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Abstract

This paper addresses the problem of encircling and tracking a moving target with a fleet of unicycle-like vehicles. A new control
law is developed to steer the vehicles to an evenly spaced formation along a circumference, the center of which tracks the motion
of the target. The strategy proposed relies only on the relative positions of the agents with respect to the target, expressed
in the local frame of each vehicle. The absolute position, velocity and acceleration of the target are unknown. Additionally,
the robustness of the proposed control law in the presence of external disturbances is analyzed. Communication among agents
is used to maintain the vehicles equally spaced in the circular formation. Simulation results illustrate the effectiveness of the
proposed strategies.
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1 Introduction

Formation control, which has steadily emerged as an im-
portant problem in the general area of motion coordi-
nation of multi-agent systems, has received widespread
attention in the literature; see for example [1–5] and
the references therein. Among the multitude of forma-
tion control strategies proposed, circular formation con-
trol has been the subject of intensive research efforts
because of its manifold applications that include target
tracking and source-seeking missions [6,7]. In its sim-
plest form, circular formation control refers to the prob-
lem of making a group of vehicles converge to and move
along a circumference centered at a desired point, while
distributing themselves uniformly along the circumfer-
ence. A natural extension of the problem is to study the
related problem of steering the vehicles to a desired for-
mation along a circumference, while requesting that the
center of the latter track a moving target.

Circular collective motion of a network of unicycle-like

1 This work was supported in part by the H2020
EU Marine Robotics Research Infrastructure Network
(Project ID 731103) and the Portuguese FCT Project
UID/EEA/5009/2013.

agents under several communication constraints was
studied in [8]. Based on potential functions and oscil-
lator models, the authors proposed Lyapunov-based
feedback control laws to stabilize the agents to a fixed
circular formation. The problem of circular formation
of nonholonomic vehicles was studied in [9] and [10] us-
ing cyclic pursuit strategies. Circumnavigation around
a fixed target using only bearing measurements was
studied in [11]. In all of these references, the center of
the desired circular formation was taken as fixed.

An extremely relevant and challenging problem is that of
circular formation control when the center of the forma-
tion is no longer fixed but is required to vary with time,
instead. This problem is easily motivated in the context
of applications where a number of vehicles must perform
collaborative tasks that require the formation to move
in directions that are determined on-line and to adopt a
particular desired geometric configuration. For instance,
in source seeking applications a formation is driven to
follow the gradient of a scalar field generated by a source
of interest [7,12]. Target tracking problems also require
the consideration of time-varying formations. Coopera-
tive approaches to meet the above challenges using fleets
of vehicles have been studied in the literature, see for
example [10,13], where formation control design builds

Preprint submitted to Journal of The Franklin Institute 16 May 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0016003219300031
Manuscript_ccd9e0336f36b95926865cac4361e7a9

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0016003219300031
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0016003219300031


upon hybrid control techniques and the theory of oscilla-
tor models, respectively. Based on cyclic pursuit strate-
gies, the authors in [14] derived a cooperative control
law to capture a moving target with a fleet of vehicles
modeled as simple integrators. In the work reported in
[15,16], a gradient-based control approach using vector
fields was presented to enforce a single integrator vehicle
model to converge to time-varying target curves. Circu-
lar formation control with a moving center for vehicles
modeled as single or double integrators was studied in
[17].

The problem of time-varying circular formation control
is considerably more challenging when a nonholonomic
dynamic model is adopted for the vehicles, instead of
a single or double integrator. Using cyclic pursuit tech-
niques and local information only, the problem of circu-
lar formation control around a common fixed center was
studied in [18]. In the latter reference, a distributed con-
trol was done by considering that only one anonymous
vehicle knows the parameters describing the desired cir-
cular formation. In [19], a cyclic pursuit based strategy
was proposed to stabilize a group of unicycle vehicles to
a circular formation around a target, using only bear-
ing angle information of the target and the neighbours.
In the two references above, the theoretical results only
hold for a fixed target.

Based on previous circular formation control results de-
scribed in the literature [8], a new controller designed
to make nonholonomic vehicles converge to a circumfer-
ence, the center of which tracks a time-varying reference,
was derived in [20]. The main idea is to generate circu-
lar trajectories for a properly chosen stable autonomous
exosystem (also called virtual system) and to enforce the
multi-agent system to track them. In this setup, the ab-
solute position of the agents in a global reference frame
and the desired velocity and acceleration of the time-
varying center are needed to design the tracking con-
troller that will ensure global asymptotic stabilization of
the circular formation. A distributed reconfigurable con-
trol law was proposed in [10] to enforce a group of vehi-
cles to follow and encircle a moving target while adopting
an evenly spaced formation. In this study, only the tar-
get velocity and local information (distances and bear-
ing angles) in addition to communication among neigh-
bors agents are required. However, the proposed strat-
egy ensures only local stability. Furthermore, the track-
ing position errors with respect to the target are locally
bounded but do not converge to zero. The recent pa-
per [21] addressed the problem of moving-target circular
formation control for nonholonomic vehicles using only
measurements in the local Frenet-Serret frame of each
vehicle. The cooperative controller proposed is based on
cyclic pursuit ideas and requires both the velocity and
the acceleration of the time-varying target trajectory.

