractivity, and (global) asymptotic stability. We also present the solution of the recursive reduction problem for the property of asymptotic stability.

Theorem 4.1 (Reduction theorem for stability) For a hybrid system H satisfying the Basic Assumptions, consider two sets For examples of such situations, refer to [START_REF] Greco | Circular path following for the spherical pendulum on a cart[END_REF] and [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF]. △ Proof. Hypotheses (i) and (ii) imply that there exists a scalar r > 0 such that:

Γ 1 ⊂ Γ 2 ⊂ R n ,
(a) Set Γ 1 is globally asymptotically stable for system H r,0

:= (C ∩ Γ 2 ∩ Br (Γ 1 ), F, D ∩ Γ 2 ∩ Br (Γ 1 ), G),
(b) Given system H r := H| Br (Γ1) for each ε > 0, ∃δ > 0 such that all solutions to H r satisfy:

|x(0, 0)| Γ1 ≤ δ ⇒ |x(t, j)| Γ2 ≤ ε, ∀(t, j) ∈ dom(x).
Since Γ 1 is contained in the interior of Br (Γ 1 ), by Lemma 2.11 to prove stability of Γ 1 for H it suffices to prove stability of Γ 1 for system H r introduced in (b).

The rest of the proof follows similar steps to the proof of stability reported in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Corollary 7.24].

From item (a) and due to [10, Theorem 7.12], there exists a class KL bound β ∈ KL and, due to [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Lemma 7.20] applied with a constant perturbation function x → ρ(x) = ρ and with U = R n , for each ε > 0 there exists ρ > 0 such that defining

C ρ,r := C ∩ Bρ (Γ 2 ) ∩ Br (Γ 1 ) ⊂ {x ∈ R n : (x + ρB) ∩ (C ∩ Γ 2 ∩ Br (Γ 1 )) = ∅} D ρ,r := D ∩ Bρ (Γ 2 ) ∩ Br (Γ 1 ) ⊂ {x ∈ R n : (x + ρB) ∩ (D ∩ Γ 2 ∩ Br (Γ 1 )) = ∅} (8) and introducing system H ρ,r := (C ρ,r , F, D ρ,r , G), we have 3 |x(t, j)| Γ1 ≤ β(|x(0, 0)| Γ1 , t + j) + ε 2 , ∀(t, j) ∈ dom(x), ∀x ∈ S Hρ,r (9) 
Let ε > 0 be given. Let ρ > 0 be such that (9) holds. Due to item (b) above, there exists a small enough δ > 0 such that β(δ, 0) ≤ ε 2 and

(x ∈ S Hr , |x(0, 0)| Γ1 ≤ δ) ⇒ |x(t, j)| Γ2 ≤ ρ, ∀(t, j) ∈ dom(x). ( 10 
)
Then the solutions considered in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] are also solutions of H ρ,r because they remain in B ρ(Γ 2 ). Since these are solutions of H ρ,r , we may apply (9) to get 

|x(t, j)| Γ1 ≤ β(δ, 0) + ε 2 ≤ ε 2 + ε 2 = ε, ∀(t, j) ∈ dom(x), ( 
ẋ1 = -x 1 (1 -σ(x 1 )) + x 2 2 ẋ2 = σ(x 1 )x 2 , ( 12 
)
with the earlier definitions of Γ 1 and Γ 2 . One can see that Γ 1 is asymptotically stable relative to Γ 2 , and Γ 2 is unstable. For the former property, note that the motion on Γ 2 is described by ẋ1 = -x 1 (1-σ(x 1 )), a C 1 differential equation which near {x 1 = 0} reduces to ẋ1 = -x 1 .

To see that Γ 2 is an unstable set, note that if x 1 (0) ≥ 2, then x 1 (t) ≥ x 1 (0) and ẋ2 = x 2 . Namely, solutions move away from Γ 2 . On the other hand, Γ 

B := {x 0 ∈ R n : all x ∈ S H (x 0 ) are bounded}. ( 13 
)
In particular, if B contains Γ 1 in its interior, then Γ 1 is attractive. If all solutions of H are bounded, then Γ 1 is globally attractive.

