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From Biomechanics to Robotics

Galo Maldonado, Philippe Souéres, Bruno Watier

Abstract How does the central nervous system select and coordinate different de-
grees of freedom to execute a given movement? The difficulty is to choose one
specific motor command among an infinite number of possible ones. If some invari-
ants of movement can be identified, there exists however considerable variability
showing that motor control favors rather an envelope of possible movements than
a strong stereotypy. However, the central nervous system is able to find extremely
fast solutions to the problem of muscular and kinematic redundancy by producing
stable and precise movements. To date, no computational model has made it pos-
sible to develop a movement generation algorithm with a performance comparable
to that of humans in terms of speed, accuracy, robustness and adaptability. One of
the reasons is certainly that correct criteria for the synthesis of movement as a func-
tion of the task have not yet been identified and used for motion generation. In this
chapter we propose to study highly dynamic human movement taking into account
its variability, making the choice to consider performance biomechanical variables
(tasks) for generating motions and involving whole-body articulations.

1 Introduction

Humanoid robotics is growing towards agile, robust, and powerful robots able to in-
teract with environments in which humans might be included [49]. To control these
robots, motion generation algorithms are being improved to increase the robot sta-
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bility, robustness, and efficiency [4, 37]. Though a large part of control frameworks
are purely computational, some of them take inspiration from humans. This is not
an arbitrary choice. Understanding human motion could provide the information
needed to improve the design and control of humanoid robots. Modeling human
motion has lead to applications in the movie and gaming industries for realistic ani-
mation of characters. In the robotic industry, collaborative robots have emerged over
the past years with the objective to assist humans in their daily live activities. Ex-
amples include assistance robots for elderly people, exoskeletons to extend human
physical capabilities, brain-machine interfaces connected to robotic arms, virtual
reality training systems for surgery, or controlled prostheses.

Humans and robots share some important characteristics such as under-actuation
and redundancy. Under-actuation means that the number of actuated degrees of free-
dom “DoF” of the system is lower than the total number of available DoF. The
under-actuated part are 6 DoF that define the body pose: position and orientation.
In robotics these 6 parameters describe the pose of a reference frame usually called
root frame. Redundancy expresses the fact that the system has more DoF than nec-
essary to achieve a given task. The difficulty is then to select a motor command
among an infinite of possible ones. In humans, redundancy appears at the level of
neurons, muscles, and joints. In robots, it requires the design of motion generation
algorithms to select the best solution for controlling a movement. In biomechanics,
redundancy is studied by computing the kinematics and dynamics of human motion
which allows to explain motor control strategies in terms of performance variables
(tasks).

In this chapter, a set of tools and methods in biomechanics and robotics and a case
study of human-inspired motion generation is presented. The chapter is organized as
follows. Section 2 provides a brief summary of the methods used in biomechanics to
study human motion. A summary of the robotic framework used to generate whole-
body motion is then given in section 3. Section 4 presents a case study of a human
dynamic motion which was analyzed through biomechanical methods and generated
using the robotic framework. Lastly, a summary of the method used to generate
human-inspired motion from biomechanics to robotics is given in section 5.

2 Biomechanics background

Biomechanics aims at applying the physical laws of mechanics to study human mo-
tion in order to provide a better understanding of the mechanical strategies used by
the central nervous system (CNS) to coordinate motions. This information can be
used to generate human-inspired motions with humanoid robots or anthropomor-
phic systems such as animation avatars. This section provides a summary of the
mathematical and computational background needed to study the biomechanics of
the human motion.
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2.1 Motion Capture

Motion capture "MoCap” is a technology that allows motion to be recorded on-
line. In biomechanics, it is used to record the movements of humans and animals
for quantitative analyses. The motion is tracked using cameras that record the 2D
positions of markers placed on the body. When more than one camera is available,
the 3D marker coordinates can be computed by the MoCap system. Two types of
markers can be used depending on the motion capture system: active and passive
markers.

To reconstruct the motion, active systems use infra-red active markers with light-
emitting diodes stimulated in a predefined sequence. On the other hand, passive
systems use markers covered by a reflective tape which are lighted by infra-red
cameras. Coordinate data are calculated by the system with respect to a laboratory
fixed reference frame. Data are then processed to obtain kinematic variables describ-
ing segment or joint movements. A motion capture system might also synchronize
other information such as reaction forces through force sensors or muscular activ-
ity through electromyography (EMG) sensors. In order to communicate these data,
an experimental protocol must be carefully described and followed. The recording
protocol should take into account recommendations for reporting biomechanics data
based on international standards. For example, kinematic data are collected and re-
ported based on recommendations from the International Society of Biomechanics
(ISB) [53, 54] and surface muscular activity is recorded and communicated based
on the recommendations from the European project of Surface ElectroMyoGraphy
for the Non-Invasive Assessment of Muscles (SENIAM).