Motivated by the above consideration, this paper ad-
dresses the problem of encircling a moving target with

a fleet of unicycle-like vehicles using limited motion in-
formation. Firstly, a new control law is derived to steer
the vehicles to a circular formation whose center tracks a
time-varying target. The control design proposed relies
only on local information: the relative positions of the
pursuing vehicles with respect to the target expressed
in the local frame of each vehicle. Unlike previous re-
sults reported in the literature, this strategy dispenses
with the need to measure the absolute positions of the
vehicles and the velocity and acceleration of the target.
The methodology developed builds upon the ideas ad-
vanced in [20], yielding an autonomous stable exosystem
that generates circular trajectories and a tracking con-
trol law that stabilizes the vehicles to the circular mo-
tion around the moving target. The new proposed con-
troller further decreases the amount of information re-
quired, when compared to our previous work [22], since
it does not need the velocity of the target to be known.
Secondly, the robustness of the proposed control law in
the presence of external disturbances is theoretically an-
alyzed. Communication among the vehicles is used to
maintain the vehicles equally spaced along the circular
formation. Simulation results illustrate the effectiveness
of the proposed strategy.

The paper is organized as follows. Section 2 starts by in-
troducing the model adopted for each of the vehicles and
some basic concepts related to the underlying communi-
cation network topology. This is followed by a descrip-
tion of the main control objectives and the solution pro-
posed, which relies on the construction of an autonomous
exosystem and a tracking controller. Section 3 derives a
new control law for target tracking with a circular for-
mation of vehicles that does not require explicit knowl-
edge of the target velocity and uses only the relative po-
sitions of the pursuing vehicles with respect to it. The
robustness of the proposed strategy is studied in Sec-
tion 4. Finally, Section 5 contains the main conclusions
and describes problems that warrant further research.

2 Problem formulation and control strategy

2.1 Model of the agents

In what follows, a group of N vehicles are modeled as
unicycles, subject to simple nonholonomic constraints,
that is

ṙi =R(θi) [vi, 0]
T

θ̇i =ui
i = 1, . . . , N (1)

where ri ∈ R2 is the position vector of vehicle i in a given
inertial frame, θi is the heading angle, R(θ) denotes the
rotation matrix from body to inertial reference frame,
defined by R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
, and (vi, ui) are the con-

trol inputs, consisting of linear and rotational speed, re-
spectively.
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2.2 Communication topology

In the set-up adopted in this paper, each vehicle can
transmit and receive information from a subset of the
other vehicles in the group. Following a by now standard
approach, we assume that the multiple vehicle commu-
nication network can be described in terms of a graph,
see for example [23] for a fast paced presentation of the
subject. We assume that the communication network of
the multi-agent system is represented by an undirected
graph. The set of vertices of the graph is denoted by
V = {1, . . . , N} and E represents the set of edges such
that (i, j) ∈ E if agents i and j communicate with each
other. Using standard notation, G = (V,E) denotes the
corresponding undirected graph. We let Ni = {j ∈ V :
(i, j) ∈ E} be the set of neighbors of agent i and |Ni|
denote its number of neighbors. In the sequel, ⊗ denotes
the Kronecker product and In ∈ Rn×n is the identity
matrix.

2.3 Main objectives and contribution

Our main objective is to derive a cooperative control
law for a group of vehicles to converge to a formation
that encircles and tracks a moving target describing a
trajectory c(t) that is a continuously differentiable func-
tion of time, that is, c ∈ C1(R → R2). To accomplish
this task, the vehicles will be deployed in a uniform dis-
tributed pattern along a circular formation whose center
is the moving target. In a previous paper [20], we ex-
tended the circular formation control law presented in
[8] to time-varying formations, not necessarily circular,
using an exosystem and a tracking controller. A transla-
tion control was proposed in which the vehicles are stabi-
lized to a circular formation whose center tracks a time-
varying reference c(t). It was assumed that the vehicles
can compute their own absolute position ri and more-
over, in order to track the reference c(t), both the first
and second order derivatives, ċ(t) and c̈(t), are known.
In other words, c ∈ C2(R→R2), i.e., c(t) was a continu-
ous and twice differentiable function of time.

In the present paper, the goal is to design a new forma-
tion control law which relaxes the above assumptions on
the problem. We improve substantially the above result
by developing a target tracking control law that only
requires information on the relative positions between
the agents and the target, expressed in the agents’ body
frame, i.e., R(θi)

T (ri − c), rather than in the global in-
ertial frame. Compared to [20], the control design de-
veloped in our previous work [22] does not require the
knowledge of c̈(t). Furthermore, no global information
such as the absolute positions of the agents and target
are needed. This was made possible at the price of in-
troducing a position error which can be made arbitrar-
ily small. The first contribution of the present paper is a
new control law that does not require the computation
of the target velocity. Consequently, the amount of re-
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Fig. 1. Structure for the feedback design including a decen-
tralized exosystem. Each agent i computes its own exosystem
which communicates with other exosystems by means of a
communication protocol depending on the distance between
the agents (the Laplacian matrix L depends on the agents’
states ri).

quired information decreases considerably. The second
contribution of this paper is to analyze the robustness
of the proposed target tracking control law with respect
to external disturbances.

