
HAL Id: hal-02002507
https://laas.hal.science/hal-02002507v1

Submitted on 31 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of coordinated human body motion by
learning of structured dynamic representation

Albert A Mukovskiy, Nick Taubert, Dominik Endres, Christian Vassallo,
Maximilien Naveau, Olivier Stasse, Philippe Souères, Martin A Giese

To cite this version:
Albert A Mukovskiy, Nick Taubert, Dominik Endres, Christian Vassallo, Maximilien Naveau, et al..
Modeling of coordinated human body motion by learning of structured dynamic representation. Geo-
metric and Numerical Foundations of Movements, Springer, pp.237-267, 2017, Star 117. �hal-02002507�

https://laas.hal.science/hal-02002507v1
https://hal.archives-ouvertes.fr


Modeling of coordinated human body motion by
learning of structured dynamic representations

Albert Mukovskiy1, Nick Taubert1, Dominik Endres2, Christian Vassallo3,
Maximilien Naveau3, Olivier Stasse3, Philippe Souères3, and Martin A. Giese1

Abstract The modeling and online-generation of human-like body motion is a cen-
tral topic in computer graphics and robotics. The analysis of the coordination struc-
ture of complex body movements in humans helps to develop flexible technical al-
gorithms for movement synthesis. This chapter summarizes work that uses learned
structured representations for the synthesis of complex human-like body movements
in real-time. This work follows two different general approaches. The first one is
to learn spatio-temporal movement primitives from human kinematic data, and to
derive from this Dynamic Movement Primitives (DMPs), which are modeled by
nonlinear dynamical systems. Such dynamical primitives are then coupled and em-
bedded into networks that generate complex human-like behaviors online, as self-
organized solutions of the underlying dynamics. The flexibility of this approach is
demonstrated by synthesizing complex coordinated movements of single agents and
crowds. We demonstrate that Contraction Theory provides an appropriate frame-
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work for the design of the stability properties of such complex composite systems. In
addition, we demonstrate how such primitive-based movement representations can
be embedded into a model-based predictive control architecture for the humanoid
robot HRP-2. Using the primitive-based trajectory synthesis algorithm for fast on-
line planning of full-body movements, we were able to realize flexibly adapting
human-like multi-step sequences, which are coordinated with goal-directed reach-
ing movements. The resulting architecture realizes fast online planing of multi-step
sequences, at the same time ensuring dynamic balance during walking and the feasi-
bility of the movements for the robot. The computation of such dynamically feasible
multi-step sequences using state-of-the-art optimal control approaches would take
hours, while our method works in real-time.
The second presented framework for the online synthesis of complex body motion is
based on the learning of hierarchical probabilistic generative models, where we ex-
ploit bayesian machine learning approaches for nonlinear dimensionality reduction
and the modeling of dynamical systems. Combining Gaussian process Latent Vari-
able Models (GPLVMs) and Gaussian process Dynamical Models (GPDMs), we
learned models for the interactive movements of two humans. In order to build an
online reactive agent with controlled emotional style, we replaced the state variables
of one actor by measurements obtained by real-time motion capture from a user and
determined the most probable state of the interaction partner using Bayesian model
inversion. The proposed method results in highly believable human-like reactive
body motion.

Key words: Dynamic Movement Primitives, Animation, Machine Learning, Gaus-
sian Process Latent Variable Model, Gaussian Process Dynamical Model, Naviga-
tion, Walking Pattern Generator, Goal-directed Movements, Motor Coordination,
Action Sequences

1 Introduction

The generation of realistic human movements in reactive fashion is a difficult task
with high relevance for computer graphics and robotics. An especially challenging
task in this domain is the online-synthesis of complex behaviors that consist of se-
quences of individual actions, which adapt to continuously changing environmental
constraints.

The whole body movements of humans and animals are organized in terms of
muscle synergies or movement primitives [4, 17]. Such primitives characterize the
coordinated involvement of subsets of the available degrees of freedom in different
actions. An example is the coordination of periodic and non-periodic components of
the full-body movements during reaching while walking, where behavioral studies
reveal a mutual coupling between these components [12, 8, 68, 47]. The realism
and human-likeness of synthesized movements in robotics and computer graphics
can be improved by taking such biological constraints into account [18, 15, 73].
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In this chapter we present two learning-based frameworks that make such bio-
logical properties applicable to the realtime synthesis of human-like movements in
technical systems, one that is based on Dynamic Movement primitives (DMPs), and
another one that exploits unsupervised Bayesian learning methods.

The chapter is organized into three main sections. Section 2 introduces a frame-
work that approximates complex human movements by combining learned dynamic
movement primitives. Highly adaptive coordinated full-body movements, and even
the coordination of the movements of multiple agents, can be generated online by
networks of such dynamic primitives, which are mutually coupled. Section 3 dis-
cusses how the same methods can be exploited for the movement planning of hu-
manoid robots. We present an architecture that embeds such an online synthesis
model into a control architecture of a real humanoid robot, which is based on model
predictive control. The proposed solution ensures the dynamic balance of the robot,
so that it is prevented from falling, while realizing highly flexible online planning
of movements. The last section 4 introduces a completely different approach for
the learning-based representation of reactive human movements, which is based on
Bayesian machine learning methods for dimension reduction and model inversion.
Space constraints allow us only to give the outline of these different approaches,
and we refer to the cited original publications with respect to many technical and
mathematical details.

2 Modeling of human movements based on learned primitives

Human full-body movements involve typically a large number of degrees of free-
dom. It has been a classical idea in biological motor control that such complex body
movements might be composed from lower-dimensional control units, often referred
to as movement primitives or synergies. Substantial work in motor control has been
dedicated to the identification of such primitives from kinematic and EMG data,
applying unsupervised learning techniques for dimension reduction [14, 31, 71].
Different techniques have been applied, including Principle Component Analysis
(PCA), Independent Component Analysis (ICA), or more sophisticated methods
that include time shifts of the superpositioned components. Such methods approxi-
mate a set of time-dependent signals by a superposition of learned source functions,
which have been interpreted as movement primitives or (muscle) synergies.

Work in computer graphics shows that the accurate approximation of motion cap-
ture data from complex full-body movements using PCA requires typically more
than 8 principal components (e.g.[70]). In the following section we describe a
method that often leads to more compact representations with less components or
primitives. Such compact representations are important especially if parameters of
the learned models have to be interpreted, e.g. in order to characterized motion styles
[65]. Compact models tend to concentrate the data variance on a low number of in-
terpretable parameters. Compact primitive-based representations are also beneficial
if they are embedded into control systems or dynamic architectures for the online
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generation of motion. In this case, the number of primitives determines the dimen-
sionality of the underlying system dynamics, and systems with lower dimensionality
often are easier to control and more robust against perturbations.

