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In this paper we stabilize the linear Kuramoto-Sivashinsky equation by means of a delayed boundary control. From the spectral decomposition of the spatial operator associated to the equation, we find that there is a finite number of unstable eigenvalues. After applying the Artstein transform to deal with the delay phenomenon, we design a feedback law based on the pole-shifting theorem to exponential stabilize the finite-dimensional system associated to the unstable eigenvalues. Then, thanks to the inversion of the Artstein transform and the use of a Lyapunov function, we obtain a delayed feedback law that exponential stabilize the original unstable infinite-dimensional system.

INTRODUCTION

The Kuramoto-Sivashinsky equation

z t + z xxxx + λz xx + zz x = 0, (1) 
where λ > 0 is known as the anti-diffusion parameter, was originally derived by [START_REF] Kuramoto | On the formation of dissipative structures in reaction-diffusion systems[END_REF] as a model of phase turbulance in the context of a reaction-diffusion system, and by [START_REF] Sivashinsky | Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations[END_REF] in the context of flame front propagation. In the later case z(t, x) represents the perturbation of a flame front which propagates in a combustible mixture.

In this paper we stabilize the linear Kuramoto-Sivashinsky equation

z t + z xxxx + λz xx = 0, (2) 
by means of a delayed boundary control. Let L > 0 be the length of the domain and D ≥ 0 be the delay. In this paper we consider      z t + z xxxx + λz xx = 0, (t, x) ∈ (0, ∞) × (0, L), z(t, 0) = u(t -D), t ∈ (0, ∞), z(t, L) = z x (t, 0) = z x (t, L) = 0, t ∈ (0, ∞), z(0, x) = z 0 (x), x ∈ (0, L),

(3)
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where u : [-D, ∞) → R is the delayed boundary control, which we ask it to satisfy u(t -D) = 0 when t ∈ [0, D).

(4)

Let us note that we are dealing with a unstable partial differential equation (PDE). Indeed, it is known from [START_REF] Liu | Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[END_REF]

, Remark 1) that uncontrolled (3) is unstable if λ > 4π 2 /L 2 .
Only in the undelayed case, which is when D = 0, there are boundary stabilization results for (1) or (2); as can be seen in [START_REF] Liu | Stability enhancement by boundary control in the Kuramoto-Sivashinsky equation[END_REF], [START_REF] Cerpa | Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation[END_REF], and [START_REF] Coron | Fredholm transform and local rapid stabilization for a Kuramoto-Sivashinsky equation[END_REF]. To our knowledge, this is the first paper including delay in the boundary stabilization of (2).

In [START_REF] Datko | An example on the effect of time delays in boundary feedback stabilization of wave equations[END_REF] and [START_REF] Datko | Not all feedback stabilized hyperbolic systems are robust with respect to small time delays in their feedbacks[END_REF] there are examples of one-dimensional hyperbolic PDEs stabilized by means of boundary feedback controls that are unrobust with respect to delays, in the sense that the inclusion of delay in the boundary feedback control might cause the apparition of a unstable solution. This behavior has also been observed in [START_REF] Nicaise | Stability and instability results of the wave equation with a delay term in the boundary or internal feedbacks[END_REF] for the multi-dimensional wave equation and in [START_REF] Nicaise | Stabilization of the Schrödinger equation with a delay term in boundary feedback or internal feedback[END_REF] for the multi-dimensional Schrödinger equation. Nevertheless, let us note that the delay not always causes destabilization. Indeed, there are examples of boundary feedback controls that are robust with respect to delays, as can be seen in [START_REF] Xu | Stabilisation of Timoshenko beam system with delay in the boundary control[END_REF] for the Timoshenko beam system, in [START_REF] Baudouin | Two approaches for the stabilization of the nonlinear KdV equation with boundary time-delay feedback[END_REF] for the Korteweg-de Vries equation, and in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF] for a reaction-diffusion equation.