Proof. By definition, any bounded non complete solution belongs to the basin of attraction of Γ 1 . The proof amounts then to showing that any bounded and complete solution x ∈ S H converges to Γ 1 , so that all points in B defined in [START_REF] Iggidr | Semidefinite Lyapunov functions stability and stabilization[END_REF] are contained in its basin of attraction. Conversely, any solution in the basin of attraction of Γ 1 is bounded by definition, so it belongs to B. Hypothesis (i) corresponds to the following fact:

(a) Set Γ 1 is globally asymptotically stable for system

H| Γ2 := (C ∩ Γ 2 , F, D ∩ Γ 2 , G).
The rest of the proof follows similar steps to the proof of attractivity reported in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Corollary 7.24]. Given any bounded and complete solution x ∈ S H , define M := max

(t,j)∈dom(x)
|x(t, j)| Γ1 . Convergence of x to Γ 1 is established by showing that for each ε, there exists T ≥ 0 such that

|x(t, j)| Γ1 ≤ ε, ∀(t, j) ∈ dom(x) : t + j ≥ T. (14) 
From item (a) above, and applying [10, Theorem 7.12], there exists a uniform class KL bound β ∈ KL on the solutions to system H| Γ2 . Fix an arbitrary ε > 0. To establish ( 14), due to [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Lemma 7.20] applied to H| Γ2 with U = R n , with a constant perturbation function x → ρ(x) = ρ and with the compact set K = BM (Γ 1 ) (to be used in the definition of semiglobal practical KL asymptotic stability of [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Definition 7.18]), there exists a small enough ρ > 0 such that defining4 

C ρ := BM (Γ 1 ) ∩ C ∩ Bρ (Γ 2 ) ⊂ BM (Γ 1 ) ∩ {x ∈ R n : (x + ρB) ∩ ((C ∩ Γ 2 ) = ∅} D ρ := BM (Γ 1 ) ∩ D ∩ Bρ (Γ 2 ) ⊂ BM (Γ 1 ) ∩ {x ∈ R n : (x + ρB) ∩ ((D ∩ Γ 2 ) = ∅} (15 
) and introducing system H ρ := (C ρ, F, D ρ, G), we have

|x(t, j)| Γ1 ≤ β(|x(0, 0)| Γ1 , t + j) + ε 2 , (16) 
≤ β(M, t + j) + ε 2 , ∀(t, j) ∈ dom(x), ∀x ∈ S Hρ .

Define now T 2 > 0 satisfying β(M, T 2 ) ≤ ε 2 , and obtain:

x ∈ S Hρ ⇒ |x(t, j)| Γ1 ≤ ε, ∀(t, j) ∈ dom(x) : t+j ≥ T 2 . (17) 
Moreover, from hypothesis (ii), there exists T 1 > 0 such that |x(t, j)| Γ2 ≤ ρ for all (t, j) ∈ dom(x) satisfying t + j ≥ T 1 . As a consequence, the tail of solution x (after t+j ≥ T 1 ) is a solution to H ρ. By virtue of (17), equation ( 14) is established with T = T 1 + T 2 and the proof is completed. ⋄ Example 4.5 Consider a hybrid system with continuous states x = (x 1 , x 2 , x 3 ) ∈ R 3 and a discrete state q ∈ {1, -1}. The dynamics are defined as

ẋ1 = qx 2 x + 1 = x 1 ẋ2 = -qx 1 x + 2 = x 2 ẋ3 = x 2 1 -x 3 x + 3 = x 3 /2 q = 0, q + = -q,
and the flow and jump sets are selected as closed sets ensuring that along flowing solutions we have x 1 (t, j) > 0 ⇒ q(t, j) = 1 and x 1 (t, j) < 0 ⇒ q(t, j) = -1. To this end, when the solution hits the set {x 1 = 0}, the discrete state is toggled, q + = -q, and the state x 3 is halved, x + 3 = x 3 /2. In particular, we select

C = {(x, q) : x 1 ≥ 0, q = 1} ∪ {(x, q) : x 1 ≤ 0, q = -1}, D = {(x, q) : x 1 = 0, q = 1} ∪ {(x, q) : x 1 = 0, q = -1},
For any flowing solution starting in C, the states (x 1 , x 2 ) describe an arc of a circle centered at (x 1 , x 2 ) = (0, 0). The direction of motion is clockwise on the half-space x 1 > 0, and counter-clockwise on x 1 < 0. Each solution reaches the set {(x, q) : x 1 = 0} in finite time. On this set, the only complete solutions are Zeno, namely, the discrete state q persistently toggles. The set

