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Abstract: In this paper we stabilize the linear Kuramoto-Sivashinsky equation by means of a
delayed boundary control. From the spectral decomposition of the spatial operator associated
to the equation, we find that there is a finite number of unstable eigenvalues. After applying
the Artstein transform to deal with the delay phenomenon, we design a feedback law based on
the pole-shifting theorem to exponential stabilize the finite-dimensional system associated to
the unstable eigenvalues. Then, thanks to the inversion of the Artstein transform and the use of
a Lyapunov function, we obtain a delayed feedback law that exponential stabilize the original
unstable infinite-dimensional system.
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1. INTRODUCTION

The Kuramoto-Sivashinsky equation

zt + zxxxx + λzxx + zzx = 0, (1)

where λ > 0 is known as the anti-diffusion parameter,
was originally derived by Kuramoto and Tsuzuki (1975)
as a model of phase turbulance in the context of a
reaction-diffusion system, and by Sivashinsky (1977) in
the context of flame front propagation. In the later case
z(t, x) represents the perturbation of a flame front which
propagates in a combustible mixture.

In this paper we stabilize the linear Kuramoto-Sivashinsky
equation

zt + zxxxx + λzxx = 0, (2)

by means of a delayed boundary control. Let L > 0 be
the length of the domain and D ≥ 0 be the delay. In this
paper we consider

zt + zxxxx + λzxx = 0, (t, x) ∈ (0,∞)× (0, L),
z(t, 0) = u(t−D), t ∈ (0,∞),
z(t, L) = zx(t, 0) = zx(t, L) = 0, t ∈ (0,∞),
z(0, x) = z0(x), x ∈ (0, L),

(3)
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where u : [−D,∞) → R is the delayed boundary control,
which we ask it to satisfy

u(t−D) = 0 when t ∈ [0, D). (4)

Let us note that we are dealing with a unstable partial
differential equation (PDE). Indeed, it is known from
(Liu and Krstić, 2001, Remark 1) that uncontrolled (3)
is unstable if λ > 4π2/L2.

Only in the undelayed case, which is when D = 0, there
are boundary stabilization results for (1) or (2); as can be
seen in Liu and Krstić (2001), Cerpa (2010), and Coron
and Lü (2015). To our knowledge, this is the first paper
including delay in the boundary stabilization of (2).

In Datko et al. (1986) and Datko (1988) there are examples
of one-dimensional hyperbolic PDEs stabilized by means of
boundary feedback controls that are unrobust with respect
to delays, in the sense that the inclusion of delay in the
boundary feedback control might cause the apparition of
a unstable solution. This behavior has also been observed
in Nicaise and Pignotti (2006) for the multi-dimensional
wave equation and in Nicaise and Rebiai (2011) for the
multi-dimensional Schrödinger equation. Nevertheless, let
us note that the delay not always causes destabilization.
Indeed, there are examples of boundary feedback controls
that are robust with respect to delays, as can be seen in
Xu and Wang (2013) for the Timoshenko beam system, in
Baudouin et al. (2018) for the Korteweg-de Vries equation,
and in Prieur and Trélat (2018) for a reaction-diffusion
equation.



The stabilization of abstract second order evolution
equations by means of unbounded feedback controls with
delay has been addressed in Fridman et al. (2010), thus in
particular solving a large class of boundary stabilization
problems for hyperbolic PDEs. Of course, (3) cannot be
put in terms of their formalism.

The main contribution of this paper is the exponential
stabilization of (3) in H2

0 (0, L) by means of a feedback
control that is designed from a finite-dimensional system
with input delay D ≥ 0.

The rest of this paper is organized as follows. Our main
result is presented, along with some comments on its proof,
in Section 2. Then, its proof is given in Section 3. Finally,
in Section 4 we give some concluding remarks.

2. MAIN RESULT

In order to present our main result we need to introduce
the anti-diffusion set of critical parameters

AD =
{

(j2 + k2)π2L−2 / (j, k) ∈ N2 with the

same parity and j < k} ∪
{

4l2π2L−2 / l ∈ N
}
,

(5)

which has been found in Cerpa et al. (2017) for the study
of the null controllability of (3) when D = 0. Our main
result is the following one.