2.2 Human data processing

Recorded motion data have to be reconstructed and processed. Data reconstruction
consists in labeling markers and interpolating their position to reconstruct their tra-
jectories. Next, data are filtered to remove noise from the recorded and reconstructed
signals. For filtering the reconstructed data, a low-pass Butterworth digital filter ap-
plied in a zero-phase is commonly used in biomechanics. In order to filter force and
marker trajectories, the same cut-off frequency is chosen to avoid inconsistencies
with inverse dynamics computations (inverse dynamics of human motion will be
presented in 2.5) [31, 38]. To select the cut-off frequency for filtering a signal, two
types of analyses are commonly performed: power spectral analysis and/or resid-
ual analysis [52]. Power spectral analysis is a technique in which the power of the
recorded signals can be studied in the frequency domain. Based on this analysis,
a decision can be made to define which frequencies are to be accepted or rejected
from the signals. Residual analysis [52] is used to evaluate noise by comparing the
difference between the unfiltered signals and the signals filtered at different cut-off
frequencies. Let Ny be the number of i sampled frames in a signal, the residual € at
a given cut-off frequency f, is calculated as follows:
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1N

e(f) =5 (si—$i(f), (1)
i=1

where Ny is the number of recorded motion frames, s; is the raw signal, §; is the
filtered signal with cut-off frequency f.. Eq. (1) is calculated recursively for a set
of given cut-off frequencies. The set of cut-off frequencies is arbitrary but should
be chosen so that the frequencies of the signal can be represented. Residuals are
later displayed as a function of these cut-off frequencies to evaluate the contained
information. Criteria related to the choice of the cutoff frequency based on residual
analysis can be found in [52].

After data have been filtered, joint centers of rotation can be estimated from
markers’ trajectories. Three methods can be used to this end: virtual models (e.g. in
OpenSim software [8]), regression tables (e.g [10]) and/or functional methods (e.g.
[14]). In general, the center of rotation of ball-modeled joints such as the shoulder
and the hip are computed by using functional methods. The SCoRe method provides
a good estimation [14] and can be computed as:

Ny

min Z||R1iC1+t1i—(R2i6‘2+1‘2i)||2, 2
cle2 3

where ¢; € R3 and ¢, € R are the centers of rotation in the body segment coordinate
system, (Ry,,t1,) and (Ry;,22,) are respectively the transformation matrices of body
1 and body 2 from segment (local) to world (global) coordinates. The solution to
this minimization problem provides two trajectories ¢; and ¢; for the same joint
and thus the mean value of both can be used as an estimate. Functional methods can
also be used to determine the optimal axes of joint rotations (e.g. for calculating the
knee axes [15]). Other joints center can be computed based on regression tables or
based on a virtual model (which will be introduced in subsection 2.3.1).

2.3 Scaling of human anthropometry

The human body is composed by hundreds of muscles and bones. In order to cal-
culate the kinematics and dynamics, a physical model representing the skeletal or
musculosketal system is needed. The model is simplified by the assumption that the
human body can be described by a collection of rigid bodies (segments) represent-
ing bones or a combination of them (for example when modeling the torso or the
foot segments). In spite of this simplification, this model is usually called skeletal
model and the same convention will be used in this chapter. In the case of muscle
studies, a more complex model of the system is needed: musculoskeletal models.
The scaling of anthropometry is used to estimate the properties of the human
body segments such as segment lengths, inertia matrices, and center of mass posi-
tions. To estimate human anthropometry, cadaver studies [10], mathematical model-
ing [24], scanning and imaging techniques [55, 13], kinematic measurements [23],
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or motion capture based identification with kinetic measurements [50], can be used.
Commonly, experimental marker data from static trials are used to scale the an-
thropometry of the recorded participant using the regression equations provided by
cadaver studies or by fitting these data with a virtual skeletal model (Fig. 1). Fur-
ther details about the virtual skeletal model are given in section 2.3.1 while the data
fitting technique is presented later in subsection 2.4.

(b) (c)

Fig. 1: In (a), a human with passive markers on his body. In (b), the model created
for motion reconstruction with the Vicon Nexus software. In (c), a virtual skeleton
based on OpenSim models which can be used for scaling human anthropometry.