Γ 2 := {(x, q) : x 1 = 0}
is, therefore, globally attractive for H. It is, however, unstable, as solutions of the (x 1 , x 2 )-subsystem starting arbitrarily close to Γ 2 with x 2 > 0 evolve along arcs of circles that move away from Γ 2 . On Γ 2 , the flow is described by the differential equation ẋ3 = -x 3 , while the jumps are described by the difference equation x + 3 = x 3 /2. Thus the x 2 axis Γ 1 := {(x, q) ∈ Γ 2 : x 3 = 0}, is globally asymptotically stable relative to Γ 2 . Since the states (x 1 , x 2 ) are bounded, so is the x 3 state. By Theorem 4.4, Γ 1 is globally attractive for H. On the other hand, Γ 1 is unstable for H. △ Example 4.6 In Theorem 4.4, one may not replace assumption (i) by the weaker requirement that Γ 1 be attractive relative to Γ 2 . We illustrate this fact with an example taken from [START_REF] El-Hawwary | Passivity methods for the stabilization of closed sets in nonlinear control systems[END_REF]. Consider the smooth differential equation ẋ1 = (x 3 3 , and the sets Γ 1 = {(x 1 , x 2 , x 3 ) : x 2 = x 3 = 0} and Γ 2 = {(x 1 , x 2 , x 3 ) : x 3 = 0}. One can see that Γ 2 is globally asymptotically stable, and the motion on Γ 2 is described by the system

2 2 + x 2 3 )(-x 2 ) ẋ2 = (x 2 2 + x 2 3 )(x 1 ) ẋ3 = -x
ẋ1 = -x 2 (x 2 2 ) ẋ2 = x 1 (x 2 
2 ).

On Γ 1 ⊂ Γ 2 , every point is an equilibrium. Phase curves on Γ 2 off of Γ 1 are concentric semicircles {x 2 1 + x 2 2 = c}, and therefore Γ 1 is a global, but unstable, attractor relative to Γ 2 . As shown in Figure 3, for initial conditions not in Γ 2 the trajectories are bounded and their positive limit set is a circle inside Γ 2 which intersects Γ 1 at equilibrium points. Thus Γ 1 is not attractive. △ By assumption (i), there exists r > 0 such that Γ 1 is globally asymptotically stable relative to the set Γ 2,r := Γ 2 ∩ Br (Γ 1 ) for H. By Lemma 2.10, the same property holds for the restriction H r := H| Br (Γ1) .

By assumption (iii) and by making, if necessary, r smaller, Γ 2,r is globally attractive for H r .

By Theorem 4.4, the basin of attraction of Γ 1 for H r is the set of initial conditions from which solutions of H r are bounded. Since the flow and jump sets of H r are compact, all solutions of H r are bounded, and thus Γ 1 is attractive for H r .

Assumptions (i) and (ii) and Theorem 4.1 imply that Γ 1 is stable for H. Since Γ 1 is contained in the interior of Br (Γ 1 ), by Lemma 2.11 the attractivity of Γ 1 for H r implies the attractivity of Γ 1 for H. Thus Γ 1 is asymptotically stable for H.

For the global version, it suffices to notice that assumptions (i'), (iii'), and (iv') imply, by Theorem 4.4, that Γ 1 is globally attractive for H.

(⇒) Suppose that Γ 1 is asymptotically stable. By Lemma 2.10, Γ 1 is asymptotically stable for H| Γ2 , and thus condition (i) holds. By [START_REF] Goebel | Solutions to hybrid inclusions via set and graphical convergence with stability theory applications[END_REF]Proposition 6.4], the basin of attraction of Γ 1 is an open set B containing Γ 1 , each solution x ∈ S H (B) is bounded and, if it is complete, it converges to Γ 1 . Since Γ 1 ⊂ Γ 2 , such a solution converges to Γ 2 as well. Thus the basin of attraction of Γ 2 contains B, proving that Γ 2 is locally attractive near Γ 1 and condition (iii) holds. To prove that Γ 2 is locally stable near Γ 1 , let r > 0 and ε > 0 be arbitrary. Since Γ 1 is stable, there exists δ > 0 such that each x ∈ S H (B δ (Γ 1 )) remains in B ε (Γ 1 ) for all hybrid times in its hybrid time domain. Since Γ 1 ⊂ Γ 2 , B ε (Γ 1 ) ⊂ B ε (Γ 2 ). Thus each x ∈ S H (B δ (Γ 1 )) remains in B ε (Γ 2 ) for all hybrid times in its hybrid time domain. In particular, it also does so for all the hybrid times for which it remains in B r (Γ 1 ). This proves that condition (ii) holds.