Theorem 1. Let λ ∈ (0,∞)\AD and z0 ∈ H2
0 (0, L). Then,

(3) is exponentially stabilizable with a feedback control
that is designed from a finite-dimensional system with
input delay D ≥ 0. Furthermore, there exist C ≥ 1 and
ω > 0 such that

|u(t−D)|+‖z(t, ·)‖H2
0 (0,L)

≤ Ce−ωt‖z0‖H2
0 (0,L), t ≥ 0.

(6)

Remark 2. The expression for the feedback control
u(t − D), which satisfies (4), can be obtained from (14),
(26), and (57). Thus, its value depends on X1(s) over
0 < s < t−D (see Remark 12), where X1(t) solves (16).

Remark 3. The rate of decay is ω = (1/2)C6(D)−1, where
C6(D) > 0 is defined in (43).

To prove our main result we follow the approach developed
in Prieur and Trélat (2018). Thus, we first consider the
spectral decomposition of the spatial operator associated
to (3) with the purpose to decompose the unstable
infinite-dimensional system into two parts. The first part
consists in a finite-dimensional system containing all the
unstable eigenvalues, whereas the second part consists
in a infinite-dimensional system containing the remaning
eigenvalues, which are stable. Then, after applying the
Artstein transform to deal with the delay phenomenon, we
design a feedback law based on the pole-shifting theorem
to exponential stabilize the unstable finite-dimensional
system. Finally, from the inversion of the Artstein
transform and the use of a Lyapunov function, we obtain
a delayed feedback law that exponential stabilize the
unstable infinite-dimensional system.

Remark 4. The assumption λ ∈ (0,∞)\AD is required
to check the Kalman condition on the pair of matrices
associated to the unstable finite-dimensional system
mentioned above, so that later we can stabilize it by
applying the pole-shifting theorem. Accordingly, another
approach is needed to stabilize (3) if λ ∈ AD.

3. FEEDBACK DESIGN

3.1 Spectral decomposition

From now on FD(t) = F (t − D), where F denotes a
function. In order to get rid of the non-homogeneous
boundary conditions in (3), let us introduce the lifting
function

y(t, x) = z(t, x)− uD(t)d(x), (7)

where d(x) = 2L−3x3 − 3L−2x2 + 1. Since d(0) = 1 and
d(L) = d′(0) = d′(L) = 0, and also uD(0) = 0 by (4), we
get from (3) that y(t, x) satisfies yt = −yxxxx − λyxx − du′D − λd′′uD,

y(t, 0) = y(t, L) = yx(t, 0) = yx(t, L) = 0,
y(0, x) = z0(x),

(8)

Let us view (8) as an infinite-dimensional system. To this
end, let us introduce the operatorA : D(A) ⊂ L2(0, L)→ L2(0, L),

Aφ = −φ′′′′ − λφ′′,
D(A) = H4(0, L) ∩H2

0 (0, L).
(9)

Therefore, setting a(x) = −λd′′(x) and b(x) = −d(x), we
can view (8) as

yt(t, ·) = Ay(t, ·) + a(·)uD(t) + b(·)u′D(t). (10)

Since A is a self-adjoint operator with compact resolvent,
we can consider a Hilbert basis {φm}m∈N ⊂ D(A) of
L2(0, L) composed by eigenfunctions of A. Furthermore,
the corresponding sequence of eigenvalues {σm}m∈N ⊂ R
satisfies{

σm ≥ σm+1 > −∞ for each m ∈ N,
σm → −∞ as m→∞. (11)

From (Cerpa, 2010, Section 2) we know that σm < λ2/4
for each m ∈ N, which tells us, in view of (11), that only a
finite number of eigenvalues are unstable. Then, let n ∈ N
be the number of nonnegative eigenvalues.

Let us construct a finite-dimensional system containing all
the unstable eigenvalues. Any solution y(t, ·) of (10) can
be written in the form

y(t, x) =

∞∑
m=1

ym(t)φm(x). (12)

From (10), (12) and the fact that Aφm = σmφm for each
m ∈ N we deduce




y′1(t) = σ1y1(t) + a1uD(t) + b1u

′
D(t),

...
...

...
y′n(t) = σnyn(t) + anuD(t) + bnu

′
D(t),

(13)

where am = (a, φm)L2(0,L) and bm = (b, φm)L2(0,L). Thus,

(13) is a system of n ∈ N ordinary differential equations
controlled by uD(t) and u′D(t). As usual, let us set

αD(t) = u′D(t), (14)

and consider now uD(t) as a new state and αD(t) as the
control we aim to design. Finally, with the aid of the matrix
notations

X1 =


uD
y1
...
yn

, A1 =


0 0 . . . 0
a1 σ1 . . . 0
...