The stabilization of abstract second order evolution equations by means of unbounded feedback controls with delay has been addressed in [START_REF] Fridman | Stabilization of second order evolution equations with unbounded feedback with time-dependent delay[END_REF], thus in particular solving a large class of boundary stabilization problems for hyperbolic PDEs. Of course, (3) cannot be put in terms of their formalism.

The main contribution of this paper is the exponential stabilization of (3) in H 2 0 (0, L) by means of a feedback control that is designed from a finite-dimensional system with input delay D ≥ 0.

The rest of this paper is organized as follows. Our main result is presented, along with some comments on its proof, in Section 2. Then, its proof is given in Section 3. Finally, in Section 4 we give some concluding remarks.

MAIN RESULT

In order to present our main result we need to introduce the anti-diffusion set of critical parameters

AD = (j 2 + k 2 )π 2 L -2 / (j, k) ∈ N 2 with the same parity and j < k} ∪ 4l 2 π 2 L -2 / l ∈ N , (5) 
which has been found in [START_REF] Cerpa | On the control of the linear Kuramoto-Sivashinsky equation[END_REF] for the study of the null controllability of (3) when D = 0. Our main result is the following one.

Theorem 1. Let λ ∈ (0, ∞)\AD and z 0 ∈ H 2 0 (0, L). Then, (3) is exponentially stabilizable with a feedback control that is designed from a finite-dimensional system with input delay D ≥ 0. Furthermore, there exist C ≥ 1 and ω > 0 such that

|u(t -D)|+ z(t, •) H 2 0 (0,L) ≤ Ce -ωt z 0 H 2 0 (0,L) , t ≥ 0. ( 6 
)
Remark 2. The expression for the feedback control u(t -D), which satisfies (4), can be obtained from ( 14), (26), and (57). Thus, its value depends on X 1 (s) over 0 < s < t -D (see Remark 12), where X 1 (t) solves ( 16).

Remark 3. The rate of decay is

ω = (1/2)C 6 (D) -1 , where C 6 (D) > 0 is defined in (43).
To prove our main result we follow the approach developed in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF]. Thus, we first consider the spectral decomposition of the spatial operator associated to (3) with the purpose to decompose the unstable infinite-dimensional system into two parts. The first part consists in a finite-dimensional system containing all the unstable eigenvalues, whereas the second part consists in a infinite-dimensional system containing the remaning eigenvalues, which are stable. Then, after applying the Artstein transform to deal with the delay phenomenon, we design a feedback law based on the pole-shifting theorem to exponential stabilize the unstable finite-dimensional system. Finally, from the inversion of the Artstein transform and the use of a Lyapunov function, we obtain a delayed feedback law that exponential stabilize the unstable infinite-dimensional system.

Remark 4. The assumption λ ∈ (0, ∞)\AD is required to check the Kalman condition on the pair of matrices associated to the unstable finite-dimensional system mentioned above, so that later we can stabilize it by applying the pole-shifting theorem. Accordingly, another approach is needed to stabilize (3) if λ ∈ AD.

FEEDBACK DESIGN

Spectral decomposition

From now on F D (t) = F (t -D), where F denotes a function. In order to get rid of the non-homogeneous boundary conditions in (3), let us introduce the lifting function

y(t, x) = z(t, x) -u D (t)d(x), (7) 
where

d(x) = 2L -3 x 3 -3L -2 x 2 + 1. Since d(0) = 1 and d(L) = d (0) = d (L) = 0
, and also u D (0) = 0 by (4), we get from (3) that y(t, x) satisfies

   y t = -y xxxx -λy xx -du D -λd u D , y(t, 0) = y(t, L) = y x (t, 0) = y x (t, L) = 0, y(0, x) = z 0 (x), (8) 
Let us view (8) as an infinite-dimensional system. To this end, let us introduce the operator