Suppose that Γ 1 is globally asymptotically stable. The proof that conditions (i'), (ii'), (iii') hold is a straightforward adaptation of the arguments presented above. Since Γ 1 is globally attractive, its basin of attraction is R n . Since Γ 1 is compact, by definition all solutions originating in its basin of attraction are bounded. Thus condition (iv') holds. ⋄ Theorems 4.1 and 4.7 generalize to the hybrid setting analogous results for continuous systems in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF][START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF][START_REF] Sontag | Remarks on stabilization and input-tostate stability[END_REF]. The following corollary is of particular interest. asymptotically stable. An analogous argument holds for the global version of the corollary. ⋄ If in Theorems 4.1, 4.4, and 4.7 one replaces R n by a closed subset X of R n , then the conclusions of the theorems hold relative to X , for one can apply the theorems to the restriction H| X . This allows one to apply the theorems inductively to finite sequences of nested subsets Γ 1 ⊂ • • • ⊂ Γ l to solve the recursive reduction problem. Theorem 4.9 (Recursive reduction theorem for asymptotic stability) For a hybrid system H satisfying the Basic Assumptions, consider l sets Analogous statements hold, mutatis mutandis, for the properties of stability and attractivity (see [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF]Proposition 14]). The proof of the theorem above is contained in that of [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF]Proposition 14] and is therefore omitted.

Γ 1 ⊂ • • • ⊂ Γ l ⊂ Γ l+1 := R n ,
5 Adaptive hybrid observer for uncertain internal models Consider a LTI system described by equations of the form

χ = 0 -ω ω 0 χ := Sχ, (18a) 
y = 1 0 χ := Hχ, (18b) 
with ω ∈ R not precisely known, for which however lower and upper bounds are assumed to be available, namely ω m < ω < ω M , ω m , ω M ∈ R + . Note that ( 18) can be considered a hybrid system with empty jump set and jump map. Suppose in addition that the norm of the initial condition χ(0, 0) is upper and lower bounded, namely χ m ≤ |χ(0, 0)| ≤ χ M , for some known positive constants χ m and χ M . By the nature of the dynamics in (18), the bounds above imply the existence of a compact set

W := {χ ∈ R 2 : |χ| ∈ [χ m , χ M ]
} that is strongly forward invariant for [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF] and where solutions to [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF] are constrained to evolve. The objective of this section consists in estimating the period of oscillation, namely 2π/ω with ω unknown, and in (asymptotically) reconstructing the state of the system (18) via the measured output y. It is shown that this task can be reformulated in terms of the results discussed in the previous sections. Towards this end, let

       χ = Ŝ(T ) χ + L(T )(y -H χ), q = 0, Ṫ = 0, τ = 1,        χ+ = χ, q + = sign(y), T + = λT + (1 -λ)2τ, τ + = 0, (19) 
with λ ∈ [0, 1), denote the flow and jump maps, respectively, of the proposed hybrid estimator, where the matrices Ŝ(T ) and L(T ) are defined as

Ŝ(T ) :=    0 - 2π T 2π T 0    , L(T ) :=    4π T 0    , (20) 
which are such that ( Ŝ(T ) -L(T )H) is Hurwitz. Note that the lower bound T m on T specified below guarantees that matrix Ŝ(T ) is well-defined. Intuitively, the rationale behind the definition of flow and jump sets for the hybrid estimator given below is that the system is forced to jump whenever the sign of the logic variable q is different from the sign of the output y. Therefore, homogeneity of the dynamics implies that τ is eventually upper-bounded by some value τ = π/ω m . Moreover, note that the lower and upper bounds on ω induce similar bounds on the possible values of T , namely 2π/ω M = T m < T < T M = 2π/ω m . Denoting by Ξ the space where state ξ := (χ, χ, q, T, τ ) evolves,

Ξ := W × R 2 × {-1, 1} × [T m , T M ] × [0, π/ω m ],
the closed-loop system (18)-( 19) is then completed by the flow set

C := {(χ, χ, q, T, τ ) ∈ Ξ : qy ≥ -σ} , (21) 
and by the jump set

D := {(χ, χ, q, T, τ ) ∈ Ξ : |y| ≥ σ, qy ≤ -σ} (22) 
for some σ > 0 that should be selected smaller than χ m to guarantee that the output trajectory, under the assumptions for the initial conditions of (18), intersects the line qy = -σ. Note that C and D depend only on the output y.