...
. . .

...
an 0 . . . σn

, B1 =


1
b1
...
bn

, (15)

we can construct a unstable finite-dimensional system from
(13) together with (14), namely

X ′1(t) = A1X1(t) +B1αD(t). (16)

Recalling that αD(t) = α(t −D), we see that the control
in (16) has a input delay D ≥ 0.

3.2 Stabilization of the finite-dimensional system

In order to deal with the delay in (16) we proceed as in
Bresch-Pietri et al. (2018) and Prieur and Trélat (2018).
Thus, let us consider the Artstein transform

Z1(t) = X1(t) +

t∫
t−D

e(t−s−D)A1B1α(s) ds. (17)

Using (17), which has been introduced in Artstein (1982),
we can transform (16) into the unstable finite-dimensional
system

Z ′1(t) = A1Z1(t) + e−DA1B1α(t). (18)

This time we see that the control in (18) has no input delay.
Let us check that the pair of matrices

(
A1, e

−DA1B1

)
satisfies the Kalman condition for any D ≥ 0. To this
end, we need the following result.

Lemma 5. The eigenfunctions of A satisfy φ′′′m(0) 6= 0 for
each m ∈ N if and only if λ ∈ (0,∞)\AD. Furthermore, if
λ ∈ (0,∞)\AD, then the eigenvalues of A are simple.

Proof. Let us recall that A is defined in (9). We only show
the second statement of this lemma, since the first one has
already been shown in (Cerpa et al., 2017, Section 2.3). We
proceed as in the proof of (Cerpa, 2010, Lemma 2.1). Thus,
let φ1 and φ2 be two eigenfunctions associated to the same
eigenvalue σ. Then, we have that Φ = φ′′′1 (0)φ2−φ′′′2 (0)φ1
satisfies AΦ = σΦ with Φ ∈ D(A). The extra information
of Φ′′′(0) = 0 allows us to infer that Φ = 0 in [0, L].
Accordingly, φ1 and φ2 are linearly dependent because
φ′′′1 (0) and φ′′′2 (0) are different from zero by the first
statement of this lemma. •

Lemma 6. Let λ ∈ (0,∞)\AD. Then, for any D ≥ 0
the pair of matrices

(
A1, e

−DA1B1

)
satisfies the Kalman

condition. In other words:

rank
(
e−DA1B1,A1e

−DA1B1,

. . . , An
1 e
−DA1B1

)
= n+ 1.

(19)

Proof. Since the matrices A1 and e−DA1 commute, and
the matrix e−DA1 is invertible, it follows

rank
(
e−DA1B1, A1e

−DA1B1, . . . , A
n
1 e
−DA1B1

)
= rank (B1, A1B1, . . . , A

n
1B1) ,

(20)

which means that we have to check that the pair of
matrices (A1, B1) satisfies the Kalman condition. Some
computations lead us to

det (B1, A1B1, . . . , A
n
1B1)

= V dM(σ1, . . . , σn)Πn
m=1(am + σmbm),

(21)

where

V dM(σ1, . . . , σn) = Π1≤i<j≤n(σj − σi), (22)

is a Van der Monde determinant, which is different from
zero because the eigenvalues of A are simple in virtue of
Lemma 5. Some integrations by parts and the fact that
−φ′′′′m − λφ′′m = σmφm yield

am + σmbm = (−λd′′ − σmd, φm)L2(0,L)

= (d, φ′′′′m )L2(0,L)

= −φ′′′m(0).

(23)

Finally, we conclude that (21) is different from zero due to
(23) and Lemma 5. •

Thanks to Lemma 6 we have that (18) is controllable.
Accordingly, we can apply the pole-shifting theorem to
exponential stabilize it.