In the following, after reviewing some related methods in Section 2.1, we give
first a short introduction in the method that we apply to learn primitives from tra-
jectory data (Section 2.2). The resulting kinematic primitives are given by basis
functions or trajectories, which by appropriate combination can approximate com-
plex joint angle trajectories. We then discuss how from such kinematic primitives
dynamic movement primitives can be constructed that generate the learned trajec-
tories online (cf. Section 2.3). These dynamic primitives are nonlinear dynamical
systems that produce the learned basis trajectories as stable solutions. In the fol-
lowing Section 2.4 we demonstrate how such learned dynamical generative models
can be augmented by controllers that make the behaviors adaptable, realizing for
example navigation through space or the control of step length or emotional style.
It is demonstrated that the developed approach is suitable for the online generation
of quite complex coordinated behaviors, either of single agents or even of whole
crowds of agents that execute coordinated collective behaviors. In Section 2.5 we
discuss finally, how such complex generative dynamical models can be designed,
guaranteeing the robustness of their solutions. Contraction Theory, a special type
of mathematical stability analysis, which is especially applicable to nonlinear sys-
tems which are composed of many components, makes it possible to ensure that
the desired behavior is the only stable solution of the resulting nonlinear dynamical
system.

2.1 Related work

The synthesis of the kinematics of sequences of human full-body movements has
been treated extensively in computer graphics [42]. The prominent classical ap-
proach for the synthesis of human motion in computer graphics is the adaptive in-
terpolation between motion-captured example actions, which is typically realized
off-line [93, 23, 22, 2]. Other approaches are based on learned low-dimensional
parameterizations of whole body motion that are embedded in mathematical frame-
works for the online generation of motion [9, 66, 43, 70, 27, 88, 44]. In addition,
a variety of methods for the segmentation of action streams into individual actions
have been proposed, where the models for individual actions can be adapted on-
line in order to fulfill additional constraints, such obstacle avoidance or the correct
positioning of end-effectors [34, 67, 62, 16, 28]. Only very few of this work has fo-
cused on the modeling of the flexible coordination of groups of degrees of freedom,
similar to synergies in biological systems [70, 75].
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2.2 Approximation of human movement data by anechoic mixtures

Many standard approaches use principle component analysis (PCA) or independent
component analysis (ICA) for the reduction of the dimensionality of motion data.
A set of trajectories is represented as a linear combination of a limited number of
basis components or source functions. In our work we used a more sophisticated
mixture model for the approximation of the joint angle trajectories that contains time
shifts for the superposed components or sources [56, 11]. This model is known from
acoustics as anechoic mixture and superposes source functions s j that are temporally
shifted with the time delays τi j in order to to approximate a set of trajectories ξi(t).
The corresponding model is characterized mathematically by the equation

ξi(t)︸︷︷︸
angles

= mi +∑
j

wi j s j (t− τi j)︸ ︷︷ ︸
sources

+noise (1)

The parameters wi j specify the mixing weights, and the variables mi signify con-
stant offsets (means) of the approximated trajectories. Learning of an anechoic mix-
ture model requires the estimation of these parameters, the source functions s j, and
the delays τi j. In our case, the trajectories were given by the angle trajectories of
17 joints expressed as quaternions. We have shown in previous work for different
classes of human movements that this anechoic mixture model results in very accu-
rate approximations of complex human movent data, often with as few as 3-4 source
functions, and typically with factor 2 less sources than classical approaches using
PCA or ICA [60, 50].

2.3 Online synthesis by networks of dynamic primitives

The discussed mixture model can be applied for an off-line analysis and synthesis of
classes of trajectories. Movement types or styles can be characterized by the mixing
weights (and delays) of the model, and the movement can be analyzed using these
weights as features. In addition, novel movement trajectories can be generated off-
line by specifying or interpolating these parameters, and using the equation (1) as a
generative model [65]. However, this approach is not sufficient for applications that
require an online synthesis of complex movements.

In order to make the learned structured model applicable for real-time synthesis
we associated each learned source function (kinematic primitive) with an associ-
ated dynamic primitive [29, 19]. The dynamic primitives are defined by dynamical
systems whose stable solutions approximate the learned source functions. Each dy-
namical primitive is defined by a canonical dynamical system, which has an attractor
solution with well-defined mathematical properties. We used limit cycle oscillators
(Andronov-Hopf oscillators) for the approximation of periodic source functions, and
a ramp-like solution, which is derived from the state of a limit cycle oscillator, for
the non-periodic ones. We then learned nonlinear functions that map the state spaces
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Fig. 1 Architecture for the online synthesis of body movements using dynamic primitives. The
solutions x j(t) of a canonical dynamical systems (limit cycle oscillators) are mapped by Support
Vector Regression (SVR) onto the values of the periodic source functions s j(t). In addition, a non-
periodic source function s0(t) is constructed from these solutions. From these online generated
source functions joint angle trajectories are computed using the learned anechoic mixing model.

of the canonical dynamics onto the values of the source functions s j(t) using Sup-
port Vector Regression (SVR) [10]. Figure 1 shows an overview of the developed
architecture for real-time synthesis.

By insertion of couplings between the different canonical dynamical systems it
is possible to synchronize their dynamics, so that the corresponding source signals
are evolving in synchrony. Such couplings can be used either to model coordinated
behavior between the movement primitives within a single agent, or by introduc-
tion of couplings between the dynamics of multiple agents, for the simulation of
coordinated interactive behavior of multiple agents.

2.4 Style morphing and navigation

The proposed method for the online generation of body motion trajectories can be
combined with a dynamic variations of motion style. For this purpose multiple ex-
amples of the same motion were motion-captured that realize different styles, and
intermediate styles were generated by online interpolation (motion blending). For
thus purpose, we linearly interpolated the average angles mi, the mixing weights



2 Modeling of human movements based on learned primitives 7

a) b)

Fig. 2 a) Reactive online control of locomotion. Agents avoid the obstacles (poles) and other
agents in the scene. Trajectories are generated by morphing between steps with different length,
and curvatures of the walking path (left, straight, right), where blending weight are controlled by a
navigation dynamics that controls the heading direction dependent on obstacle and goal positions.
b) Folk dance of two couples, one forming a bridge, and the other couching beneath it. The behavior
is fully self-organized, where the behavior of the agents depends on the relative positions with
respect to the other agents.

wi j, and the delays τi j of mixing models that were learned from training trajectories
representing different motion styles. (See [21, 50] for further details.)