2.3.1 Human skeletal model

A skeletal model is an effective tool for visualizing and analyzing human motion.
When building a virtual 3D-model, the following information has to be considered:

e The model contains the description of the kinematic chain including joint types
and joint ranges of motion.

e Segment data provide specifications of the physical characteristics of the body
segments such as masses, inertia matrices, and positions of the center of mass of
each segment.

e Virtual markers contain the positions of the markers placed on the model ac-
cording to the experimental protocol. Markers are normally placed in accordance
with the International Society of Biomechanics (ISB) standards with a minimum
of 3 virtual markers per segment for a 3D analysis [53, 54].

e The visual elements are the 3D meshes that will be displayed, which can be
created using a 3D software. These data are useful for visualization purposes but
do not interfere with mathematical calculations.
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2.4 Inverse kinematics of human motion

Inverse kinematics of human motion consists in converting experimental marker
positions into joint angles by minimizing the error coming from the reconstructed
motion and from the soft tissue artifact "STA”. STA corresponds to the relative
motion of soft tissues with regards to the underlying bones. Two classes of meth-
ods are commonly used in the literature to calculate 3D angles: segment optimiza-
tion [7] and global optimization [35]. In segment optimization, a reference frame
is positioned and oriented on each modeled body segment according to the ISB
recommendations. Angles are then calculated following Euler angle sequences by
computing the optimal bone pose from a marker cluster. Let Ny be the total num-
ber of frames recorded in a given motion and let N, be the number of markers
in segment s (at least 3 markers are needed to reconstruct the 3D coordinates of a
segment). At a given frame, let x; ., represent the 3D position of marker s in the
previous frame and Xy . the 3D position of marker s in the next frame. Segment
optimization methods are based on the following least-square problem:

Nin,s

min Z HRxl‘wrev + d - xi,next ||2 ) (3)
R 3

where R and d are the rotation matrix and the translation vector respectively, which
map coordinates X; prey t0 X; yexs SO that (R,d) : Xi prev F Xi next. Global optimization
methods, usually referred to as “Inverse Kinematics”, can also be used to calcu-
late joint angles and constitute a promising methodology [12]. Global optimization
makes it possible to add physically realistic joint constraints while taking into ac-
count the whole kinematic chain structure, and joint ranges of motion. Inverse kine-
matics solves the following problem:

]Vm
. ; x?foxl’ 2
st. g<gq<gq,

where N, is the total number of markers, g are the generalized coordinates, g and
g are minimum and maximum ranges of motion of the joint coordinates g, x;'” is
the experimental marker position of the i’ marker, x(q) is the corresponding virtual
model marker position, and w; is the marker weight, which specifies how strongly

marker error should be minimized.

2.5 Inverse dynamics of human motion

Inverse dynamics aims at determining internal forces and joint torques that generate
a given motion. To this end, the body model described before (skeletal model), the
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movement kinematics and the measured external forces produced if there is con-
tact with the environment can be used. Three formalism are available to compute
inverse dynamics: Hamiltonian, Euler-Lagrange and Newton-Euler. In particular,
Newton-Euler formulation expresses dynamic equations for each link and performs
calculations recursively by propagating reaction forces and applying Newton third
law of motion (principle of action and reaction). Euler’s first and second equations
of motion form the so called Newton-Euler equations. The first equation states that
the sum of external forces equals the variation of linear momentum:

d
Zfex, = E(mv) = ma, 5)

where m is the mass of the body and a its the center of mass acceleration. The sec-
ond equation states that the sum of external torques equals the variation of angular
momentum at the center of mass (CoM):

d .

Y Ten = E(IG(D) =150+ 0 x I, (6)
where I; is the inertia, @ and @ are respectively the body inertia, angular velocity
and angular acceleration expressed at the CoM. Eq. (5) and Eq. (6) are commonly
propagated at each joint using a bottom-up approach. This method can be computed
numerically though the application of the recursive formulation of Newton-Euler
equations [32]. Four inverse dynamics methods have been proposed in the litera-

ture based on vectors and Euler angles, wrenches and quaternions, homogeneous
matrices, or generalized coordinates and forces [9].

3 Whole-body motion generation of anthropomorphic systems

Whole-body motion generation of anthropomorphic systems, such as humanoid
robots, requires to model the system dynamics, in order to create stable and feasi-
ble movements, and to solve redundancy. In this section, the task function approach
[44, 39] and the formalism of poly-articulated systems are recalled. The inverse
kinematics and inverse dynamics formulation for solving the equations of motion in
robotics are briefly introduced. Finally, a hierarchical task controller which aims at
solving strict hierarchy problems is also reviewed.

3.1 Dynamic Model

The dynamic model of humanoid robots can be written by using the Euler-Lagrange
equation. The robotic system is modeled as an under-actuated kinematic-tree chain
composed of rigid bodies with a free-floating base (also called root frame) subject



8 Galo Maldonado, Philippe Souéres, Bruno Watier

to external contact forces as follows:

K

M(@)4g+b(q.q) =S T+ Y I} (@A, )
k=1

where M(q) is the mass matrix, b(q, g) contains gravitational, centrifugal and Cori-
olis forces, S = [0,1x6 I,,X,,] is a matrix that selects the joint torques T;, of the
actuated part of Eq. (7), Ji(g) is the Jacobian matrix of the k" external contact and
Ay = [ fex[k 'cex,k] T is the vector of the external forces and torques induced by the
k™ contact.