2.4 Control strategy

Consider that each vehicle can compute the relative po-
sition vector ri − c, where c represents the position of
the target. The objective for each agent is to encircle
and track the target, i.e., to describe a circular motion
around c(t). This objective can be also expressed as fol-
lows: design control laws (vi, ui) for the multi-agent sys-
tem (1) such that the relative vector ri − c describes a
circular motion around the origin.

In order to exploit the circular control law from [8], we
introduce an exosystem represented by the multi-agent
dynamics (3). The main idea is thus to make the exosys-
tem converge to a circular motion centered at the origin
and to use the exosystem trajectories r̂i as references for
each relative vector ri − c, see Fig 1. Each vehicle can
measure its relative vector expressed in its body frame,
i.e., R(θi)

T (ri−c). It follows that the error between the
reference and the relative position vector expressed in
the body coordinates of vehicle i is given by

ei = R(θi)
T ((ri− c)− r̂i) = R(θi)

T (ri− (r̂i + c)). (2)

The problem is to design control laws (vi, ui) for the
multi-agent system (1) such that the error ei converges
to zero.

2.5 Autonomous stable exosystem

The collective motion of a group of non-holonomic agents
has been extensively studied in literature. Of particular
interest to our work are the results described [6,8] where
the authors proposed a circular formation control law
for a group of nonlinear agents modeled by (1) with unit
linear velocity, i.e. vi = 1, ∀i. In order to exploit these

3



results, we consider an autonomous exosystem described
by the unicycle dynamics:

˙̂ri =R(φi) [|ω0|R0, 0]
T

φ̇i =ûi
i = 1, . . . , N (3)

where R0 denotes the desired radius of the formation,
ω0 6= 0 is the angular velocity, φi represents the angular
orientation of the velocity vector ˙̂ri, and ûi is the control
input. Note that the linear velocity of the virtual agents
of the exosystem is constant and equal to the positive
value |ω0|R0.

Communication between agents is considered in order
to achieve a uniform distribution around the desired cir-
cular formation. In the setp-up adopted in this paper,
each vehicle computes its own virtual exosystem (3) and
communicates the virtual quantity φi to its neighbors
through a undirected communication graph G. Inspired
by the synchronization problem of coupled oscillators,
[8] introduced a potential function U(φ) that depends
on the relative headings of the agents in the formation
and induces a repulsion force to enlarge the angular dis-
tance between two connected agents of the exosystem.
The potential function is designed such that the evenly
spaced state corresponding to the uniform distribution
of the agents along the circle is an equilibrium point of
U(φ). This potential function satisfies U(φ) ≥ 0 and
1T∇U(φ) = 0, where 1 denotes a vector of ones and ∇
is the gradient operator, so the potential function is in-
variant to rigid rotations of all the agent headings. As
presented in [8], the uniform distribution is only locally
stable for fixed circulant graphs, and others configura-
tions could be stabilized depending on the initial condi-
tions. The following lemma summarizes the results pre-
sented in [8].

Lemma 1 Let ω0 6= 0, κ > 0, and κu > 0 be three
control parameters, and let R0 > 0 be the radius of the
desired circular motion. Then, the control law

ûi = ω0(1 + κ ˙̂rTi r̂i)−
∂U

∂φi

∂U

∂φi
=

κu
|Ni|

∑
j∈Ni

b|Ni|/2c∑
m=1

sin(mφi −mφj)
m

,

(4)

where b|Ni|/2c is the largest integer less than or equal to
|Ni|/2, ensures that the multi-agent system (3) converges
to a circular motion centered at the origin of the coordi-
nate frame with radius R0 and the direction of rotation
is determined by the sign of ω0. Moreover, the agents are
distributed along the circular formation following a par-
ticular pattern defined by an equilibrium point of U(φ).

The proof of the above result relies on Lyapunov tech-
niques and LaSalle’s Invariance Principle and can be

found in [8]. For the sake of clarity, we present here

a sketch of the proof. Define r̂ = (r̂T1 , . . . , r̂
T
N )T , φ =

(φ1, . . . , φN )T , and consider the Lyapunov function

S(r̂, φ) =
κ

2

N∑
i=1

∥∥∥ ˙̂ri − ω0Rπ
2
r̂i

∥∥∥2 + U(φ) ≥ 0, (5)

where Rπ
2

=
[
0 −1
1 0

]
denotes a rotation matrix through

an angle π
2 counterclockwise about the origin. At the

equilibrium points of the previous Lyapunov function,
i.e., S(r̂, φ) = 0, the dynamics of the exosystem (3) sat-

isfy ˙̂ri − ω0Rπ
2
r̂i = 0, ∀i and U(φ) = 0. Thus, the po-

sition vector and the velocity vector are perpendicular,
i.e., ˙̂rTi r̂i = 0. This condition leads to the kinematic re-
lation for the rotation of a rigid body. In other words,
the vectors r̂i are turning around the frame origin at the
equilibrium. Considering the proposed control law (4)
and evaluating the derivative of S(r̂, φ) along the solu-
tions of the resulting closed-loop system (3) yields:

Ṡ(r̂, φ) =κ

N∑
i=1

(
˙̂ri − ω0Rπ

2
r̂i

)T (
¨̂ri − ω0Rπ

2

˙̂ri

)
+

N∑
i=1

∂U

∂φi
φ̇i

=

N∑
i=1

(
κω0r̂

T
i

˙̂ri(ω0 − ûi) +
∂U

∂φi
ûi

)

=−
N∑
i=1

(
κω0r̂

T
i

˙̂ri +
∂U

∂φi

)2

≤ 0.