Corollary 7. Let λ ∈ (0,∞)\AD. Then, for any D ≥ 0
there exists a gain matrix K1(D) ∈ R1×(n+1) such that the
matrix A1 + e−DA1B1K1(D) admits −1 as an eigenvalue
of order (n + 1). Furthermore, there exists a symmetric
positive matrix P (D) ∈ R(n+1)×(n+1) such that

P (D)(A1 + e−DA1B1K1(D))

+(A1 + e−DA1B1K1(D))>P (D) = −In+1.
(24)

In virtue of Corollary 7 we can construct the Lyapunov
function

V1(t) =
1

2
Z1(t)>P (D)Z1(t), (25)

to prove that the feedback control α(t) = K1(D)Z1(t)
exponential stabilize (18). However, from (14) together
with (4) we see that we actually have to select{

α(t) = 0 when t ∈ [−D, 0),

α(t) = K1(D)Z1(t) when t ∈ [0,∞).
(26)



Lemma 8. Let λ ∈ (0,∞)\AD. Then, for any D ≥ 0 we
have

‖αD(t)‖Rn+1

≤ eD‖K1(D)>‖Rn+1‖Z1(t)‖Rn+1 , t ≥ 0.
(27)

Proof. Let us recall that αD(t) = α(t − D). By (26) it
follows that (27) is true for t ∈ [0, D). Thus, let us prove
(27) only for t ∈ [D,∞). Let us introduce the matrix
A2 = A1 + e−DA1B1K1(D), which satisfies ‖A2‖ = 1 due
to Corollary 7. Then, plugging (26) into (18) we find that
Z1(t) = Φ(t)Z1(0) for t ≥ 0, where Φ(t) = exp {A2t}.
Finally, we deduce (27) from (26), the fact that
Φ(t−D) = Φ(−D)Φ(t) for t ∈ [D,∞), and the application
of Cauchy-Schwarz inequality. •

Let us note that if σmin (P (D)) > 0 and σmax (P (D)) > 0
respectively denote the lowest and greatest eigenvalue of
the symmetric positive matrix P (D) ∈ R(n+1)×(n+1), then
it holds

σmin (P (D)) ‖Z1(t)‖2Rn+1 ≤ Z1(t)>P (D)Z1(t)

≤ σmax (P (D)) ‖Z1(t)‖2Rn+1 .
(28)

3.3 Stabilization of the infinite-dimensional system

Plugging (26) into (17) we get

Z1(t) = X1(t) +

∫
I(t)

e(t−s−D)A1B1K1(D)Z1(s) ds, (29)

where I(t) = (t−D, t)∩(0,∞). In the forthcoming analysis
it will be necessary to keep in mind that

I(t) =


∅ if t ≤ 0,

(0, t) if 0 < t ≤ D,
(t−D, t) if t ≥ D.

(30)

So far the feedback control α(t) makes X1(t) to go
exponentially to zero as t → ∞. Indeed, this comes from
(29) and the fact that Z1(t) goes exponentially to zero as
t → ∞. Let us prove that the same feedback control α(t)
also exponential stabilize (10). To this end, let us introduce
the Lyapunov function constructed in Prieur and Trélat
(2018), which is

VD(t) = M(D)V1(t) +M(D)

∫
I(t)

V1(s) ds

−1

2
(y(t, ·), Ay(t, ·))L2(0,L) ,

(31)

where M(D) > 0. With (9) and (25) in mind, we can
rewrite (31) as

VD(t) =
M(D)

2
Z1(t)>P (D)Z1(t)

+
M(D)

2

∫
I(t)

Z1(s)>P (D)Z1(s) ds

−1

2

∞∑
m=1

σmym(t)2.

(32)

The next three lemmas give the necessary tools to prove
our main result.

Lemma 9. Let λ ∈ (0,∞)\AD. Let us set the positive
constants

C1(D) = max
{

2, 2e4D‖A1‖‖B1K1(D)‖
}
,

C2(D) = min

{
σ1
2
,

1

2

}
,

C3(D) = max

{
λ2, 2− λ2

σn+1

}
,

C4(D) =
2σ1C1(D)

σmin (P (D))
.

(33)

Also, let us assume that M(D) ≥ C4(D). Then, for any
D ≥ 0 we have

C2(D)

2
‖X1(t)‖2Rn+1

+
C2(D)

2C3(D)
‖y(t, ·)‖2H2

0 (0,L) ≤ VD(t), t ≥ 0.