The blending weights were modulated by controllers that depend on task param-
eters, such as the position or orientations of agents in the scene, distances of agents
to goal points, etc. One example is the generation of walking steps that realize loco-
motion along curved paths by morphing between straight and curved walking steps
to the right or to the left. In this case, the morphing weights of the three walking pat-
terns were determined by a controller that determines the heading direction depen-
dent on obstacles and desired goal points (cf. [74, 91]). Likewise, movements with
different emotional styles can be generated by blending between models that realize
the same motion with different emotional styles, or steps with different length can
be generated by morphing between long and short steps.

We worked out an application of this approach for the simulation of locomoting
and navigating agents. Blending weights were controlled by a simplified version
of a dynamic navigation model that had been applied successfully in robotics be-
fore [74], and which we extended by inclusion of a prediction of expected collision
points with obstacles in order to make the navigation behavior more human-like
[59]. The heading direction is controlled by a nonlinear first-order differential equa-
tion that depends on the actual positions of the agents and of obstacles in the scene.
(See [21, 59] for details.)

An example for the navigation behavior that can be simulated with the described
architecture is illustrated in Fig. 2 a), where six agents avoid the obstacles and the
other agents. Demo Movie I1 shows this example and other obstacle avoidance
scenarios. The same method can also be exploited in order to model interactions
between multiple agents that realize more complex behaviors, which integrate pe-
riodic and non-periodic movement primitives. An example is shown in Fig. 2 b)
that shows a figure from a folk dance that requires one couple of agents to walk
beneath a bridge that is formed by the arms of another couple. Both both couples

1 http://tinyurl.com/hvwv9ra
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take turn and change places. This whole complex behavior with highly human-like
appearance was completely self-organized using only 10 prototypical movements
(normal walk, walks with left or right arm lifted, crouching walk, left and right
forward turnings with two different angular velocities, left and right backward step-
ping turns). See also Demo Movie I. The proposed approach thus can be used to
simulate highly complex full-body coordination patterns, and even patterns that in-
clude multiple agents. The underlying architecture is very simple, consisting only
of a low-dimensional nonlinear dynamical system and some linear and nonlinear
mappings. This makes it possible to generate the behavior, even of larger groups of
agents in realtime.

2.5 Dynamic stability design exploiting Contraction Theory

Effectively, the proposed method synthesizes desired motion trajectories online by
generating them as stable solutions of a complex dynamical system, which can be
characterized as a ’network’ of dynamic movement primitives. The elements of such
networks are highly nonlinear: the canonical dynamics, the mappings from the state
space of the canonical state variables to the source functions, and the kinematic
relationship between the joint angles and the behavior of the agent in the external
space. This raises the question whether for such systems any guarantees can be given
that the desired behavior is the only stable solution of the system. This question is
of particular importance because for nonlinear systems, and even more for complex
ones, multiple stable solutions may exist.

An interesting control-theoretical approach for the analysis of the stability of
composite dynamical systems that consist of coupled nonlinear elements is Con-
traction Theory (CT) [45]. We were able to show that this method is suitable to
guarantee the stability of highly coordinated behaviors of crowds of locomoting
avatars, where our dynamical models included the full complexity and nonlinearity
that is generated by the body articulation of the locomoting agents.

The question of the dynamic stability of the created behaviors has been rarely ad-
dressed in traditional work on crowd animation. Like in our work, some approaches
also tried to learn rules of interactive behaviors from human crowds [13, 58, 41],
while other approaches tried to optimize the interaction within crowds by numerical
optimization of appropriate cost functions (e.g. [25]). Most existing approaches for
the control of group motion in computer graphics neglect the effects of the body
articulation during locomotion on the control dynamics [63, 54, 36]. Another field
that typically pays attention to the dynamic stability of solutions is control theory.
Some work in this area has studied the temporal and spatial self-organization of
crowds, typically assuming highly simplified and partly even linear agent models
(e.g. [72, 57]). This shows that for more detailed models of the agent dynamics
systematic methods for the design of a stable system dynamics are largely lacking.

Contraction Theory is a special type of nonlinear stability analysis that has been
introduced by J.-J. Slotine and coworkers ([45, 89, 64]). The special property of this



2 Modeling of human movements based on learned primitives 9

framework, which makes it possible to simplify the analysis of complex composite
systems, is that it permits to transfer stability results from parts to composite sys-
tems. In general, such a transfer is not possible for nonlinear dynamical systems,
which typically renders the analysis of composite nonlinear dynamical systems im-
possible, even for moderately-sized systems.

Opposed to the classical approach for stability analysis that computes first a sta-
tionary solution and then linearizes about it, Contraction Theory analyzes differ-
ences between trajectories with different initial conditions. If these differences van-
ish exponentially over time, all solutions converge towards a single trajectory, in-
dependent from the initial states. In this case, the system is called contracting, and
at the same time is globally asymptotically stable. More specifically, for a general
dynamical system of the form

ẋ = f(x, t) (2)

assume that x(t) is one solution of the system, and x̃(t) = x(t) + δx(t) a neigh-
boring one with a different initial condition. The function δx(t) is also called vir-
tual displacement. With the Jacobian of the system J(x, t) = ∂ f(x,t)

∂x it can be shown
[45] that any nonzero virtual displacement decays exponentially to zero over time
if the symmetric part of the Jacobian Js = (J+ JT )/2 is uniformly negative defi-
nite, denoted as Js < 0. This implies that it has only negative eigenvalues for all
relevant state vectors x (within a contraction region). In this case, it can be shown
that the norm of the virtual displacement decays at least exponentially to zero, for
t → ∞. If the virtual displacement is small enough, one can also prove the inequal-
ity: ||δx(t)|| ≤ ||δx(0)||e

∫ t
0 λmax(Js(x,s))ds. This implies that the virtual displacements

decay with a convergence rate (inverse timescale) that is bounded from below by the
quantity ρc = −supx,t λmax(Js(x, t)), where λmax(.) signifies the largest (negative)
eigenvalue.