3.2 Task formalism for motion generation

Let n be the number of DoF of the system, Q the configuration space formed by
n — 6 joints plus 6 parameters of pose (position and orientation) of the system root
frame and q(¢)inQ the configuration vector at time 7. Dependencies on time will
be dropped for notation convenience when necessary. Let m be the dimension of
the task space also called operational space [30]. A task function e(q) € R™ comes
down to an output error function whose regulation to zero corresponds to the exe-
cution of the task. For instance, a pointing task can be defined by the task function
e(q) = hand(q) — hand,arger, Which describes the gap between the current hand po-
sition hand(q) when the body is at configuration g and the expected hand position

handygrger. In order to compute how the task function varies with respect to the body
8e,-
Jq;
the task function e(g) with respect to time gives the first order kinematics relation:

configuration, roboticists use the so called task Jacobian J, = =~t. The derivative of

€(q.9) =J.(9)q. ®)

The execution of the task can be regulated with a control law by specifying a
reference behavior of the task &*, for example with a proportional derivative (PD)
control law. The gains of the proportional derivative task can be tuned to obtain
different reference behaviors such as exponential decays or adaptive gains of the
task. Exponential decay control laws of the form &* = —Ae are commonly used in
robotics to make the task function converge quickly to a desired value. If reference
behaviors can be extracted from humans in terms of performance variables, they
can be used instead to desing human-inspired decay dynamics for the task function.
For example, the minimum jerk criterion observed in human motions [19], has been
used in the control of reaching tasks [27].

The task function approach can be extended to higher order derivatives for study-
ing dynamic behaviors. By differentiating Eq. (8), the second order kinematic rela-
tion is obtained:

€(9.9.9) = Je(9)4+Je(4,4)9. €))
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where J,g can be considered as a drift of the task.

The same formalism can be used to express other types of tasks. For example,
it can be used to formulate tasks for controlling the behavior of the center of mass
”CoM”. Let n, represent the number of segments of the system, m, € R the mass of
the i"" segment, and ¢; € R? its CoM position. The CoM of the system ¢ € R3 can
be computed as follows:

L myci

Yitims
The CoM task can then be expressed as e(q) = ¢(q) — ¢*, where ¢* is the expected
CoM position.

Dynamic tasks can also be expressed in terms of momenta in order to consider
inertial effects. Momenta tasks can be computed based on the centroidal dynamics:
the dynamics computed at the CoM of the system [41]. A momenta task can be
formulated by using the centroidal momentum matrix Ag(g) which is the product
of the inertia matrix of the system and the Jacobian matrix of the system (Ag(q) =
IysJsys) [40], which maps the joint velocities ¢ to the the centroidal momenta h¢ as
follows:

c(q) = (10)

he = Ac(q)¢- 1)

This relation has the form of Eq. (8). Moreover Eq. (11) can be differentiated with
respect to time as:

he =Ac(9)d+Ac(q,4)4, (12)

which matches the pattern of Eq. (9).

A task can be expressed directly in the configuration space to control the posture
of the robot. Instead of the task Jacobian matrix, a selection matrix is used to select
the joints that will be controlled.

3.3 Inverse Kinematics Control

The inverse kinematics problem consists in finding the joint kinematics that allows
the robot to accomplish a reference kinematic task behavior. In the next subsections
we show how to control the execution of tasks expressed in terms of velocities (first
order kinematics) and accelerations (second order kinematics).

3.3.1 First order kinematics

Solving the first order kinematics comes to determine suitable joint velocities to
generate the desired task velocity e(q,q) using the relationship obtained in Eq. (8).
In order to control the task performance, a reference task behavior e* is provided
as input and the control problem comes to solve the following unconstrained mini-
mization problem:
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min [l¢" —J(q)4" - (13)
The solution to this problem provides the control law of the system as follows:
4" =J;(q)¢" +Pg, (14)

where {.}" represents the generalized inverse, Pj, is the projector onto the null space
of J.(q) (e.g. PreJ, =0 and Pj.Pj, = Pj,) and g, is a secondary control input that
can be used to exploit the systems redundancy with respect to the task.

3.3.2 Second order kinematics

The second order kinematics problem deals with the relationship between task ac-
celeration and joints acceleration provided by Eq.(9). The control problem, which
consists in finding the suitable joint accelerations that generates the task reference
behavior, can be expressed by the following minimization problem:

rr;nHe*—Je(q)q*+Je(q)qH2- (15)
Using the same notation as before, the control law expressed in terms of the joint
accelerations is then written as:

g =Jl(q) (e +J(9)q) + Prd.- (16)

3.4 Inverse Dynamics Control

The inverse dynamics problem aims at determining the suitable joint torques to
generate a reference task acceleration behavior é*. By multiplying the actuated part
of Eq. (7) by JM~! and replacing Eq. (9) in Eq. (7) we obtain the following relation:

é+J. (@M 'b—J.(q,9)q=J.(qM . (17)

The inverse dynamics control law can be written as:
* —1\#/ —1 i Ny
T = (Je(@M ') (€ +Je(@M b~ Je(q.9)q) +Pp 172 (18)

where (P ;,-1) is the projector onto the null space of J, ()M~ and 7, is an arbitrary
vector that can be used to control other tasks. Eq. (18) can be extended to include
rigid contact constraints [43]. The control of humanoid robots interacting with the
environment has to take into account external forces. Thus, the control problem con-
sists in finding a control law that achieves a desired task behavior while respecting
the dynamic model of the system and additional constraints that ensure the feasibil-
ity of the motion. This problem can be solved by setting a minimization problem
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under equality and inequality constraints as in [42]:

min ||&* —&(q,4.4)||y
4,7,

K
st. M(q)4+b(g.9)—8(q) — ¥, Ji (@) A =S Tiu (19
k=1
Jed+Jkg =0
A >0

where Jj is the contact Jacobian associated to the k" contact point. The first equality
of Eq. (19) ensures the respect of the dynamic model of the system. The inequality
constraint lkl > 0 guarantees that the contact forces are correctly oriented and that
there is no interpenetration (rigid contact). In the same manner, other inequality
constrains can be added such as joint limits (g > g > q), torque limits (£ > T > 7T)
or other tasks (as given in subsection 3.2). B

3.4.1 Hierarchical Control

Solutions to problems in the form of Eq. (19) can be formulated based on null space
projections or optimization methods. Prioritization schemes are based on projections
onto the null space of higher order priority tasks in the form of Eq. (14) and Eq. (16).
Unfortunately, these methods do not allow to cope with inequality constraints. In-
stead, numerical optimization techniques can be used to solve problems of the form
of Eq. (19). A typical method is to use Hierarchical Quadratic Programming (HQP)
[29, 17]. In order to compute HQP, basis multiplication was applied according to
[16]. Computational details about this approach are given in the sequel:

Basis Multiplication

Linear equality constraints of the form Ax = b such as task functions, can be solved
using hierarchical control. Let us consider the case of L linear constraints (e.g. tasks)
(A1,by)---(A;,11)--- (AL, br) that have to be satisfied at best and let us consider that
constraints are conflicting between them. A strict hierarchy of constraints can be
used to solve this problem [47]. The constrain with the highest priority (A1,b;) can
be solved at best in a least-square sense with the pseudo-inverse. Then the second
constraint (Az,b;) is solved in the null space of the first constraint. The generic
solution to solve the p levels of the hierarchy can be written as:

(AlPy) " (b —Ax_y) + P, (20)

M=

X =

~

1



12 Galo Maldonado, Philippe Souéres, Bruno Watier

with Py = 1, xo = 0 and P, = P,_1 P, is the projector in the null space of (A;P_1)
, X* denotes the solution for the hierarchy of constraints composed of L linear con-
straints, P is a projector onto the null space of A (AP =0 and PP =1) and X1 is any
vector of the configuration space that can be used to accomplish another objective.
In order to fasten the numerical resolution of Eq. 20 a basis multiplication approach
has been proposed [16, 17]. Given a basis Z; of the null space of Al (A1Z; = 0),
the projector in the null space of A; can be written as P = Z; ZlT. Eq. 20 can be
rewritten as:

Zi(AZi )P (b — Ay ) + 2, 21)

M=

X =

=1

which is more efficient to compute than Eq. (20) due to the size of the matrices.
Note that Egs. (14), (16) and (18) can be mapped to Egs. (20) and (21).

4 Case study

Future generations of robots will include agile, robust, efficient and powerful robots
that perform more dynamic tasks. The utilization of such kind of robots will re-
quire understanding how dynamic motions have to be generated. One of the choices
is, without doubt, to take inspiration from humans. As previously mentioned, the
framework described in this chapter can be applied to a wide range of motions with-
out loss of generality. This section presents a practical case of application to a highly
dynamic and complex Parkour motion — called Parkour precision technique. First
Parkour is introduced and the state of the art related to the Parkour precision tech-
nique is presented. Then, a skeletal model that is used for analyzing and generating
the motion is described. Afterwards, the biomechanics methodology used for an-
alyzing the Parkour precision technique is given. Finally, this analysis is used to
parameterize a hierarchical controller in order to simulate similar Parkour motion
with the skeletal model.

4.1 Biomechanics of Parkour landing

Parkour is a discipline where movements are highly dynamic and complex. It re-
quires practitioners — called traceurs — to adapt their motion to the environment
in order to overcome obstacles quickly and efficiently. Motion strategies are de-
rived from a military method developed in France after World War I, which was
inspired by natural movements observed in skilled indigenous African tribes [25].
This method includes a combination of motions with variations of jumping, land-
ing, climbing and vaulting strategies. Common to most Parkour techniques are the
jumping and landing strategies. Mastering jumping and landing techniques allows
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practitioners to execute efficient and safe motions. In our study, we analyzed the
Parkour precision jumping and landing strategies (Fig. 2).