Adopting the notation introduced in the previous sections, define the functions h : R 2 → {-1, 1} as

h(χ) := -1, if χ 1 ≥ σ ∨ (|χ 1 | < σ ∧ χ 2 > 0) 1, if χ 1 ≤ -σ ∨ (|χ 1 | < σ ∧ χ 2 < 0) ( 23 
) and ̺ : R 2 × R → R as ̺(χ, τ ) := He S(π/ω-τ ) χh(χ)σ, which is constant along flowing solutions because ̺(χ, τ ) = -He S(π/ω-τ ) Sχ + He S(π/ω-τ ) χ = 0 , [START_REF] Roza | A class of position controllers for underactuated VTOL vehicles[END_REF] which is zero if and only if τ is suitably synchronized with χ, namely such that τ + = π/ω: this would in turn

χ 1 χ 2 -χ m χ m -χ M χ M -σ σ Figure 4:
The white doughnut represents the set W. The red/blue curve is a solution χ(t, j) where the dots represents jump instants. The solution is blue in regions where h(χ(t, j)) = -1 and is red in regions where h(χ(t, j)) = 1 guarantee that T + = 2π/ω at the next jump provided that also T = 2π/ω. Then, consider the sets

Γ 3 := ξ ∈ Ξ : ̺(χ, τ ) = 0 , (25) 
Γ 2 := ξ ∈ Γ 3 : T = 2π ω (26) 
and

Γ 1 := ξ ∈ Γ 2 : χ = χ (27) 
with ξ := (χ, χ, q, T, τ ), which clearly satisfy Γ 1 ⊂ Γ 2 ⊂ Γ 3 . Roughly speaking, on the set Γ 1 the state χ of the hybrid estimator ( 19) is perfectly synchronized with that of system (18), Γ 2 consists of the set of states that ensure T + = 2π/ω at the next jump, while Γ 3 prescribes the correct value of the initial timer τ , depending on the initial phase of χ, such that at jumps τ coincides with π/ω. Note that Γ 1 is compact, by the hypothesis on W, while Γ 2 and Γ 3 are closed.

Let us now show GAS of Γ 1 by using reductions theorems. To this end, we apply the recursive version of Theorem 4.7 given in Theorem 4.9. In particular, we show GAS of Γ 1 relative to Γ 2 , GAS of Γ 2 relative to Γ 3 , GAS of Γ 3 and finally boundedness of solutions. To begin with, it can be shown that Γ 1 is globally asymptotically stable relative to Γ 2 . In fact, letting η 1 = χχ denote the estimation error, then its dynamics restricted to Γ 2 , due to the trivial jumps of χ and χ, is described by the hybrid system defined by the flow dynamics which is obtained by considering that, on the set Γ 2 , Ŝ(T ) = S, for ξ ∈ C, and the jump dynamics η + 1 = η 1 for ξ ∈ D. The claim follows by recalling that L(T ) is such that (S -L(T )H) is Hurwitz and by persistent flowing conditions of stability [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Proposition 3.27].

η1 = Sχ -Ŝ(T ) χ -L(T )Hη 1 = (S -L(T )H)η 1 , ( 
Moreover, Γ 2 is globally asymptotically stable relative to Γ 3 . To show this, let η 2 = T -2π/ω and recall that all the trajectories of ( 19) that remain in Γ 3 are characterized by the property that τ = π/ω at the time of jump. Therefore, the dynamics of η 2 restricted to Γ 3 is described by the hybrid system defined by the flow dynamics η2 = 0, for ξ ∈ C and the jump dynamics