Contraction analysis can be generalized to systems with individual non-contracting
directions (partial contraction) [89]. This is important, for example, for limit cycle
oscillators, where the directions tangential to the stable oscillatory solution are non-
contracting, but the system is contracting in all other directions orthogonal (transver-
sally) to these trajectories. Contraction analysis can be applied to hierarchically cou-
pled systems [45], where the systems on higher hierarchy levels do not feed back
into the lower levels. Such systems can be shown to be contracting if each com-
ponent system is contracting for all bounded inputs. In addition, one can derive
constraints for the coupling between two contracting systems that are reciprocally
connected (i.e. in a non-hierarchical forward-backward fashion) that guarantee that
the resulting system also is contracting. This makes it possible to design contracting
systems from contracting system components, by appropriate design of hierarchical
and reciprocal connections of the modules. We applied this framework to a simpli-
fied model of the dynamics that generates coordinated behavior of crowds.

In order to apply Contraction Theory for the stability analysis of locomoting
crowds, we used a model that integrated the following control levels: (i) Control of
heading direction (as described before); (ii) step-size control by morphing between
long and short steps; (iii) control of the gait phase in order to achieve a synchro-
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a)

b)

Fig. 3 Self-organized reordering of a crowd. Control dynamics affects direction, row and column
distances, and gait phases. a) When the sufficient contraction conditions of the system dynamics are
satisfied the agents organize into an ordered formation where all agents synchronize their steps. b)
For a violation of the contraction conditions the behavior becomes unstable, and the agents diverge
and do not synchronize their behaviors. See [52].

nization between all agents; and (iv) control of step frequency by adaptation of the
frequency parameters of the limit cycle oscillators. (See [21, 61, 51] for further
details.) The resulting dynamics can be approximated by a simplified nonlinear dif-
ferential equation system that depends on a nonlinear function that describes the
relationship between the propagation speed of the characters and the corresponding
state variable of the canonical system. This approximative system dynamics is ac-
cessible for an application of tools from contraction theory. This allows to derive
sufficient contraction conditions that ensure that the generated behavior is stable
and that no other attractors of the system dynamics exist. (Further details about this
analysis are laid out in [51, 52].)

Fig. 3 a) shows a crowd with 36 avatars generated with a dynamics that fulfills
the derived contraction conditions. By self-organization the group evolves into a
spatially ordered configuration with a synchronization of gait phase, and step fre-
quency. This behavior is robustly approached from different initial conditions and
placements of the agents within the scene. Figure 3 b) shows the situation of the
relevant contraction condition is violated. In this case, the crowd diverges and the
dynamics becomes unstable. This example demonstrates the applicability of CT for
stability design even for systems that model quite complex coordinated behaviors.
(See also Demo Movie II2 ).

3 Planning of movements for humanoid robots

Standard approaches for kinematic planning in robotics model complex sequential
activities by concatenations of elementary motions, each one accomplishing a spe-

2 http://tinyurl.com/jxgpptb
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cific sub-task. Differing from this, skilled human behavior is highly predictive, and
behaviors are adapted to task constraints even far in the future. An example for this
is the maximum end-state comfort principle [69] that has been demonstrated for the
human coordination of walking and reaching ([92, 37]):

It seems desirable to transfer such flexible human-like planning strategies to
robots, e.g. for the generation of locomotion behaviors that are coordinated with
hand or arm actions. The mathematical framework presented in Section 2 is suit-
able for the modeling of such highly predictive coordinations strategies. For this
purpose, the desired behavior of the robot is synthesized online by a network of
dynamic primitives, exploiting the architecture described in the previous section
and specifying a virtual kinematic trajectory that the robot should follow. However,
real robots are associated with additional constraints, e.g. for the joint angles or re-
alizable torques. In addition the behavior of bipedal walking robots has to ensure
specific constraints to ensure dynamic balance, in order to prevent the robot from
falling. This part of the chapter describes how the framework presented in Section
2 can be embedded as online motion planning system in the control architecture of
the humanoid robot HRP-2.

The core of this control architecture is a Walking Pattern Generator (WPG),
which is based on nonlinear Model Predictive Control [55]. The underlying algo-
rithm is based on a simplified model of a bipedal walker and synthesizes a dynam-
ically feasible behavior of the legs that prevents the robot from falling. This lower
body motion is then combined with the desired motion of the arms, correcting the
lower body motion by a special Dynamic Filter [94], in order to ensure that the
overall behavior is always dynamically feasible and thus realizable on the real robot
without falling. We demonstrated the functionality of this architecture for the exam-
ple of coordinated walking and reaching. The developed system models flexible and
and very human-like behaviors for the online replanning after perturbations of the
behavior, which realizes the maximum end-state comfort principle of human motor
control.

Compared to a direct computation of dynamically feasible multi-step move-
ments using optimal control approaches (c.f. [33]), our method is characterized by
a much lower computational complexity. Optimal control methods using a accurate
model of the robot require typically hours of computation time for the generation
of multi-step sequences that ensure that the robot does not fall. The same goal can
be achieved with our method with a computational complexity that is of the same
order as the one of standard real time-capable WPG algorithms [26].

3.1 Related work

Some work in computer graphics has integrated priorized control and stack-of-task
approaches in the synthesis of trajectories from training trajectories [16, 75]. In
robotics, numerous architectures which combine walking and grasping have been
proposed that are not directly inspired by human behavior [1, 35, 78, 7]. Human-
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inspired frameworks for the decomposition of human reach-to-grasp movements
into sequential actions were proposed in [76] and [48]. An algorithm for the com-
putation of optimal stance locations with respect to the reaching target within a
dynamical systems approach was proposed in [20]. In [96] a task priority approach
was applied for the integration of several sub-tasks, including stepping, hand mo-
tion, and gaze control. Other work has exploited global path planning in combina-
tion with walking pattern generators (WPGs) [32] in order to generate collision-free
dynamically stable gait paths. A first attempt to transfer human reaching movements
to humanoid robots by using motion-primitives was proposed in [79].

3.2 Drawer opening task

Human motor sequences have been shown to be highly predictive. Our implemen-
tation of such predictive strategies on a humanoid robot is based on recent study on
the coordination of walking and reaching in humans [37]. Participants had to walk
towards a drawer and to grasp an object, which was located at different positions in
the drawer. Participants optimized their behavior already multiple steps before the
object contact, consistent with the hypothesis of maximum end-state comfort during
the reaching action [92, 68]. This implies that the steps prior to the reaching were
modulated in a way that optimized the distance for the final reaching action in a way
that simplified the reaching and grasping.