   A : D(A) ⊂ L 2 (0, L) → L 2 (0, L), Aφ = -φ -λφ , D(A) = H 4 (0, L) ∩ H 2 0 (0, L). (9) 
Therefore, setting a(x) = -λd (x) and b(x) = -d(x), we can view (8) as

y t (t, •) = Ay(t, •) + a(•)u D (t) + b(•)u D (t). ( 10 
)
Since A is a self-adjoint operator with compact resolvent, we can consider a Hilbert basis {φ m } m∈N ⊂ D(A) of L 2 (0, L) composed by eigenfunctions of A. Furthermore, the corresponding sequence of eigenvalues {σ m } m∈N ⊂ R satisfies

σ m ≥ σ m+1 > -∞ for each m ∈ N, σ m → -∞ as m → ∞. (11) 
From [START_REF] Cerpa | Null controllability and stabilization of the linear Kuramoto-Sivashinsky equation[END_REF], Section 2) we know that σ m < λ 2 /4 for each m ∈ N, which tells us, in view of ( 11), that only a finite number of eigenvalues are unstable. Then, let n ∈ N be the number of nonnegative eigenvalues.

Let us construct a finite-dimensional system containing all the unstable eigenvalues. Any solution y(t, •) of ( 10) can be written in the form

y(t, x) = ∞ m=1 y m (t)φ m (x). ( 12 
)
From ( 10), ( 12) and the fact that Aφ m = σ m φ m for each m ∈ N we deduce

     y 1 (t) = σ 1 y 1 (t) + a 1 u D (t) + b 1 u D (t), . . . . . . . . . y n (t) = σ n y n (t) + a n u D (t) + b n u D (t), (13) 
where a m = (a, φ m ) L 2 (0,L) and b m = (b, φ m ) L 2 (0,L) . Thus, (13) is a system of n ∈ N ordinary differential equations controlled by u D (t) and u D (t). As usual, let us set

α D (t) = u D (t), (14) 
and consider now u D (t) as a new state and α D (t) as the control we aim to design. Finally, with the aid of the matrix notations

X 1 =     u D y 1 . . . y n     , A 1 =     0 0 . . . 0 a 1 σ 1 . . . 0 . . . . . . . . . . . . a n 0 . . . σ n     , B 1 =     1 b 1 . . . b n     , (15) 
we can construct a unstable finite-dimensional system from (13) together with ( 14), namely

X 1 (t) = A 1 X 1 (t) + B 1 α D (t). ( 16 
)
Recalling that α D (t) = α(t -D), we see that the control in ( 16) has a input delay D ≥ 0.

Stabilization of the finite-dimensional system

In order to deal with the delay in ( 16) we proceed as in Bresch-Pietri et al. ( 2018) and [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF]. Thus, let us consider the Artstein transform

Z 1 (t) = X 1 (t) + t t-D e (t-s-D)A1 B 1 α(s) ds. (17) 
Using ( 17), which has been introduced in [START_REF] Artstein | Linear systems with delayed controls: A reduction[END_REF], we can transform (16) into the unstable finite-dimensional system

Z 1 (t) = A 1 Z 1 (t) + e -DA1 B 1 α(t). (18) 
This time we see that the control in (18) has no input delay. Let us check that the pair of matrices A 1 , e -DA1 B 1 satisfies the Kalman condition for any D ≥ 0. To this end, we need the following result.

Lemma 5. The eigenfunctions of A satisfy φ m (0) = 0 for each m ∈ N if and only if λ ∈ (0, ∞)\AD. Furthermore, if λ ∈ (0, ∞)\AD, then the eigenvalues of A are simple.