In conclusion, from LaSalle’s Invariance Principle the
solutions converge to the largest invariant set contained
in the set of points where Ṡ = 0. Consequently, the dy-
namics of the exosystem satisfy ˙̂ri = ω0Rπ

2
r̂i which cor-

respond to a circular motion around the origin. Addi-
tionally, the gradient term ∂U

∂φi
enforces each agent to

move away from its neighbours till the equilibrium point
∂U
∂φi

= 0, ∀i is reached. The equilibrium point corre-

sponding to the evenly spaced state is locally asymptot-
ically stable for fixed connected circulant graphs.

In our previous work [20] we extended this result to
deal with distance dependent communication graphs,
i.e, the agents only communicate when the distance be-
tween them is smaller than the communication range.
We proved that in this situation, for a large enough com-
munication range that depends on the number of agents
and the desired formation radius, the uniform distribu-
tion is the only critical point ofU(φ) and therefore evenly
spaced distribution of the agents along the formation is
ensured.
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3 Target tracking control with unknown target
velocity

In this section we present a new control strategy to solve
the target tracking problem with a group of unicycle-
like vehicles. The objective is to enforce convergence of
each ri(t) to a desired trajectory r̂i(t) +c(t) determined
by adding, at each instant of time, the circular trajec-
tory generated by the exosystem to the position c(t) of
the target moving with velocity ċ(t). The main idea is
to consider the circular trajectories of the autonomous
exosystem r̂i as references to be tracked by the rela-
tive vectors ri − c for all vehicles i = 1, . . . , N . In other
words, the aim is to enforce convergence of each ri(t) to
the desired position r̂i(t) + c(t), where the target veloc-
ity ċ(t) is unknown. The stability and robustness of the
proposed control strategy are studied in the sequel.

3.1 Stability result

Consider the tracking error defined by (2). Then, the
error dynamics are described by

ėi =R(θi)
T (ṙi − ( ˙̂ri + ċ))− uiRπ

2
R(θi)

T (ri − (r̂i + c))

=[vi, 0]T −R(θi)
T ( ˙̂ri + ċ)− uiRπ

2
ei.

We introduce the vector δ = [−δ, 0]T , where δ is an
arbitrary small positive constant, to obtain:

ėi = [vi, 0]T −R(θi)
T ( ˙̂ri + ċ)− uiRπ

2
(ei − δ)− uiRπ

2
δ

= ∆[vi, ui]
T −R(θi)

T ( ˙̂ri + ċ)− uiRπ
2

(ei − δ), (6)

where ∆ = [ 1 0
0 δ ]. Note that the new error vector (ei−δ)

is the distance between a point located at a distance δ
from the center of mass of the agent i along the x-axis of
the local reference frame and the desired position (r̂i+c).
The addition of δ is similar to a feedback linearization
technique that makes the control variable ui appear di-
rectly in the position error dynamics. Consequently, in
order to design simultaneously both control inputs of the
unicycle-like agents, the error will converge to a neigh-
borhood of the origin instead of to the origin itself.

In practice, the agents may only be able to measure the
relative vector ri − c, but not the target velocity ċ. In
this situation, based on the control strategy presented
in [22], we propose a new control law which relies only
on local information. As explained, only the measure-
ment of the relative distance between each agent and the
target, expressed in its local coordinates frame, will be
required.

Due to the unknown target velocity, which can be seen as
an external perturbation, the error dynamics cannot be
driven to zero. If the target velocity is bounded, we can
use the notion of ε-stability (Sections 4.8 and 9.2 in [24])

to prove the stability and robustness of the proposed
target tracking control.

Theorem 1 Consider a differentiable function c(t) :
R→ R2 with bounded derivative, such that

‖ċ(t)‖ ≤ γc, ∀t, (7)

for γc > 0. Let R0 > 0 be the radius of the desired cir-
cular motion, ω0 6= 0, κ > 0, and κu > 0 three control
parameters, and K ∈ R2×2 a symmetric positive definite
matrix. Consider the control law

[vi, ui]
T = ∆−1

(
R(θi)

T ˙̂ri −K(ei − δ)
)
, (8)

where ˙̂ri is defined by the exosystem (3) driven by the
control law ûi in (4). With the control law thus defined,
the agents defined by (1) converge to a circular motion of
radius R whose direction of rotation is determined by the
sign of ω0 and whose center converges to a ball centered
at the time-varying target position c(t) with radius

εc = γc/λmin(K), (9)

where λmin(K) denotes the minimum eigenvalue of ma-
trix K. Furthermore, the relative distance between each
agent i and the moving target, i.e., ‖ri(t) − c(t)‖, con-
verges to the set Rc = [R0 − δ − εc, R0 + δ + εc].