The initial distance from the drawer and the position of the object inside it were
varied in the data set. The participants walked towards a drawer, opened it with
their left hand and reached for an object inside the drawer with their right hand
[49] (see Fig. 4). Each recorded sequence included three subsequent actions: 1) a
normal walking step; 2) a shortened step with the left-hand reaching towards the
drawer. This step showed a high degree of adaptability, and its length was typically
adjusted in order to create an optimum distance from the drawer for the final reach-
ing movement (consistent with the maximum end-state comfort hypothesis); 3) the
drawer opening combined with the reaching for the object while standing. Demo
Movie III3 shows an example for the recorded human behavior.

3.3 Adaptive model of the kinematics of multi-step sequences

In order to make the recorded motion capture data useful for a transfer of the behav-
ior to the robot, it was retargeted on a kinematic model of the human-sized humanoid
robot HRP-2 using the commercial software MotionBuilder. During retargeting the
feet positions of the HRP-2 were constrained to level ground, and the step sizes were
reduced proportionally to the height of the robot. This made the joint angle ranges

3 http://tinyurl.com/he3dhb2
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Fig. 4 Important intermediate postures from the human behavior: step with initiation of reaching,
standing while opening the drawer, and reaching for the object.

compatible with the ones that can be realized by the robot. The data was split, sep-
arating the stored pelvis trajectories (pelvis position and pelvis direction angles in
the horizontal plane), and the upper body trajectories, approximating the human tra-
jectories by a kinematic model of the HRP-2. The pelvis position trajectories were
also rescaled in order to match the maximally admissible propagation speed limit of
the HRP-2 (0.5 m/sec). In addition, corrections were applied to the pelvis and trunk
yaw-angle trajectories. Figure 5 shows a comparison between an original human
and the retargeted pose, illustrated using the corresponding avatar models. (See also
Demo Movie IV4 .)

Fig. 5 Retargeting of the movements from a human to the unconstrained skeleton of the HRP-2
robot.

4 http://tinyurl.com/j8qnbtp
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In order to model step sequences with a human-like coordination of the periodic
walking and the non-periodic reaching behavior, we approximated the training data
by anechoic mixtures (see Section 2.2). For this specific application, we used a step-
wise regression approach. We introduced a total of five sources in order to model
the three different actions (steps) within the sequence. The first action is the normal
walking gait cycle. After extraction of the the mean value and non-periodic compo-
nent from this step, we approximated the remaining residuals by anechoic mixtures
with three sources, applying a modified demixing algorithm that constrained all time
delays belonging to the same source function and joint angle to be equal across all
trials. These additional constraints make it necessary to introduce more sources in
order to reach the same approximation quality, but significantly simplify the motion
morphing. The second highly adaptive step was approximated by the same sources,
and the remaining residuals were modeled by introducing two additional periodic
sources. The same set of five sources were then used to model the last action.

In order to control the styles of the actions online, we learned nonlinear map-
pings between task parameters (step length and duration) and the weights of the
source functions in our mixing model, applying Locally Weighted Linear Regres-
sion (LWLR) [3, 49]. For the synthesis of multi-step sequences the step lengths
was computed from the actual estimated target distance. Based on the training data,
we computed the achievable step ranges. Additional steps were automatically intro-
duced if the target could not be reached within three steps. For the second step, the
step length was adjusted in order to realize a maximum comfort distance for reach-
ing, and the planning distance of the other steps was adjusted accordingly. A more
detailed description of the algorithms for the smooth interpolation of the weights of
the kinematic primitives at the transition points between the different steps is given
in [49].

For the learned parameters the system generates very natural-looking coordinated
three-step sequences for total goal distances between 2.3 and 3 m, which were not
included in the training data set. This is illustrated in Figure 6. When the specified
goal distance exceeds this interval, the system automatically introduces additional
gait steps, adapting the behavior for goal distances above 3 meters. Clips illustrating
the highly flexible synthesis of multi-step sequences are shown in Demo Movie V5 .
Figure 7 shows the highly adaptive online replanning if the goal (drawer) jumps
away while the agent is approaching it, requiring the introduction of an additional
step.

3.4 Embedding in the robot control architecture

The algorithm described in section 3.3 generates trajectories for human-like coordi-
nated behavioral sequences. However, these sequences are not guaranteed to result
in dynamically stable behavior of the robot, and the robot just may fall due to a

5 http://tinyurl.com/gktjxre
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Fig. 6 Two synthesized behaviors for two conditions with different initial distance of the character
from the drawer. Both distances were not present in the training data set. Adopted from [49].

loss of dynamic balance. To solve this problem, we integrated the described algo-
rithm for the online planning of multi-step-sequences with the control architecture
of the HRP-2 robot that ensures the dynamic feasibility of the executed behaviors.
An overview of the developed architecture is given in Fig. 8. The online planning
module is called ’Kinematic Pattern Synthesis’ in the figure. The planned gait cy-
cle trajectory is transmitted to a Walking Pattern Generator (WPG) that is based on
model predictive control, which computes the foot placements and the trajectory of
the Zero Moment Point (ZMP) for the current step from the desired Center of Mass
(CoM) velocity and the pelvis angular velocity of the planned gait cycle [55]. It can
be shown that the gait of the robot is dynamically stable if the projection of the Zero
Moment Point to the ground plane is within the support polygon on the floor, which
surrounds the feet that are in contact with the ground [86].

The generated preplanned CoM and ZMP trajectories are corrected, taking into
account the planned upper-body joint angles by a Dynamic Filter (DF), which op-
erates in closed-loop together with the WPG. Both, the planned CoM and ZMP tra-
jectories, and the upper-body joint angles are then combined in an inverse kinemat-
ics module that implements ’Stack-of-Task’ approach (SoT) [46, 77]. This module
outputs angular trajectories for legs and upper-body and ensures that the executed
behavior respects the dynamic stability constraints of the robot, at the same time
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Fig. 7 Online perturbation experiment. The goal (drawer) jumps away while the agent is approach-
ing it, requiring online replanning of the multi-step sequence. The algorithm introduces automati-
cally an action of type 2 (short step) in order to adjust for the increased distance to the goal.

approximating the desired behavior of the upper body, as far as possible. These re-
sulting trajectories q(t) can then feasibly be realized by the low-level controllers of
HRP-2 robot.

During motion execution, the real-world environmental and task parameters and
the current state of the robot are fed back to the kinematic planner, closing the
control loop for adaptive interaction in the real world. For the successful realization
of the system it is important to retrain the primitives on example trajectories that are
feasible for the robot, which are generated by a robot physics simulator.