(a) (b)

(c) (GY]

Fig. 2: Parkour precision jumping and landing techniques performed in a urban
space in (a) and (b), and inside a motion capture laboratory in (c) and (d).

4.1.1 Parkour precision jump and landing techniques

Precision landing is commonly used for relatively low dropping heights. For exe-
cuting this motion, trainers instruct practitioners to land and stay with precision on
their forefoot avoiding heel contact with the ground, bend their lower limbs with-
out any varus-valgus motion of the knees, and use their arms to counterbalance the
movement and stabilize themselves. In what follows, we explain the selection of the
performance criteria used to study the Parkour motion, which allowed us to identify
the tasks for generating the movement using the robotic framework of hierarchical
task control.
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The considered Parkour motion can be decomposed into three phases: take-off,
flight and landing (in subsection 4.1.5 we will detail how motion phases were di-
vided). The take-off phase of the Parkour technique is similar to the standing long
jump technique used in athletics. It requires practitioners to perform an horizon-
tal jump without a preparatory running. Previous studies on long jump technique
have suggested that during take-off motion, the principal performance factor is the
velocity of the center of mass "CoM” [51] which defines the ballistic trajectory dur-
ing the flight phase. Another performance criterion that has been proposed, is the
angular momentum generated with the upper limbs. It was shown that using arms
to generate angular momentum around the medial-lateral axis contributes to reduce
the torques requested to the lower-limb joints [6]. This means that a person can
counteract gravity effects by using the angular momentum generated with the upper
limbs, whereas lower limbs will be more involved in the production of the force to
project the CoM. This strategy contributes also to avoid excessive forward rotation
[3] positioning the body in preparation to the landing phase [2]. According to the
momenta conservation principle, the angular momentum remains constant during
the flight phase. As a consequence the taking-off controller that generates the flight
motion must be parameterized consistently. On the other hand, during the flight
phase the linear momentum is only affected by the gravity. The landing phase of
the Parkour technique induces practitioners to decrease peak ground reaction forces
”GRFs” [48] and to stabilize better [36]. Decreasing vertical GRF and controlling
stability through the antero-posterior and medial-lateral components of the GRFs
is equivalent to control the derivative of linear momentum. Note that the derivative
of momenta is equal to the net external forces/torques according to Euler’s laws of
motion. To avoid falling down after a highly dynamic landing, angular momentum
might also contribute to stability by reducing the angular accelerations at the CoM.
In fact, during our pre-tests, we observed that practitioners swang using their upper
limbs in a three dimensional fashion.

4.1.2 Whole-body model

The choice of the physical model depends on the type of analysis. We are interested
in a whole-body 3D analysis able to reproduce highly dynamic Parkour movements.
To this end, we decided to use a whole-body 3D model that represents the main
elementary movements of a Parkour jumper including 42 DoF (Fig.1b). Note that a
3D model is necessary, because as shown by previous studies [26], a sagittal model
is not sufficient to study the upper body motion during standing long jumps. The
characteristics of the model are presented below:

e The lower limb, pelvis and upper limb anthropometry are based on the running
model of Hamner et al. [22]. Mass properties of the torso and head segments (the
head and neck segments were modeled as one segment) are estimated from the
regression equations of Dumas et al. [10, 11]. Hands anthropomorphic data are
based on regression equations of De Leva [34].
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e Each lower extremity has seven DoF. The hip is modeled as a ball-and-socket
joint, the knee is modeled as a revolute joint, the ankle is modeled as 2 revolute
joints (flexion-extension and inversion-eversion) and the toes with one revolute
joint at the metatarsals.

e The pelvis joint is modeled as a free flyer joint to permit the model to translate
and rotate in the 3D space. This 6D joint is attached to the free-floating base
(root frame) of the under-actuated systems as described in Section 3.1. The lum-
bar motion is modeled as a ball-and-socket joint [1] and the neck joint is also
modeled as a ball-and-socket joint.

e FEach arm includes 8 DoF. The shoulder is modeled as a ball-and-socket joint,the
elbow and forearm rotations are modeled with revolute joints to represent flexion-
extension and pronation-supination [28], the wrist flexion-extension and radial-
ulnar deviations are modeled with revolute joints, and the hand fingers are mod-
eled with one revolute joint for all fingers.

e The model includes a whole-body marker set with 48 markers placed in anatom-
ical landmarks as suggested by Wu et al. [53, 54]. The visual elements are also
based on the running model of Hamner et al. [22].