η + 2 = T + - 2π ω = λ T - 2π ω = λη 2 , (29) 
for ξ ∈ D. Asymptotic stability of Γ 2 relative to Γ 3 then follows by persistent jumping stability conditions [10, Proposition 3.24], which applies because σ > χ m , and by recalling that 0 ≤ λ < 1. In addition, global attractivity of Γ 3 can be shown by relying on the fact that τ (t 2 , 1), namely the value of τ before the second jump, is equal to π/ω, hence implying that ̺(χ(t, k), τ (t, k)) = 0 for (t, k) ∈ dom ̺ with k > 1. Stability of Γ 3 , on the other hand, follows by noting that a perturbation δ on τ (0, 0) with respect to the values in Γ 3 , i.e. values that satisfy ̺(χ, τ ) = 0, results in τ (t 1 , 0) = π/ω + ε(δ), with ε a class-K function of δ. Finally, boundedness of the trajectories of the state χ and of q, T and τ follows by the existence of the strongly forward invariant set W -described by the lower, χ m , and upper, χ M , bounds -and by definition of the flow and jump sets, respectively. Therefore, to conclude global asymptotic stability of the set Γ 1 it only remains to show that the trajectories of χ are bounded. Towards this end, recall the flow dynamics of χ in [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF], namely χ = (S(T )-L(T )C o ) χ+ L(T )C o χ := M (T ) χ+ L(T )C o χ , (30) with M (T ), and its derivative with respect to T , uniformly bounded in T , since T ∈ [T m , T M ], and Hurwitz uniformly in T by definition of L(T ), whereas the jump dynamics is described by χ+ = χ. Thus, by applying [START_REF] Khalil | Nonlinear Systems[END_REF]Lemma 5.12], it follows that there exists a unique positive definite solution P (T ) to the Lyapunov equation P (T )M (T ) + M (T ) ⊤ P (T ) = -I, with the additional property that c 1 | χ| 2 ≤ χ⊤ P (T ) χ ≤ c 2 | χ| 2 , for some positive constants c 1 and c 2 . Boundedness of the trajectories of χ then follows by standard manipulations on the time derivative of the functions χ⊤ P (T ) χ along the trajectories of [START_REF] Sontag | Remarks on stabilization and input-tostate stability[END_REF] and by noting that L(T ) is uniformly bounded, by the definition of L and of T , and by recalling that |χ| is uniformly bounded by definition of the strongly forward invariant compact set W.

In the following numerical simulations, we suppose that ω = 1.5 and we let σ = 0.25 and λ = 0.5. Moreover, we let χ(0, 0) = [2, 0] ′ and χ(0, 0) = [0, 0] ′ , while the remaining components of the estimator are initialized as q(0, 0) = 1, T (0, 0) = 2.5 and τ (0, 0) = 0. The top graph of Figure 5 depicts the time histories of the function y generated by [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF] and of the state q(t, k), solid and dashed lines, respectively. The middle graph of Figure 5 shows the time histories of the estimate T (t, k), converging to the correct value of the period of oscillation 2π/ω, while the bottom graph displays the time histories of χ1 (t, k) (dark) and χ2 (t, k) (gray), solid lines, converging to the actual states χ 1 (t, k) and χ 2 (t, k), dashed lines.

Conclusion

In this paper we presented three reduction theorems for stability, local/global attractivity, and local/global asymptotic stability of compact sets for hybrid dynamical systems, along with a number of their consequences. The proofs of these results rely crucially on the KL characterization of robustness of asymptotic stability of compact sets found in [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Theorem 7.12]. A different proof technique is possible which generalizes the proofs found in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF]. As a future research direction, we conjecture that, similarly to what was done in [START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF] for continuous dynamical systems, it may be possible to state reduction theorems for hybrid systems in which the set Γ 1 is only assumed to be closed, not necessarily bounded.

In addition to the applications listed in the introduction, the reduction theorems presented in this paper may be employed to generalize the position control laws for VTOL vehicles presented in [START_REF] Michieletto | Nonlinear control of multi-rotor aerial vehicles based on the zero-moment direction[END_REF][START_REF] Roza | A class of position controllers for underactuated VTOL vehicles[END_REF], by replacing continuous attitude stabilizers with hybrid ones, such as the one found in [START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF]. Furthermore, the results of this paper may be used to generalize the allocation techniques of [START_REF] Passenbrunner | Optimality-based dynamic allocation with nonlinear first-order redundant actuators[END_REF], possibly following similar ideas to those in [START_REF] Galeani | On input allocation-based regulation for linear over-actuated systems[END_REF].

  , a hybrid system is a 4-tuple H = (C, F, D, G) satisfying the Basic Assumptions ( [9, 10]) A1) C and D are closed subsets of R n . A2) F : R n ⇒ R n is outer semicontinuous, locally bounded on C, and such that F (x) is nonempty and convex for each x ∈ C. A3) G : R n ⇒ R n is outer semicontinuous, locally bounded on D, and such that G(x) is nonempty for each x ∈ D.
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 3 Figure 3: Example 4.6: Γ 1 is globally attractive relative to Γ 2 , Γ 2 is globally asymptotically stable, and yet Γ 1 is not attractive.

  is globally attractive if its basin of attraction is R n .