(34)

Proof. Firstly, by (29) we have

‖X1(t)‖2Rn+1 = X1(t)>Z1(t)

−X1(t)>
∫

I(t)

e(t−s−D)A1B1K1(D)Z1(s) ds, (35)

from which we get, by applying the Cauchy-Schwarz and
Cauchy inequalities,

‖X1(t)‖2Rn+1 ≤ C1(D)‖Z1(t)‖2Rn+1

+C1(D)

∫
I(t)

‖Z1(s)‖2Rn+1 ds. (36)

Then, combining (32) with (28) and (36) we find

VD(t) ≥ M(D)
σmin (P (D))

2C1(D)
‖X1(t)‖2Rn+1

−1

2

∞∑
m=1

σmym(t)2.
(37)

Taking into account that σ1 > σm ≥ 0 for m ∈ {2, . . . , n}
and 0 > σn+1 > σm for m ∈ {n+ 2, . . .}, in (37) we use

−1

2

∞∑
m=1

σmym(t)2

≥ −σ1
2
‖X1(t)‖2Rn+1 −

1

2

∞∑
m=n+1

σmym(t)2,

(38)

and then consider that M(D) ≥ C4(D) to obtain

VD(t) ≥ C2(D)‖X1(t)‖2Rn+1

−C2(D)

∞∑
m=n+1

σmym(t)2.
(39)



Secondly, some integrations by parts, (12), (9), the fact
that −φ′′′′i − λφ′′i = σiφi and Cauchy inequality yield

‖y(t, ·)‖2H2
0 (0,L) =

∑
(i,j)∈N2

yi(t)yj(t)
(
φ′′i , φ

′′
j

)
L2(0,L)

=
∑

(i,j)∈N2

yi(t)yj(t) (φ′′′′i , φj)L2(0,L)

= −λ (y′′, y)L2(0,L) −
∞∑

m=1

σmym(t)2

≤ λ2
∞∑

m=1

ym(t)2 − 2

∞∑
m=n+1

σmym(t)2

≤ λ2‖X1(t)‖2Rn+1 +

∞∑
m=n+1

(
λ2 − 2σm

)
ym(t)2.

(40)

Here we consider

λ2 − 2σm = −σm
(

2− λ2

σm

)
≤ −σm

(
2− λ2

σn+1

)
, m ∈ {n+ 1, . . .},

(41)

to obtain

‖y(t, ·)‖2H2
0 (0,L) ≤ C3(D)‖X1(t)‖2Rn+1

−C3(D)

∞∑
m=n+1

σmym(t)2.
(42)

Finally, from the combination of (39) and (42) we arrive
at (34). •

Lemma 10. Let λ ∈ (0,∞)\AD. Let us set the positive
constants

C5(D) = 4‖a‖2L2(0,L)C1(D)

+4e2D‖b‖2L2(0,L)‖K1(D)>‖2Rn+1 ,

C6(D) = max

{
− 1

σn+1
, C5(D), 2σmax (P (D))

}
.

(43)

Also, let us assume that M(D) ≥ C6(D). Then, for any
D ≥ 0 we have

VD(t) ≤ exp

{
− 1

M(D)
t

}
VD(0), t ≥ 0. (44)

Proof. Let us note that (44) is true for t = 0. Thus, let
us prove (44) only for t > 0 by computing V ′D(t). Firstly,
by (25) and the use of (24) we get

d

dt
V1(t) +

d

dt

∫
I(t)

V1(s) ds

= −1

2
‖Z1(t)‖2Rn+1 −

1

2

∫
I(t)

‖Z1(s)‖2Rn+1ds.
(45)

Secondly, taking into account that A is a self-adjoint
operator it follows

d

dt
(y(t, ·), Ay(t, ·))L2(0,L)

= 2 (Ay(t, ·), yt(t, ·))L2(0,L) .
(46)

Here we plug (10), then apply Cauchy inequality and
finally consider (15) together with (27) to obtain

d

dt
(y(t, ·), Ay(t, ·))L2(0,L)

≤ −‖Ay(t, ·)‖2L2(0,L) + 2‖a‖2L2(0,L)‖X1(t)‖2Rn+1

+2e2D‖b‖2L2(0,L)‖K1(D)>‖2Rn+1‖Z1(t)‖2Rn+1 .