4.1.3 Experimental Protocol

Five healthy trained male traceurs (age: 22.2 + 4.8 y, height: 1.73 4 0.04 m, mass:
66.6 £ 5.1 kg) volunteered for the study. The traceurs’ experience in Parkour prac-
tice was 5.4 £ 2.1 years. The subject exclusion criterion was based on history of
lower extremity injuries or diseases that might affect jump and landing biomechan-
ics. The experiments were conducted in accordance with the standards of the Decla-
ration of Helsinki (rev. 2013) and approved by a local ethics committee. Participants
performed a warming up session followed by a familiarization period during which
the protocol instructions were provided to them, and during which the participant
familiarized with the lab environment. The landing protocol was designed to include
a jump height of 75 % of the height of the participant and a landmark placed at a
horizontal distance equal to the square of the jump height (See Eq. (22)). Partici-
pants were asked to land on the target specified by the landmark and to stabilize
using the Parkour precision technique.

4.1.4 Data Acquisition

A total of 8 successful repetitions per participant were recorded. Whole-body 3D
kinematic data were collected using 14 infra-red cameras sampling at 400 Hz (Vi-
con, Oxford Metrics, Oxford, UK) and recording 48 reflective markers placed on
the participant’s body. Two force plates (AMTI, Watertown, MA, USA) embedded
into the floor in order to record landing GRFs and two rigid handle bar sensors
(SENSIX, Poitiers, Vienne, France) with a diameter of 63 mm placed on a Parkour
tubular structure to record take-off GRFs, were used sampling at 2000 Hz. Force
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data were used to define the onsets used to divide the Parkour motion into phases.
Markers were located on the participants body based on Wu and Dumas recom-
mendations [10, 11, 53, 54] as follows: the first and fifth metatarsal, second toe tip,
calcaneus, lateral and internal malleolus, anterior tibial tuberosity, lateral and me-
dial epicondyles of knee, greater trochanter, posterior superior iliac spine and ante-
rior superior iliac spine, procesuss xiphoideus, incisura jugularis, seventh cervicale,
tenth thoracic vertebra, acromioclaviculare, medial and lateral epicondyle, ulnar and
radial styloid, second and fifth metacarpal heads, second fingertip, sellion, occiput,
right and left temporal (Fig. 1).

4.1.5 Data Analysis

Kinematics and kinetics were processed with the same cut-off frequency [31] using
a low-pass Butterworth digital filter of 4th order applied in a zero-phase. A cut-off
frequency of 35 Hz was used after a residual analysis [52]. All computations were
performed using a custom made program with a whole-body model and a physics
engine. Inverse kinematics computations were solved by minimizing the squared
distance between recorded and virtual markers (Eq. (4)) and using Euler xyz body-
fixed rotation angles [46] with body frames defined according to ISB recommenda-
tions [53, 54].

The motion was divided into three phases: take-off, flight, and landing (Fig. 2).
The take-off phase was defined from the minimum vertical position of the CoM
until the last foot contact. The flight phase was defined between the end of the take-
off phase until the initial contact ”IC” with the ground, that we identified as the
instant when the vertical ground reaction force reached 50 N. The landing phase
was defined from IC until the CoM reached its minimum vertical position. Each
phase was normalized by its time duration from 0% to 100% (Fig. 2). The linear
momentum was normalized by the participant weight, and the angular momentum
was normalized by the participant weight and height. Mean and standard deviation
were calculated for each participant and for the whole group. Group means at key
frames were used to parameterize the algorithm for motion generation.

4.2 Motion Generation

In order to generate the motion, we utilized the skeletal model introduced in section
4.1.2 for human motion analysis. The robotics framework of hierarchical task con-
trol introduced in section 3 was considered. Tasks were set and parameterized based
on the biomechanical study made in section 4.1. The motion was generated by us-
ing the method of null space projections and second order kinematics introduced in
section 3. The rigid body dynamics computations were done by using the Pinocchio
library developed by the Gepetto team of LAAS-CNRS [4].
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4.2.1 Description of the Tasks

As for motion analysis, the motion generation is divided into three phases: take-
off, flight and landing. In order to apply the hierarchical control framework, tasks
are stacked in a hierarchical manner for each motion phase. The selection of tasks
and their hierarchy are based on the previous biomechanical study using mainly
linear and angular momentum tasks. Additional tasks for foot placement, CoM and
posture at key points (beginning/end of each motion phase) were also considered
to better specify the motion. The desired values for parameterizing the controller
were deduced from the biomechanical study. The motion was controlled using joint
accelerations according to Eq. (12).

Preparation phase

A preparation phase was added before to the take-off phase for parameterizing the
simulation with the initial conditions. Note that this phase is not strictly necessary
as the controller can be parameterized directly with the initial conditions of the take-
off phase which can be obtained from the motion analysis. This motion is generated
through the control of a hierarchy of tasks organized as follows:

e At the highest priority we set a 3D foot placement task. This task was used to
control the 3D position of each forefoot so that contact with the handle-bars can
be maintained during this phase. The orientation components of these tasks were
not constrained.

o Atthe second level of the hierarchy, we set a task specifying a desired 3D position
of the CoM which was deduced from motion analysis.

e The remaining DoF were used to control the whole-body posture which was also
extracted from motion analysis.