	they allow the authors of	
	Γ is asymptotically stable if it stable and attractive,
	and globally asymptotically stable if it is stable and
	globally attractive.	
	Remark 2.3 When C ∪ D is closed, the properties of
	stability and attractivity hold trivially for compact sets
	Γ on which there are no solutions. More precisely, if
	Γ ⊂ R n \ (C ∪ D), then Γ is automatically stable and
	attractive (and hence asymptotically stable). Moreover,
	all points outside C ∪ D trivially belong to its basin of
	attraction.	△
	Remark 2.4 In [10, Definition 7.1], the notions of at-
	tractivity and asymptotic stability of compact sets de-
	fined above are referred to as local pre-attractivity and
	local pre-asymptotic stability. The prefix "pre" refers to
	the fact that the attraction property is only assumed to
	hold for complete solutions. Recent literature on hybrid
	systems has dropped this prefix, and in this paper we
	follow the same convention.	△
	Remark 2.5 For the case of closed, non-compact
	sets, [10] adopts notions of uniform global stability, uni-
	form global pre-attractivity, and uniform global pre-
	asymptotic stability (see [10, Definition 3.6]) that are
	stronger than the notions presented in Definition 2.2, but

  Consider a hybrid system H satisfying the Basic Assumptions, and two sets Γ 1 ⊂ Γ 2 ⊂ R n , with Γ 1 compact and Γ 2 closed. Suppose that Γ 1 enjoys property P relative to Γ 2 , where P ∈ {stability, attractivity, global attractivity, asymptotic stability, global asymptotic stability}. We seek conditions under which property P holds relative to R n . △ As mentioned in the introduction, this problem was first formulated byPaul Seibert in 1969-1970 [26, 27]. The solution in the context of hybrid systems is presented in Theorems 4.1, 4.4, 4.7 in the next section.

	In this section we formulate the reduction problem, dis-
	cuss its relevance, and present two theoretical applica-
	tions: the stability of compact sets for cascade-connected
	hybrid systems, and a result concerning global attractiv-
	ity of compact sets for hybrid systems with outputs that
	converge to zero.
	Reduction Problem.

[START_REF] Alessandri | Stubborn state observers for linear time-invariant systems[END_REF] 

for system H, from which it follows that Γ 1 is attractive for H. ⋄

3 The reduction problem

  essential and emerges quite naturally from the context of the problem. This occurs, for instance, when solutions far from Γ 1 but near Γ 2 have finite escape times.

	with Γ 1 compact and
	Γ 2 closed. If
	(i) Γ 1 is asymptotically stable relative to Γ 2 ,
	(ii) Γ 2 is locally stable near Γ 1 ,
	then Γ 1 is stable for H.

Remark 4.2 As argued in Remark 2.7, local stability of Γ 2 near Γ 1 (assumption (ii)) is a necessary condition in Theorem 4.1. In place of this assumption, one may use the stronger assumption that Γ 2 be stable, which might be easier to check in practice but is not a necessary condition (see for example system

[START_REF] Greco | Circular path following for the spherical pendulum on a cart[END_REF] 

in Example 4.3). There are situations, however, when the local stability property is

  definitions of Γ 1 and Γ 2 . Now Γ 1 is asymptotically stable relative to Γ 2 , and Γ 2 is stable. As predicted by Theorem 4.1, Γ 1 is a stable equilibrium. Fi-

		stable relative to Γ 2 . To illustrate this fact, consider the
		linear time-invariant system
		ẋ1 = x 2
		ẋ2 = 0,
		with Γ 1 = {(0, 0)} and Γ 2 = {(x 1 , x 2 ) : x 2 = 0}. Al-
		though Γ 1 is stable relative to Γ 2 and Γ 2 is stable, Γ 1
		is an unstable equilibrium. On the other hand, consider
		the system
		ẋ1 = -x 1 + x 2
		ẋ2 = 0,
		with the same
		11)
	which completes the proof.	⋄
	Example 4.3 Assumption (i) in the above theorem can-
	not be replaced by the weaker requirement that Γ 1 be

nally, let σ : R → [0, 1] be a C 1 function such that σ(s) = 0 for |s| ≤ 1 and σ(s) = 1 for |s| ≥ 2, and consider the system

  6: Γ 1 is globally attractive relative to Γ 2 , Γ 2 is globally asymptotically stable, and yet Γ 1 is not attractive. Theorem 4.7 (Reduction theorem for asymptotic stability) For a hybrid system H satisfying the Basic Assumptions, consider two sets Γ 1 ⊂ Γ 2 ⊂ R n , with Γ 1 compact and Γ 2 closed. Then Γ 1 is asymptotically stable if, and only if

	Moreover, Γ 1 is globally asymptotically stable for H if,
	and only if,
	(i') Γ 1 is globally asymptotically stable relative to Γ 2 ,
	(ii') Γ 2 is locally stable near Γ 1 ,
	(iii') Γ 2 is globally attractive,
	(iv') all solutions of H are bounded.
	Proof. (⇐) We begin by proving the local version of the
	theorem.