Proof 1 The proof is divided in two steps. Firstly, the
autonomous exosystem is stabilized to a fixed circular
motion, as presented in Section 2. This is done by us-
ing the circular control law (4) which guarantees that in
the limit, as t tends to infinity, the trajectories of the au-
tonomous exosystem satisfy ˙̂ri(t) = ω0Rπ

2
r̂i(t), ∀i, as

proved in Lemma 1. The exosystem is then used as an
autonomous reference generator and the circular trajec-
tories become references to be tracked by the agents with
the dynamics in (1).

The second step consists of designing a tracking con-
troller that will make each unicycle track the desired time-
varying trajectory r̂i(t) + c(t). To this end, consider the
error dynamics defined in (6) as

ėi = ∆[vi, ui]
T −R(θi)

T ( ˙̂ri + ċ)− uiRπ
2

(ei − δ).

Using the control law (8), the error dynamics become

ėi = −uiRπ
2

(ei − δ)−K(ei − δ)−R(θi)
T ċ. (10)

To show the stability of the error system (2), consider
the Lyapunov function

V (ei) =
1

2
‖ei − δ‖2. (11)
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Differentiating V (ei) along the solutions of the closed-
loop dynamics (10) yields

V̇ (ei) ≤− λmin(K)‖ei − δ‖2 + ‖ei − δ‖‖ċ‖
≤ − ‖ei − δ‖ (λmin(K)‖ei − δ‖ − γc) .

To prove ε-stability of the error dynamics, consider
a closed ball Bc centered at ei = δ with radius
εc = γc/λmin(K). Let Ωc = {ei − δ |V (ei) ≤ 1

2ε
2
c}.

Then Bc is contained in Ωc because

‖ei − δ‖ ≤ εc ⇒ V (ei) =
1

2
‖ei − δ‖2 ≤ 1

2
ε2c.

In conclusion, any solution starting in R2 \ Ωc satisfies

V̇ (ei) < 0 (because ‖ei−δ‖ ≥ γc/λmin(K)) and thus en-
ters Ωc in finite time and remains there. Thus, the error
dynamics converges asymptotically to a region centered
at ei = δ and radius εc = γc/λmin(K). In other words,

‖ei(t)− δ‖ ≤ εc, t→∞.

Considering the definition of the error in (2) and using
the previous inequality, it can be shown that at steady
state the following expression holds:∣∣‖R(θi)

T (ri(t)− c(t))‖ − ‖R(θi)
T r̂i(t) + δ‖

∣∣ ≤ εc.
We know that the trajectories of the exosystem converge
to circular motions centered at the origin and with radius
R0, i.e., ‖r̂i‖ = R0, for all i. Thus, the distance between
the position of each agent i and the target satisfies

R0 − δ − εc ≤ ‖ri(t)− c(t)‖ ≤ R0 + δ − εc.

This last inequality implies that the relative distance be-
tween each agent i and the target converges to a the set
Rc = [R0−δ−εc, R0+δ+εc], thus concluding the proof.

Theorem 1 proves that the tracking control law (8) en-
forces the agents to track and encircle the target even if
the target velocity is unknown. Intuitively, if the bound
of the unknown target velocity, γc, is significantly large
the agents may not be able to track the time-varying tar-
get trajectory. This implication is confirmed in Eq. (9):
the radius of the ε-stability grows proportionally to the
bound on the target’s velocity. However, thanks to the
control parameter K, this error can be reduced, reduc-
ing as well the tracking position error of the agents, as
shown in Figs. 3 and 4.

Remark 1 In the definition of the control law (8), it can
be seen that the input variable ui is multiplied by 1/δ,
which corresponds to the inverse of the norm of the arti-
ficial error vector δ. Therefore, if one wishes to achieve
almost perfect tracking, then the control input ui may
reach large values. Conversely, if one desires to limit the

Fig. 2. Target encircling with a group of 5 agents governed by
control law (8) (target velocity is unknown). The figure shows
three snapshots: the initial condition represented by the void
red agents and two states at t = 20s and t = 50s, respectively.

amplitude of the control input ui, then one must accept
larger tracking errors. There is therefore a tradeoff be-
tween reducing the position error and bounding the con-
trol input ui.

The control law (8) presents several advantages with re-
spect to the time-varying circular control law proposed
in [20]. Firstly, the new control law allows for the di-
rect computation of the inputs (vi, ui) for each vehicle
i instead of requiring the design of a dynamic control
law as in [20] where, in order to deal with time-varying
references for the center c(t), v̇i is viewed as a control
input. Furthermore, the singularities of the control law
presented in [20] are avoided with the new approach.
Secondly, implementation of the new control law in (8)
only requires access to the relative position vector ri−c
expressed in the body frame. This is in striking contrast
with the requirements of the dynamic controller in [20],
which depends on absolute measurements of the center
position c, velocity ċ, and acceleration c̈, as well as the
absolute position of each vehicle ri. The proposed con-
trol law relies only on local information and compared
to the control strategy presented in [22], the target ve-
locity ċ(t) is considered unknown. Hence, despite the is-
sue discussed in Remark 1, the control law (8) presents
several advantages for tracking and encircling a time-
varying target.