3.5 Experiments on the robot

The synthesis architecture was first tested by simulating ’open-loop’ control, using
the OpenHRP simulator to realize a physical model of HRP-2 robot. In the open
loop simulations the robot replays the training movements, but does not create on-
line adapted movements with adjusted step sizes and sequences dependent on the
distance of the robot from the reaching target. In the simulations, the robot starts
from the parking position and makes a transition to a normal step. At the end of this
step the pelvis velocities (propagation and angular) were determined and used as
initial conditions for the generation of a three-action sequence. At the end of the last
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Fig. 8 Control architecture of HRP-2 humanoid robot. The online kinematic pattern synthesis
module is linked to a Walking Pattern generator, which computes foot placements and the ZMP
trajectory (see text). The Dynamic Filter corrects the walking trajectory dependent on the joint an-
gles of the upper body. Both, gait control parameters and upper body joint angles are integrated in
a generalized kinematic planning module using a Stack-of-Task (SOT) approach, which computes
the control torques for the robot. The variables [vre f ,ωre f ] signify the linear and angular velocity
of CoM, and qupperbody are the upper-body joint trajectories computed from the kinematic pat-
tern synthesis. The variables q, q̇, q̈ are the generalized position, velocity and acceleration vectors
computed by the Stack of Tasks (SoT) approach.

action a spline interpolation of pelvis angular and positional coordinates was used
to change the robots state back to the parking position (introducing two additional
steps on the spot). A snapshot of the executed behavior is shown in Fig. 9. Examples
of full three- and four-action sequences are provided in Demo Movie VI6 .

As final step of this validation, the architecture was also tested using the real
HRP-2 robot (Fig. 10). The behavior could be successfully realized, maintaining
the balance of the robot. Examples of the corresponding behaviors of the real HRP-
2 robot are provided in Demo Movie VI.

After these tests of the ’open loop behavior’ of the system, without an adapta-
tion of step and reaching parameters using the movement planning algorithm, we
tested the full system including such online planning in extensive simulations using
the OpenHRP simulator. As result, we found that the proposed architecture really
works robustly also in the case of online adaptation and replanning. In addition, we
tested our architecture in comparison with a simpler machine learning-based ap-
proach, where one learns the output trajectories q(t) from many training examples
that produce dynamically behavior of the robot, and where one tries to interpolate
between them using learning techniques. It turns out that this simplistic strategy
works for only a subset of the training trajectories and fails completely for the gen-
eration of adaptive behavior online planning of new adapted step sizes and reaching
movements [53].

An example of the quantitative validation of the method is shown in Fig. 11,
that illustrates the ground reaction forces (maximal normal force of the feet over

6 http://tinyurl.com/jxwmwnt
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0.4 sec 2.0 sec

3.6 sec 5.2 sec

6.8 sec 8.4 sec

Fig. 9 Off-line synthesised trajectories generated with the OpenHRP simulator using a realistic
physical model of the robot.

the whole action sequence, based on 30 simulations with parameters that differ-
ent from the training data). The maximum admissible ground reaction force for the
real HRP-2 is 800 N. The figure compares the peak forces for trajectories directly
created by the WPG without approximation of human behavior, the results from
the naı̈ve machine learning approach, and the ones obtained with our method. For
the synthesis methods, the figure compares the results of the reconstruction of the
training trajectories, using different numbers of source functions of the anechoic
mixing model, and the case with an optimum number of sources with an inference
of novel step sizes and reaching distances in the closed-loop system that includes
online planning. For the naı̈ve machine learning approach except for the case of
9 source functions, the force limit of the robot gets violated. Even with this opti-
mum number of sources, the force limit is violated when the system is operating in
closed loop. Consequently, the robot falls sometimes during the execution of such
behaviors [53]. Contrasting with this result, for our methods the peak ground reac-
tion forces remain always in the feasible region, and they are extremely similar to
the ones when the movement was directly planed using the WPG without training
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Fig. 10 Real HRP-2 robot performing walking-reaching sequences at LAAS-CNRS.

to approximate human behavior. In is remarkable that even for the most difficult
case, the closed-loop inference of adaptive behavior, the ground reaction forces do
not significantly increase. Similar behavior is observed for other critical mechanical
parameters, like the joint torques. (See [53] for details.) This demonstrates that the
special form of the integration of the planning algorithm in the control system if
critical in order to obtain dynamically feasible behavior of the robot that prevents it
from falling.

4 Probabilistic model for the online synthesis of stylized reactive
movements

In the last section of this chapter we describe a completely different approach for
the generation of reactive complex body movements that exploits state-of-the-art
Bayesian approaches in machine learning. We applied this approach in order to
simulate a reactive avatar in Virtual Reality (VR) that reacts to the movements of
the user with gradually controlled emotional style. Reactive motions are generated
by a dynamical extension of hierarchical Gaussian process latent variable model
(GPLVM). (See [81, 80] for details.) This probabilistic model includes latent vari-
ables that encode the emotional style of the executed actions, where these variable
can be adjusted at run-time. We have verified by psychophysical experiments that
this method generates human motion that is almost indistinguishable from real hu-
man trajectories. In addition, it allows to control precisely and continuously the
emotional style of the executed actions [83, 82]. This makes the developed method
interesting for many applications, including experiments in neuroscience and psy-
chology, computer graphics, and for the realization of human-machine interactions.
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Fig. 11 Peak ground reaction forces obtained for simulated test trials. Comparison of three dif-
ferent synthesis methods: WPG: trajectories generated with the WPG without approximation of
human behavior; naı̈ve ML: interpolation of feasible trajectories using machine learning methods;
and with our method. In addition, the figure compares the results for the resynthesis of the training
trajectories with different numbers of sources, and the full closed-loop behavior with an adaptive
synthesis of novel step sizes and reaching distances. (Blue error bars indicate mean and standard
deviation, and red lines indicate the ranges between minimum and maximum values)

.

4.1 Related work

The modeling of emotional styles is a classical problem in computer graphics (e.g.
[6, 90]). A variety of statistical motion models have been proposed for style interpo-
lation [6, 30], the editing of motions styles [38], and for the analysis and synthesis
of human motion data in general (e.g. [9]). However, many of these techniques re-
sult either in off-line models that cannot react in real-time to external inputs, such as
other characters in the scene, or they are strongly simplified, resulting in movements
that are not completely believable when compared with real human motion.