(i) Γ 1 is asymptotically stable relative to Γ 2 , (ii) Γ 2 is locally stable near Γ 1 , (iii) Γ 2 is locally attractive near Γ 1 .

  with Γ 1 compact and all Γ i closed. If (i) Γ i is asymptotically stable relative to Γ i+1 , i = 1, . . . , l, then Γ 1 is asymptotically stable for H. On the other hand, if (i') Γ i is globally asymptotically stable relative to Γ i+1 , i = 1, . . . , l, (ii') all x ∈ S H are bounded, then Γ 1 is globally asymptotically stable for H.

  [START_REF] Seibert | On the reduction to a subspace of stability properties of systems in metric spaces[END_REF] 
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: Top Graph: time histories of the function y generated by

[START_REF] Mayhew | Quaternionbased hybrid control for robust global attitude tracking[END_REF] 

and of the state q(t, k), solid and dashed lines, respectively. Middle Graph: time histories of the estimate T (t, k), converging to the correct value of the period of oscillation 2π/ω. Bottom Graph: time histories of χ1 (t, k) (dark) and χ2 (t, k) (gray), solid lines, converging to the actual states χ 1 (t, k) and χ 2 (t, k), dashed lines.

For this reason, in[START_REF]Reduction theorems for stability of closed sets with application to backstepping control design[END_REF], local stability of Γ

near Γ 1 is defined by requiring that the property holds for any r > 0.

cisely the required properties). In some cases, these two questions might be easier to answer than the original one, particularly when Γ 2 is strongly forward invariant, since in this case question (1) would typically involve a hybrid system on a state space of lower dimension. This sort of decomposition occurs frequently in control theory, either for convenience or for structural necessity, as we now illustrate.

In[START_REF] Sanfelice | Invariance principles for hybrid systems with connections to detectability and asymptotic stability[END_REF], the authors adopt a different definition of detectability, one that requires Γ 1 to be globally attractive, instead of globally asymptotically stable, relative to Γ 2 . When they employ this property, however, they make the extra assumption that Γ 1 be stable relative to Γ 2 .

Note that for a constant perturbation ρ(x) = ρ the inflated flow and jump sets in[START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] Definition 6.27] are exactly ρ inflations of the original ones.

Note that the set inclusions in[START_REF] Kalitin | B-stability and the Florio-Seibert problem[END_REF] always hold for a small enough ρ. Indeed, even in the peculiar case when C ∩ Γ 2 is empty, since C and Γ 2 are closed, it is possible to pick ρ small enough so that C ∩ Bρ(Γ2) is empty too, and then the inclusions (15) hold because both sides are empty sets. Similar arguments apply when D ∩ Γ 2 is empty.

Corollary 4.8 For a hybrid system H satisfying the Basic Assumptions, consider two setsΓ 1 ⊂ Γ 2 ⊂ R n , with Γ 1 compact and Γ 2 closed. If (i) Γ 1 is asymptotically stable relative to Γ 2 , (ii) Γ 2 is asymptotically stable, then Γ 1 is asymptotically stable. Moreover, if (i') Γ 1 is globally asymptotically stable relative to Γ 2 , (ii') Γ 2 is globally asymptotically stable,then Γ 1 is asymptotically stable with basin of attraction given by the set of initial conditions from which all solutions are bounded. In particular, if all solutions are bounded, then Γ 1 is globally asymptotically stable.Proof.If Γ 2 is asymptotically stable then Γ 2 is locally attractive near Γ 1 . Moreover, for each ε > 0 there exists an open set U containing Γ 2 such that each x ∈ S H (U ) remains in B ε (Γ 2 ) for all hybrid times in its hybrid time domain. Since Γ 1 ⊂ Γ 2 , Γ 1 is contained in U . Since Γ 1 is compact, there exists δ > 0 such that B δ (Γ 1 ) ⊂ U . Thus each solution x ∈ S H (B δ (Γ 1 )) remains in B ε (Γ 2 ) for all hybrid times in its hybrid time domain, implying that Γ 2 is locally stable near Γ 1 . By Theorem 4.7, Γ 1 is
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