Remark 2 The position error depends directly on the
bound on the target’s velocity as well as on the control
parameter K, as stated in Theorem 1. There is a trade-
off between reducing the position error and bounding the
control inputs. As shown in Eq. (9), for large values of the
minimum eigenvalue of K, the radius of the ε-stability is
reduced and then the agents converge to a circular motion
whose center is really close to the target position. How-
ever, for large values of K both control inputs (vi, ui)
may reach large values. In conclusion, both the control
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Fig. 3. Evolution of the x-component of the position error
ex,i (top) and the control input ui (bottom) for a simulation
of 5 agents encircling a moving target with unknown velocity.
Two simulations with different values of parameter K are
displayed: K = I2 (red dashed lines) and K = 10I2 (blue
lines).

parameters K and δ must be chosen with a view to strike
a compromise between a small enough tracking error and
a suitable bound on the control inputs.

3.2 Simulation example

To illustrate the performance of the proposed strategy,
a numerical simulation is presented in which a circu-
lar formation of vehicles is tracking a moving target. In
order to easily compare the different results proposed
in this paper, in all simulations the trajectory of the
time-varying target expressed in meters is defined by
c(t) = [2 + 0.2t, 2 + 3 sin(0.08t + 2)]T and the param-
eters of the exosystem control law (4) are chosen as
ω0 = 1rad/s, R0 = 2m, κ = 1, and κu = 0.1.

We present the case in which the velocity of the target ċ
is unknown and thus, the only information available for
each agent i is its relative position with respect to the
target, ri − c. In this situation the convergence of the
error position depends strongly on the control parameter
K. Note that the unknown target velocity is bounded by
‖ċ(t)‖ ≤ γc = 0.3124m/s, ∀t.

Fig. 2 shows a simulation with 5 agents modeled with
unicycle dynamics (1) driven by (8) with the control pa-
rameters K = I2, δ = 0.1m and following a time-varying
target trajectory whose velocity is unknown. The influ-
ence of the control parameter K is analyzed in Fig. 3.
The evolution of the position errors ex,i (top) and the
evolution of the control inputs ui (bottom) are shown for
a simulation of 5 agents governed by (8) with δ = 0.1m
and two different values of K. The red dashed lines dis-
play the case in which K = I2 and the blue solid ones
the case K = 10I2. From Theorem 1 we know that at
steady-state ‖ei−δ‖ ≤ εc for all i, from which it follows

Fig. 4. Evolution of the relative distance of each agent with
respect to the target ‖ri(t)−c(t)‖ for a simulation of 5 agents
following and encircling the time-varying target c(t) when its
velocity is unknown, for two values of parameter K: K = I2
(top) and K = 10I2 (bottom).

that
−δ − εc ≤ ex,i(∞) ≤ −δ + εc, ∀i.

Numerically, for all i we get −0.4124m ≤ ex,i(∞) ≤
0.2124m for the first case K = I2 and −0.1312m ≤
ex,i(∞) ≤ −0.0688m when K = 10I2. The bound on
the control input depends strongly on the control pa-
rameter K, as shown in Table 1. This figure illustrates
that despite the unknown target velocity, the position
error can be reduced by increasing the value of K. How-
ever, this value plays an important role in the bound
of the control input, as stated in Remark 2. To analyze
the influence of the control parameter K in the speed
of convergence we define the convergence time ts such
that ∀t ≥ ts, |ex,i(t) + δ| ≤ εc for all the agents i. As
expected, larger values of the control parameter K im-
ply faster convergence. Table 1 presents the convergence
time in seconds for the simulations shown in Fig. 3.

K εc ts R ‖u‖∞
I2 0.31240 3.5 [1.7876, 2.4124] 63.35

10I2 0.03124 0.6 [2.0688, 2.1312] 482.03

Table 1: Influence of control parameter K on the ε-stability
radius, the convergence time ts, the final radius R of the

circular formation, and the control input ui bound for the
target tracking control law of Theorem 1 when the target

velocity is unknown.

Fig. 4 displays the evolution of the relative distances
between each agent and the target, ‖ri(t) − c(t)‖, for
a 5 agents simulation governed by (8) with δ = 0.1m
and two values of K. The first simulation (top) displays
the case in which K = I2 and the second one (bottom)
the case K = 10I2. These figures show that the vehi-
cles converge to a circular motion centered at the tar-
get position and whose final radius converges to the set
Rc = [R0 − δ − εc, R0 + δ + εc] as presented in Theo-
rem 1. The numerical values of this interval are given in
Table 1.
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4 Robustness with respect to external distur-
bances

In this section, we analyze the robustness of the previ-
ous target tracking control law with respect to external
disturbances.

4.1 Stability result

Consider a group of N agents modeled with unicycle
kinematics subject to a simple non-holonomic constraint
as stated previously in (1). Consider that the velocity
vector of the agents is perturbed such that the model of
the agents is now defined by:

ṙi =R(θi) [vi, 0]
T

+ wi

θ̇i =ui
i = 1, . . . , N (12)

where wi ∈ R2 is a bounded perturbation vector for
which there exists a positive scalar γw such that

‖wi‖ ≤ γw, ∀i. (13)

This perturbation vector can describe several physical
and realistic situations, for instance, the friction effect
on the wheels of the vehicles, or the flow field in which
the agents are moving (air and ocean currents for aerial
and underwater scenarios, respectively).