Proof. Let us recall that A is defined in (9). We only show the second statement of this lemma, since the first one has already been shown in (Cerpa et al., 2017, Section 2.3). We proceed as in the proof of (Cerpa, 2010, Lemma 2.1). Thus, let φ 1 and φ 2 be two eigenfunctions associated to the same eigenvalue σ. Then, we have that Φ = φ 1 (0)φ 2 -φ 2 (0)φ 1 satisfies AΦ = σΦ with Φ ∈ D(A). The extra information of Φ (0) = 0 allows us to infer that Φ = 0 in [0, L]. Accordingly, φ 1 and φ 2 are linearly dependent because φ 1 (0) and φ 2 (0) are different from zero by the first statement of this lemma. • Lemma 6. Let λ ∈ (0, ∞)\AD. Then, for any D ≥ 0 the pair of matrices A 1 , e -DA1 B 1 satisfies the Kalman condition. In other words:

rank e -DA1 B 1 , A 1 e -DA1 B 1 , . . . , A n 1 e -DA1 B 1 = n + 1. ( 19 
)
Proof. Since the matrices A 1 and e -DA1 commute, and the matrix e -DA1 is invertible, it follows

rank e -DA1 B 1 , A 1 e -DA1 B 1 , . . . , A n 1 e -DA1 B 1 = rank (B 1 , A 1 B 1 , . . . , A n 1 B 1 ) , (20) 
which means that we have to check that the pair of matrices (A 1 , B 1 ) satisfies the Kalman condition. Some computations lead us to

det (B 1 , A 1 B 1 , . . . , A n 1 B 1 ) = V dM (σ 1 , . . . , σ n )Π n m=1 (a m + σ m b m ), (21) 
where

V dM (σ 1 , . . . , σ n ) = Π 1≤i<j≤n (σ j -σ i ), (22) 
is a Van der Monde determinant, which is different from zero because the eigenvalues of A are simple in virtue of Lemma 5. Some integrations by parts and the fact that

-φ m -λφ m = σ m φ m yield a m + σ m b m = (-λd -σ m d, φ m ) L 2 (0,L) = (d, φ m ) L 2 (0,L) = -φ m (0). (23) 
Finally, we conclude that ( 21) is different from zero due to (23) and Lemma 5.

•

Thanks to Lemma 6 we have that ( 18) is controllable. Accordingly, we can apply the pole-shifting theorem to exponential stabilize it.

Corollary 7. Let λ ∈ (0, ∞)\AD. Then, for any D ≥ 0 there exists a gain matrix K 1 (D) ∈ R 1×(n+1) such that the matrix A 1 + e -DA1 B 1 K 1 (D) admits -1 as an eigenvalue of order (n + 1). Furthermore, there exists a symmetric positive matrix P (D) ∈ R (n+1)×(n+1) such that

P (D)(A 1 + e -DA1 B 1 K 1 (D)) +(A 1 + e -DA1 B 1 K 1 (D)) P (D) = -I n+1 . (24) 
In virtue of Corollary 7 we can construct the Lyapunov function

V 1 (t) = 1 2 Z 1 (t) P (D)Z 1 (t), (25) 
to prove that the feedback control α(t) = K 1 (D)Z 1 (t) exponential stabilize (18). However, from (14) together with (4) we see that we actually have to select

α(t) = 0 when t ∈ [-D, 0), α(t) = K 1 (D)Z 1 (t) when t ∈ [0, ∞). ( 26 
)
Lemma 8. Let λ ∈ (0, ∞)\AD. Then, for any D ≥ 0 we have

α D (t) R n+1 ≤ e D K 1 (D) R n+1 Z 1 (t) R n+1 , t ≥ 0. ( 27 
)
Proof. Let us recall that α D (t) = α(t -D). By (26) it follows that ( 27) is true for t ∈ [0, D). Thus, let us prove (27) only for t ∈ [D, ∞). Let us introduce the matrix A 2 = A 1 + e -DA1 B 1 K 1 (D), which satisfies A 2 = 1 due to Corollary 7. Then, plugging ( 26) into ( 18) we find that Z 1 (t) = Φ(t)Z 1 (0) for t ≥ 0, where Φ(t) = exp {A 2 t}. Finally, we deduce ( 27) from ( 26), the fact that Φ(t-D) = Φ(-D)Φ(t) for t ∈ [D, ∞), and the application of Cauchy-Schwarz inequality.