More recent approaches have tried to learn highly accurate models of human mo-
tion in an unsupervised manner from motion capture data bases. A very successful
approach has been the use of Gaussian Process Latent Variable Models (GPLVMs),
a nonlinear dimension reduction technique. GPLVMs have been applied in com-
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puter graphics for the modeling of kinematics and motion interpolation [24], for the
realization of inverse kinematics [42], and for the learning of low-dimensional dy-
namical models [95]. A related approach are Gaussian process dynamical models
(GPDM), a method that uses the same framework for the learning on nonlinear dy-
namical systems that generate highly realistic human motion [88]. In our previous
work [80] we introduced a dynamical mapping similar to a GPDM in a hierarchi-
cal generative model to learn the dynamics of stylized interactive movements and
interpolate between them. The major problem of these models for real-time synthe-
sis is the associated computational cost, which requires additional approximations,
such as the introduction of sparsified representations, to accomplish synthesis in
real-time.

4.2 Probabilistic model for interactive movements

In order to learn a generative model for two-person interactions we use motion cap-
ture data from couples of actors that executed interactive behaviors, such as hand-
shakes or high-five movements with different emotional styles [83, 82].

The learned probabilistic model is depicted in Figure 12. It has a hierarchical
structure and consists of three levels, an agent layer which encodes the kinematics
(joint angles) of either agent, an interaction layer that encodes the interaction be-
tween the two agents on the level of individual time points (frames), and a dynamics
layer that encodes a dynamic sequence of states in the interaction layer. Along the
hierarchy a strong dimension reduction is realized, with a reduction from 159 joint
angles to a two-dimensional latent space at the agent layer, and a further reduction
from four to three dimensions in the interaction layer. The dynamics that is modeled
by the dynamics layer runs in a three-dimensional state space. The whole model can
be interpreted as a probabilistic graphical model, and inference techniques for such
models can be applied to determine the state of the latent variables [5]. Specifically,
we used a maximum-a-posteriori approximation to determine the most probable set-
tings of the latent x j

t and it (see Fig. 12) In the following, the individual layers are
described in more detail.

The agent layer approximates, separately for the two agents j ∈ {1,2}, a set
of training trajectories by nonlinear dimensionality reduction using a GPLVM. For
this purpose, we learn a nonlinear mapping from a two-dimensional latent variable
x j

t and emotional style e onto the 159-dimensional joint angle vectors y j
t . The non-

linear functions f j that realize this mapping are drawn from a Gaussian Process
with a composite kernel that combines a radial basis functions (RBF) kernel for
the joint angle variables, and a linear kernel for an additional style variable e that
controls the emotional style of the movements. This defines a multi-factor model
[87], where the kernel function for the GPLVM is constructed by a product of dif-
ferent kernel functions for motion and style. In addition, we engineered a special
prior that promotes factorization of the latent variables into motion dimensions and
style dimensions during learning via back constraints [40], expressing the approx-
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Fig. 12 Hierarchical probabilistic model for interactive movements. The graphical model com-
prises three layers. At the bottom are the observable joint angle vectors y j

t of each actor j ∈ {1,2}
and point in time t. The means of the y j

t are generated by the latent states x j
t of the agent layer

and the emotion style variable e via functions f j(x j
t ,e) drawn from Gaussian processes. The x j

t

have a much smaller dimensionality than the y j
t . The means of the x j

t of both actors are generated
by a function g(it) from a yet lower-dimensional interaction-layer state it , whose time evolution
is controlled by a mapping h(it−2, it−1) in the dynamics layer. Both g() and h() are drawn for a
Gaussian processes, too. The plates denote the assumption of replicated independent identically
distributed (i.i.d.) draws across R trials per E many emotions from C couples of actors. For details,
see text. Figure adopted from [82].

imately periodic nature of the movements (i.e. the avatar begins and ends a trial in
approximately the same pose). This step stabilizes the highly ill-posed factorization
problem in a way that results in relatively simple manifolds representing the data in
the latent space. Mathematically, the mapping from latent into joint angle space is
given by the equation (time index t omitted):

y j = f j(x j,e)+ ε j, f j(x j,e)∼ GP(0,k j
Y ([x

j,e], [(x′) j,e′])), j ∈ {1,2}, (3)

where k j
Y is an appropriate kernel function, and where ε j is isotropic Gaussian noise.

The linear kernel component makes it possible to morph easily along this dimen-
sion. A GPLVM can be seen as a nonlinear extension of probabilistic dual PCA
that learns a low-dimensional latent space and a mapping from this space to the
data space. Unlike PCA, this mapping is nonlinear. It turned out that already two
latent dimensions plus a dimension per emotion were sufficient to achieve a highly
accurate approximation of the data. See [80, 83] for further details.

The latent variable of the agent layer represents the behavior of the two agents as
a trajectory in a four-dimensional space. The dimensionality of this high-dimensional
trajectory is further reduced in the interaction layer, which learns a mapping from a
three-dimensional latent space (variable i) onto this trajectory. This mapping is again



4 Probabilistic model for the online synthesis of stylized reactive movements 23

realized by a GPLVM that is trained with the aforementioned data basis. Conse-
quently, the individual points of the latent space of the interaction layer are mapped
by the two lower layers of the model onto a pair of postures of both agents for
each moment of the evolving interaction. The temporal evolution of the interaction
corresponds to a three-dimensional trajectory it in the latent space of this layer.

This time course is modeled by the dynamics layer by learning of an au-
tonomous dynamical system that generates this trajectory as stable solution. This dy-
namical system was modeled using a Gaussian Process Dynamical model (GPDM)
[88], which can be interpreted as a nonlinear generalisation of an Autoregressive
(AR) model in time series analysis. Mathematically, this model is defined by the
equations:

it = h(it−1, it−2)+ξ ,

h(it−1, it−2)∼ GP(0,kh([it−1, it−2], [iτ−1, iτ−2]))
(4)

where the function h is drawn from a Gaussian process with the kernel function kh,
and where ξ signifies Gaussian noise.

The described model allows the generation pair interactions with controllable
emotional style by variation of the emotion parameter e. The accuracy of the syn-
thesized movements was validated in psychophysical experiments that show that the
generated motion is perceptually almost indistinguishable from real motion capture
data from human pair interactions [80].