Following the same ideas presented in the previous case
in which the target velocity is unknown, the robustness
of the proposed control law when external disturbances
occur is studied in the sequel. In this situation, the error
dynamics become

ėi = [vi, 0]T −R(θi)
T ( ˙̂ri + ċ−wi)− uiRπ

2
ei.

We introduce again the vector δ and compute

ėi = ∆[vi, ui]
T −R(θi)

T ( ˙̂ri + ċ−wi)− uiRπ
2

(ei − δ).

Following the control design and analysis from Section 3
we can design a controller of the form

[vi, ui]
T = ∆−1

(
R(θi)

T ( ˙̂ri + ċ−wi)−K(ei − δ)
)
.

It is clear that if both the target velocity ċ and the per-
turbation vector wi are known, the previous control law
makes the position error ei − δ converge to zero. How-
ever, it is more realistic to consider that only the relative
position is measured, as in the previous section, and that
the external disturbance is unknown because it cannot
be measured or modeled. We aim then to study the ro-
bustness of our control strategy, particularly of the pro-
posed control law (8), with respect to disturbances de-
scribed by wi. Due to this perturbation term, the error

dynamics cannot be driven to zero. We use again the
notion of ε-stability to prove the robustness of the pro-
posed target tracking control with respect to external
disturbances.

Theorem 2 Consider a differentiable function c(t) :
R→ R2 with bounded derivative satisfying (7). Let R0 >
0 be the radius of the desired circular motion, ω0 6= 0,
κ > 0 and κu > 0 be three control parameters and
K ∈ R2×2 be a symmetric positive definite matrix. Then,
the control law (8) where the exosystem ˙̂ri is defined by
(3) and the control law ûi defined by (4) makes all the
agents defined by (12) converge to a circular motion of
radius R, and whose center converges to a ball centered
at the time-varying target position c(t) and with radius

εw = (γc + γw)/λmin(K), (14)

where λmin(K) denotes the minimum eigenvalue of ma-
trix K. The direction of rotation is determined by the sign
of ω0. Moreover, the relative distance between each agent
i and the moving target, i.e., ‖ri(t)− c(t)‖, converges to
the set Rw = [R0 − δ − εw, R0 + δ + εw].

Proof 2 Following the reasoning used in Theorem 1, we
know that the autonomous exosystem is stabilized to a
fixed circular motion and thanks to the circular control
law (4), when t → ∞, the trajectories of the exosystem

satisfy ˙̂ri(t) = ω0Rπ
2
r̂i(t), ∀i. We propose the same Lya-

punov function defined in (11) with a view to analyze the
stability of the error system. Now, the agents’ dynamics
are described by (12) and therefore, the error dynamics
are given by

ėi =R(θi)
T (ṙi − ( ˙̂ri + ċ))− uiRπ

2
ei

=[vi, 0]T −R(θi)
T ( ˙̂ri + ċ−wi)− uiRπ

2
ei.

Following the same control strategy we add the vector δ,
yielding the following equation for the error dynamics:

ėi = ∆[vi, ui]
T −R(θi)

T ( ˙̂ri + ċ−wi)− uiRπ
2

(ei − δ).

According to the proposed control law (8) the error dy-
namics become

ėi = −uiRπ
2

(ei−δ)−K(ei−δ)−R(θi)
T (ċ−wi). (15)

Differentiating the Lyapunov function V (ei) defined by
(11) along the solutions of the closed loop (15) yields

V̇ (ei) =− (ei − δ)TK(ei − δ)

− (ei − δ)TR(θi)
T (ċ−wi).

We thus have

V̇ (ei) ≤− λmin(K)‖ei − δ‖2 + ‖ei − δ‖(‖ċ‖+ ‖wi‖)
≤− ‖ei − δ‖ (λmin(K)‖ei − δ‖ − γc − γw) .
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Fig. 5. Target encircling with a group of 5 agents governed
by control law (8) with δ = 0.1m and K = I2 in an unknown
uniform flowfield, f = [1, 0.5]Tm/s (grey arrows).

To prove ε-stability of the error dynamics, consider a
closed ball Bw centered at ei = δ with radius εw = (γc +
γw)/λmin(K). Let Ωw = {ei − δ |V (ei) ≤ 1

2ε
2
w}. Then

Bw is contained in Ωw because

‖ei − δ‖ ≤ εw ⇒ V (ei) =
1

2
‖ei − δ‖2 ≤ 1

2
ε2w.

In conclusion, any solution starting in R2 \ Ωw satisfies

V̇ (ei) < 0 (because ‖ei − δ‖ ≥ (γc + γw)/λmin(K)) and
thus enters Ωw in finite time and remains in there. Thus,
the error dynamics converge asymptotically to a region
centered at ei = δ and radius εw = (γc + γw)/λmin(K).
In other words, ‖ei−δ‖ ≤ εw. Following the same reason-
ing as in Theorem 1, the last inequality implies that the
relative distance between each agent i and the target con-
verges to the setRw = [R0−δ−γc−γw, R0+δ+γc+γw].