(47)

Thirdly, since 0 > σn+1 > σm for m ∈ {n + 2, . . .} and
M(D) ≥ −1/σn+1 we infer

−1

2
‖Ay(t, ·)‖2L2(0,L) ≤

1

2M(D)

∞∑
m=1

σmym(t)2. (48)

Finally, with (31) in mind, we combine (45), (47), (36),
and (48) to obtain

V ′D(t) ≤ −
(
M(D)

2
− ‖a‖2L2(0,L)C1(D)

− e2D‖b‖2L2(0,L)‖K1(D)>‖2Rn+1

)
‖Z1(t)‖2Rn+1

−
(
M(D)

2
− ‖a‖2L2(0,L)C1(D)

) ∫
I(t)

‖Z1(s)‖2Rn+1ds

+
1

2M(D)

∞∑
m=1

σmym(t)2,

(49)

from which we deduce V ′D(t) ≤ M(D)−1VD(t) for t > 0,
and hence (44), thanks to the choice M(D) ≥ C5(D), (28),
the choice M(D) ≥ 2σmax (P (D)), and (32). •

Lemma 11. Let λ ∈ (0,∞)\AD. Then, for any D ≥ 0
there exists C7(D) > 0 such that

VD(0) ≤ C7(D)‖y(0, ·)‖2H2
0 (0,L). (50)

Proof. In view of I(0) = ∅ it follows from (29) that
Z1(0) = X1(0). Accordingly, by (25) together with (31)
we find

VD(0) =
M(D)

2
X1(0)TP (D)X1(0)

−1

2
(y(0, ·), Ay(0, ·))L2(0,L) .

(51)

On the one hand, from (15), (4), and (28) we get

X1(0)>P (D)X1(0) ≤ σmax (P (D)) ‖y(0, ·)‖2L2(0,L). (52)

On the other hand, with (9) in mind we perform some
integrations by parts and then apply the Cauchy and
Poincaré inequalities to obtain

−1

2
(y(0, ·), Ay(0, ·))L2(0,L) ≤ C‖y(0, ·)‖2H2

0 (0,L). (53)

Finally, we arrive at (50) from the combination of (51)-(53)
and the applcation of Poincaré inequality. •



Let us prove (6). Let λ ∈ (0,∞)\AD and let us set
M(D) = C6(D). Then, by (34), (44), and (50) it follows

C2(D)

2
‖X1(t)‖2Rn+1 +

C2(D)

2C3(D)
‖y(t, ·)‖2H2

0 (0,L)

≤ C7(D) exp

{
− 1

M(D)
t

}
‖y(0, ·)‖2H2

0 (0,L), t ≥ 0,

(54)

from which we deduce (6) thanks to (7), (4) and (15). We
have finished the proof of Theorem 1.

3.4 Inversion of the Artstein transform

We would like to express α(t) in terms of X1(t). To this
end, we present the inversion of the Artstein transform
realized in Bresch-Pietri et al. (2018). Thus, taking into
account that (t − D, t) = (t−D,max {t−D, 0}) ∪ J(t),
where J(t) = (max {t−D, 0}, t), we plug (17) into (26)
and then use the fact that α(t) = 0 when t ∈ [−D, 0) to
get

α(t) = K1(D)X1(t)

+K1(D)

∫
J(t)

e(t−s−D)A1B1α(s) ds, t ≥ 0. (55)

Then, for a function F let us define

(TDF ) (t)

= K1(D)

∫
J(t)

e(t−s−D)A1B1F (s) ds, t ≥ 0. (56)

Let us consider t ≥ 0. In virtue of (56) we can rewrite (55)
as α(t) = K1(D)X1(t) + (TDα) (t), which is equivalent
to (I − TD)α(t) = K1(D)X1(t). The convergence of the
Neumann series associated to TD has been shown in
(Bresch-Pietri et al., 2018, Section 4.1), which implies the
existence of (I − TD)−1. Accordingly, we have

α(t) =

∞∑
m=0

(Tm
DK1(D)X1) (t), t ∈ [0,∞). (57)

Remark 12. The series in (57) converges for any D ≥ 0.
Let us note that the value of α(t) depends on X1(s) over
0 < s < t. Further details may be found in Bresch-Pietri
et al. (2018).

4. CONCLUSION

In this paper we have exponentially stabilized in H2
0 (0, L)

the linear Kuramoto-Sivashinsky equation by means of a
feedback control designed from a finite-dimensional system
with input delay D ≥ 0. As in the null controllability, our
main assumption was λ ∈ (0,∞)\AD. To prove our main
result we have followed the approach developed in Prieur
and Trélat (2018), which relies on the Artstein transform,
a careful spectral analysis and the pole-shifting theorem.
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