•

Let us note that if σ min (P (D)) > 0 and σ max (P (D)) > 0 respectively denote the lowest and greatest eigenvalue of the symmetric positive matrix P (D) ∈ R (n+1)×(n+1) , then it holds

σ min (P (D)) Z 1 (t) 2 R n+1 ≤ Z 1 (t) P (D)Z 1 (t) ≤ σ max (P (D)) Z 1 (t) 2 R n+1 .
(28)

Stabilization of the infinite-dimensional system

Plugging ( 26) into (17) we get

Z 1 (t) = X 1 (t) + I(t) e (t-s-D)A1 B 1 K 1 (D)Z 1 (s) ds, (29) 
where I(t) = (t-D, t)∩(0, ∞). In the forthcoming analysis it will be necessary to keep in mind that

I(t) =      ∅ if t ≤ 0, (0, t) if 0 < t ≤ D, (t -D, t) if t ≥ D. (30) 
So far the feedback control α(t) makes X 1 (t) to go exponentially to zero as t → ∞. Indeed, this comes from (29) and the fact that Z 1 (t) goes exponentially to zero as t → ∞. Let us prove that the same feedback control α(t) also exponential stabilize (10). To this end, let us introduce the Lyapunov function constructed in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF], which is

V D (t) = M (D)V 1 (t) + M (D) I(t) V 1 (s) ds - 1 2 (y(t, •), Ay(t, •)) L 2 (0,L) , (31) 
where M (D) > 0. With ( 9) and ( 25) in mind, we can rewrite (31) as

V D (t) = M (D) 2 Z 1 (t) P (D)Z 1 (t) + M (D) 2 
I(t) Z 1 (s) P (D)Z 1 (s) ds - 1 2 ∞ m=1 σ m y m (t) 2 . ( 32 
)
The next three lemmas give the necessary tools to prove our main result. .

(33)

Also, let us assume that M (D) ≥ C 4 (D). Then, for any D ≥ 0 we have

C 2 (D) 2 X 1 (t) 2 R n+1 + C 2 (D) 2C 3 (D) y(t, •) 2 H 2 0 (0,L) ≤ V D (t), t ≥ 0. ( 34 
)
Proof. Firstly, by (29) we have

X 1 (t) 2 R n+1 = X 1 (t) Z 1 (t)
-X 1 (t)

I(t) e (t-s-D)A1 B 1 K 1 (D)Z 1 (s) ds, (35) 
from which we get, by applying the Cauchy-Schwarz and Cauchy inequalities,

X 1 (t) 2 R n+1 ≤ C 1 (D) Z 1 (t) 2 R n+1
+C 1 (D)

I(t) Z 1 (s) 2 R n+1 ds. (36) 
Then, combining (32) with ( 28) and ( 36) we find

V D (t) ≥ M (D) σ min (P (D)) 2C 1 (D) X 1 (t) 2 R n+1 - 1 2 ∞ m=1 σ m y m (t) 2 . ( 37 
)
Taking into account that σ 1 > σ m ≥ 0 for m ∈ {2, . . . , n} and 0 > σ n+1 > σ m for m ∈ {n + 2, . . .}, in (37) we use

- 1 2 ∞ m=1 σ m y m (t) 2 ≥ - σ 1 2 X 1 (t) 2 R n+1 - 1 2 ∞ m=n+1 σ m y m (t) 2 , (38) 
and then consider that M (D) ≥ C 4 (D) to obtain

V D (t) ≥ C 2 (D) X 1 (t) 2 R n+1 -C 2 (D) ∞ m=n+1
σ m y m (t) 2 .