Remark 3 Once again, there is a tradeoff between re-
ducing the position error and bounding the control in-
puts. As analyzed in Theorem 2, the matrix K plays an
important role in the final tracking error of the agents.
As shown in Eq. (14), for large values of the minimum
eigenvalue of K the radius of the ε-stability is reduced
and the agents converge to a circular motion whose cen-
ter is very close to the target position, despite external
disturbances. However, in this situation, both control in-
puts (vi, ui) may reach large values. The control param-
eter K, as well as δ, must be chosen with a view to attain
a compromise between a small enough tracking error and
a suitable bound on the control inputs.

4.2 Simulation example

In this example, a circular formation of vehicles tracks
a moving target in the presence of a uniform unknown
flowfield f = [1, 0.5]Tm/s, which can be seen as a distur-
bance wi = f, ∀i in model (12). Note that the uniform
flowfield is bounded, according to ‖f‖ ≤ γw = 1.118m/s.

Fig. 6. Target encircling with a group of 5 agents governed by
control law (8) with δ = 0.1m and K = 10I2 in an unknown
uniform flowfield, f = [1, 0.5]Tm/s (grey arrows).

Figures 5 and 6 show two simulations with 5 agents gov-
erned by (8) with δ = 0.1m and two different values
of K, in the presence of the uniform flowfield f. These
figures illustrate the influence of the control parameter
K on the final radius of the convergence ball defined in
(14) for the ε-stability proved in Theorem 2. The role
of the control parameter K is highlighted in Table 2,
where the numerical values of the ε-stability radius, the
convergence time, the interval to which the final forma-
tion radius converges, and the control input bound are
provided for both simulations with K = I2 (Fig. 5) and
with K = 10I2 (Fig. 6).

K εw ts R ‖u‖∞
I2 1.1180 1.2 [0.982, 3.218] 65.02

10I2 0.1118 0.4 [1.9882, 2.2118] 483.71

Table 2: Influence of control parameter K on the ε-stability
radius, the convergence time ts, the final radius R of the
circular formation, and the bound on the control input ui

for the target tracking control law (8) in the presence of an
unknown flowfield.

Fig. 7 shows the evolution of the x-component of the
position errors ei on the top and of the evolution of
the control inputs ui at the bottom, for a simulation
of 5 agents governed by (8) with δ = 0.1m and two
different values of K. The red dashed lines display the
case in which K = I2 and the blue solid ones the case
K = 10I2. As shown in the figure, the position error
converges to a closed ball centered at −δ, whose radius
decreases for larger values of the control parameter K.
From Theorem 2 we know that at steady-state ‖ei−δ‖ ≤
εw for all i, from which it can be deduced that

−δ − εw ≤ ex,i(∞) ≤ −δ + εw, ∀i.

Numerically, we obtain −1.218m ≤ ex,i(∞) ≤ 1.018m
for the first case K = I2 and −0.2118m ≤ ex,i(∞) ≤
0.0118m when K = 10I2, which is consistent with the
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Fig. 7. Evolution of the x-component of the position error ex,i
(top) and the control input ui (bottom) for a simulation of
5 agents. Two simulations with different values of parameter
K are displayed: K = I2 (red dashed lines) and K = 10I2
(blue lines).

theoretical analysis. The bound on the control input de-
pends strongly on the control parameter K, as shown in
Table 2. This figure illustrates that the larger the value
of K the smaller the position error and the larger the
control input are, as stated in Remark 3. As in previous
section, we analyze the influence of the control parame-
ter K on the speed of convergence. The convergence time
ts is now defined such that ∀t ≥ ts, |ex,i(ts) + δ| ≤ εw
for all the agents i. As expected, larger values of the
control parameter K imply faster convergence. Table 2
presents the convergence time in seconds for the simula-
tions shown in Fig. 7.

Fig. 8 shows the evolution of the relative distances with
respect to the target, ||ri(t)−c(t)||, for the previous two
simulations with 5 agents, shown in Fig. 5 and Fig. 6.
Two values of the control parameter K are considered.
In both simulations, the vehicles converge to a circular
motion centered at the target position with the final
radius converging to the setRw = [R0−δ−γc−γw, R0+
δ + γc + γw], as presented in Theorem 2.

5 Conclusions

In this paper, we presented a novel method to solve the
target tracking problem with a fleet of unicycle vehicles
in a circular configuration. The novelty of this method
with respect to previous related work is the possibil-
ity to design a circular formation control law that relies
only on measurements of the relative positions between
the vehicles and the target expressed in the local frame
of each vehicle. Currently available methods require at
least access to the velocity of the target and in some
cases also to the second derivative of the target trajec-
tory. The only price to pay is the introduction of a small
and controlled deviation from the desired circular for-
mation. The proposed control strategy is robust with
respect to external disturbances. The error between the

Fig. 8. Evolution of the relative distance of each agent with
respect to the target, ‖ri(t) − c(t)‖, for a simulation of 5
agents following and encircling the time-varying target c(t)
in a flowfield for two values of parameter K: K = I2 (top)
and K = 10I2 (bottom).

formation center and the target is bounded. In both sit-
uations, two control parameters can be tuned in order
to strike a compromise between a small enough position
error and a suitable bound on the control inputs.

Future research directions related to this work include
cooperative control and the estimation of the target’s
position based on noisy measurements, as well as op-
timal controller parameter computation to obtain the
minimum position error for a given admissible bound on
the control input.
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