4.3 Inference for the generation of reactive movements

The described generative probabilistic model can be exploited for the simulation of
the interactive behaviors of reactive human virtual agents, who react to the move-
ments of a real human user in a human-like fashion. For this purpose, we exploited
the fact that probabilistic generative models can be ’inverted’ by conditioning. More
precisely, using standard techniques [5], such models allow to make inference of un-
observed nodes in the network, dependent on given (observed) information on a sub-
set of the nodes. For this application, we strongly simplified the model for one agent
and modeled only its hand position y2. We then replaced the corresponding ran-
dom variables by online motion capture data from the user of the system. It is then
possible to infer the distributions of all other nodes in the network by conditioning
on the available hand position information. Maximizing the joint probability of the
latent variables and the observed hand trajectory, one can then in principle find the
most probable values of all other variables in the probabilistic network. Specifically,
this allows to determine the most probable joint angles of the other agent (agent 1)
that correspond best to the observed trajectories of the user. The resulting way of
inferring a likely posture sequence from a generative probabilistic model, using the
observations as constraints to find the most probable trajectory can be interpreted as
a special form of ’style-based inverse kinematics’ [24].
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The straightforward practical implementation of this idea suffers from a very
high computational cost, like many naı̈ve Bayesian machine learning approaches.
The inversion of the described probabilistic model using straight-forward methods
results in a system that is way too slow for real-time synthesis of reactive move-
ments. In order to solve this problem, we implemented in addition the following
two approximations: (1) Direct mappings from the data variables to the latent vari-
ables were explicitly learned and modeled by Gaussian process regression. This
is much faster than to determine the latent variables by conditioning on the ob-
served input, since we only need to evaluate a Gaussian process prediction. We are
learning these direct mappings from latent/observed pairs during an off-line training
phase. (2) To learn the model from large data sets we applied sparse approximations
techniques, which approximate the data manifolds in latent space by a small set of
inducing points, resulting in much fewer effective model parameters and computa-
tional cost for the evaluation of the kernel-dependent functions: This approximation
makes computational cost per learning step effectively linear in the number of data-
points, as opposed to cubic for the exact solution [39]. With these two additional
approximations, which simplify both learning and latent inference, a speed increase
of more than factor 100 was obtained, making the resulting architecture suitable for
the real-time synthesis of interactive behaviors.

4.4 Application results

The proposed architecture was tested with different types of interactive human
movements. One data set consisted of ’high fives’ with four emotional styles (neu-
tral, happy, angry and sad) executed by different actors. A total of 105 motion-
captured trajectories was learned, which were performed on a imaginary 3×3 spa-
tial grid for hand contact positions.

The synthesized movements look so natural that human observers were not able
to distinguish them from original motion-captured trajectories, the method passes
effectively the ’Turing test of computer graphics’ [80]. Demonstration movies are
also provided as part of Demo Movie VII7 .

For testing of the reactive movement generation the architecture was embedded
in a virtual reality setup that is described in detail in [83]. The underlying animation
pipeline integrated a Vicon (Nexus) motion capture system, the game engine Ogre
3D, and the proposed learning-based architecture. The reconstruction took place in
real-time with Ogre rendering at a frame rate of 68 fps. The functioning of this
system, including the variation of emotional style, are also shown in Demo Movie
VII. A second data set for which the novel architecture was tested were handshakes,
which were executed with different emotional styles. Snapshots from the generated
stylized motions are shown in Figure 13. Movies can be found in Demo Movie VII.

7 http://tinyurl.com/j3d9xtk
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c) d)

a) b)

Fig. 13 Motion sequences of synthesized emotional handshakes. a) neutral, b) angry, c) happy and
d) sad. Different emotions are associated with different postures and ranges of joint movements.

5 Conclusions and future work

In this chapter we reviewed two approaches that approximate complex human full-
body motion by structured models that can be embedded in architectures that require
a real-time synthesis of complex human motion. Opposed to the many available
methods for the off-line synthesis of human motion, online synthesis requires an
embedding of the synthesis process into dynamical systems that can be integrated in
control architectures. We have shown two different approaches how such models can
be generated, exploiting concepts from machine learning and the theory of nonlinear
dynamical systems.

The first approach approximated human joint angle trajectories by highly com-
pact (anechoic) mixture models. The resulting source functions were then synthe-
sized on-line by mapping the solutions of canonical nonlinear dynamical systems
onto them, defining a special form of dynamic movement primitive (DMP). This al-
lowed to synthesize highly complex coordinated full-body movements by networks
of dynamically coupled dynamic primitives. We showed that one can systematically
design the stability of such ’primitive networks’ exploiting tools from Contraction
Theory. We also demonstrated how this framework can be used to model complex
coordinated behaviors of individual agents, and of whole crowds of interacting in-
dividuals. In addition, we demonstrated that this method is suitable for the online
planning of multi-step sequences which are coordinated with arm movements in
humanoid robots in real-time, accomplishing dynamically feasible behaviors on a
real humanoid robot including the control of dynamically stable walking. The ad-
vantage of the chosen approach is that it is computationally more efficient than the
synthesis of the same behaviors using straight-forward optimal control approaches,
since the computational complexity of the underlying optimization problems with
the presently available computational power would not permit an adaptive planning
of such multi-step sequences in real-time.
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The second approach for the learning of such real-time capable synthesis mod-
els was based on established methods in Bayesian machine learning. We demon-
strated that an approach that learns a hierarchical (’deep’) architecture by combin-
ing GPLVMs and GPDMs was suitable for the synthesis of highly natural-looking
human movements. In addition, the resulting probabilistic graphical model can be
inverted (Bayesian model inversion), i.e. conditioned on observable data. This al-
lowed us to learn interactions from pairs of actors, and to use these learned models
then to generate online the maximally probable reactive behavior of a virtual agent
that responds directly to a human, whose movements were motion-captured online.

To make this system working in real-time required a substantial amount of engi-
neering work, due to the high computational cost of the chosen Bayesian machine
learning approach. This shows that it is a non-trivial step to make such methods work
in real-world applications, especially with real-time constraints. It seems likely that
it will be even less trivial to embed such methods in complex control architectures,
such as the one shown in Fig. 8. This illustrates limitations of these popular ap-
proaches which cannot ignored when dealing with real technical control systems.
An advantage of the described probabilistic architectures is that they can be inte-
grated with other probabilistic systems, e.g. in computer vision or pattern analysis.

Another interesting challenge is to link the discussed hierarchical probabilistic
architectures to spatial movement primitives that, similar to the source functions
discussed in section 2, allow the modeling of separately coordinated clusters of
degrees of freedom. First work in this direction has been successfully performed
[85, 84], and it seems an exciting avenue for future research to see how far such
approaches can be extended in the context of real-world problems.
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