(39)

Lemma 9 .
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Secondly, some integrations by parts, ( 12), ( 9), the fact that -φ i -λφ i = σ i φ i and Cauchy inequality yield y(t, •) 2 H 2 0 (0,L) = (i,j)∈N 2 y i (t)y j (t) φ i , φ j L 2 (0,L) = (i,j)∈N 2 y i (t)y j (t) (φ i , φ j ) L 2 (0,L)

(40)

Here we consider

to obtain

Finally, from the combination of ( 39) and ( 42) we arrive at (34).

•

Lemma 10. Let λ ∈ (0, ∞)\AD. Let us set the positive constants

Also, let us assume that M (D) ≥ C 6 (D). Then, for any D ≥ 0 we have

Proof. Let us note that (44) is true for t = 0. Thus, let us prove (44) only for t > 0 by computing V D (t). Firstly, by (25) and the use of (24) we get

Secondly, taking into account that A is a self-adjoint operator it follows

Here we plug (10), then apply Cauchy inequality and finally consider (15) together with ( 27) to obtain

Thirdly, since 0 > σ n+1 > σ m for m ∈ {n + 2, . . .} and

Finally, with (31) in mind, we combine ( 45), ( 47), (36), and ( 48) to obtain

from which we deduce V D (t) ≤ M (D) -1 V D (t) for t > 0, and hence (44), thanks to the choice M (D) ≥ C 5 (D), (28), the choice M (D) ≥ 2σ max (P (D)), and (32).

• Lemma 11. Let λ ∈ (0, ∞)\AD. Then, for any D ≥ 0 there exists C 7 (D) > 0 such that

Proof. In view of I(0) = ∅ it follows from (29) that Z 1 (0) = X 1 (0). Accordingly, by (25) together with (31) we find

On the one hand, from ( 15), (4), and (28) we get

On the other hand, with (9) in mind we perform some integrations by parts and then apply the Cauchy and Poincaré inequalities to obtain

Finally, we arrive at (50) from the combination of ( 51)-( 53) and the applcation of Poincaré inequality.

•

Let us prove (6). Let λ ∈ (0, ∞)\AD and let us set M (D) = C 6 (D). Then, by ( 34), ( 44), and (50) it follows

from which we deduce (6) thanks to ( 7), ( 4) and ( 15). We have finished the proof of Theorem 1.

Inversion of the Artstein transform

We would like to express α(t) in terms of X 1 (t). To this end, we present the inversion of the Artstein transform realized in [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF]. Thus, taking into account that (t -D, t) = (t -D, max {t -D, 0}) ∪ J(t), where J(t) = (max {t -D, 0}, t), we plug ( 17) into ( 26) and then use the fact that α(t) = 0 when t ∈ [-D, 0) to get

Then, for a function F let us define

Let us consider t ≥ 0. In virtue of (56) we can rewrite (55) as α(t) = K 1 (D)X 1 (t) + (T D α) (t), which is equivalent to (I -T D ) α(t) = K 1 (D)X 1 (t). The convergence of the Neumann series associated to T D has been shown in (Bresch-Pietri et al., 2018, Section 4.1), which implies the existence of (I -T D ) -1 . Accordingly, we have

Remark 12. The series in (57) converges for any D ≥ 0. Let us note that the value of α(t) depends on X 1 (s) over 0 < s < t. Further details may be found in [START_REF] Bresch-Pietri | New formulation of predictors for finite-dimensional linear control systems with input delay[END_REF].

CONCLUSION

In this paper we have exponentially stabilized in H 2 0 (0, L) the linear Kuramoto-Sivashinsky equation by means of a feedback control designed from a finite-dimensional system with input delay D ≥ 0. As in the null controllability, our main assumption was λ ∈ (0, ∞)\AD. To prove our main result we have followed the approach developed in [START_REF] Prieur | Feedback stabilization of a 1D linear reaction-diffusion equation with delay boundary control[END_REF], which relies on the Artstein transform, a careful spectral analysis and the pole-shifting theorem.