Take-off phase

The take-off phase follows the preparation phase. The motion generated during this
phase is organized in terms of tasks as follows:

o At the highest priority level, the 3D foot placement task of the preparation phase
is kept.

e To generate the ballistic trajectory of the CoM, a linear momentum task is added
at the second level of the hierarchy. The antero-posterior and vertical components
provide the modulation of the CoM velocity for generating a desired ballistic
trajectory. The medial-lateral component is regulated to zero to avoid undesired
deviations of the CoM trajectory during the flight phase.

e In order to control the angular momentum at the CoM, a third task is stacked.
This task imposes zero momentum around the vertical and antero-posterior (A-
P) axes, and a desired angular momentum around the medial-lateral (M-L) axis.
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It allows the body model to reach a desired posture before landing and avoid som-
ersaults. This task should also alleviate torques at the lower limbs as suggested
in the literature (see subsection 4.1).

Flight Phase

When the velocity and take-off angle of the CoM trajectory are suitable to reach a
desired horizontal distance, the top level task of the foot placement is removed from
the stack of tasks and the flight phase begins. The horizontal distance d;;gp, that
the CoM will travel is calculated during the take-off phase according to the ballistic
equations as:

vcos 0

d flight = (V sin® + 4/ (vsin0)2 + 2gh0> , (22)

where v is the initial speed of the CoM (before the flight phase begins), 6 is the
take-off angle, g is the gravity acceleration and Ay is the initial height of the CoM.
During the flight phase, the momentum is conserved. A second level task is added
to impose a desired posture before contacting the ground.

Landing Phase

The landing phase starts at the end of the flight phase and is set as follows:

o At the highest level of the hierarchy, the vertical feet position is regulated to keep
the current contact position with the ground. A desired flexion of the toes and
ankle joints is also imposed.

e At the second level, a 3D linear momentum task is added to decrease the velocity
of the CoM to zero.

o At the third level, a task is added to regulate angular momentum to zero in order
to avoid tipping motions of the model.

e At the forth level of the hierarchy, a task is added to keep the CoM inside the
vertical projection of the support polygon (medial-lateral and antero-posterior
axis) in order to provide a static equilibrium state until the end of the motion.

4.3 Temporal Sequence

The chronological sequence of tasks stacked during each motion phase with their
hierarchical order is depicted in the following table:
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Hierarchy Preparation Take-off Flight Landing
1 Feet Momenta Feet
2 CoM Linear Mom. Posture Linear Mom.
3 Posture Angular Mom. Angular Mom.
4 CoM

Table 1: Hierarchy of tasks used for generating motion in each phase.

4.4 Tasks behavior

Exponential decays of the task function were used to specify the task behavior.
Weighting matrices multiplying the control input (§*) were tuned for the take-off
and landing phases in order to apply higher gains to lower joints when controlling
the linear momentum, and higher gains to upper joints when controlling the angular
momentum in accordance to our biomechanical study. As the trunk segment has a
significant mass compared to the upper limbs, the gain for the lumbar flexion was
lowered to avoid undesirable behaviors of momenta.

4.5 Results

The experimental results and the generated motions present strong similarities, spe-
cially when comparing the motion of the lower body. Fig. 3 shows snapshots of the
human motion reconstructed by means of the inverse kinematics method of biome-
chanics, and snapshots of the motion generated using the hierarchical task control.
The profiles of the linear and angular momenta of the experimental and generated
motions are shown in Fig. 4 and in Fig. 5. The momenta profiles of humans rep-
resent the mean behavior of the Parkour experts with the corresponding standard
deviation. Table 2 shows the difference between the ranges of motion (RoM) of the
human group and the simulation model for the principal segments in the motion
during each phase. In the sequel we refer to ’the humans” to describe the average
human motion and ”the model” to refer to the generated one.
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(a) Take-off 1% (b) Take-off 50%

(¢) Take-off 100% (d) Flight 50%

(e) Landing 1% (f) Landing 25%

AT R

(g) Landing 50% (h) Landing 100%

Fig. 3: Snapshots of the take-off phase (a)(b)(c), flight phase (d), and landing phase
(e)®)(g)(h) at different percentages of the motion phases. The skeleton on the left,
represents the result of the inverse kinematics from motion analysis of a Parkour
practitioner, whereas the skeleton on the right is the motion generated through hier-
archical control.
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Take-off Flight Landing
RoM [deg] RoM [deg] RoM [deg]
L R L R L R
Neck-head flexion-extension 19 22 15
Trunk flexion-extension -20 -10 -5
Upper arm flexion-extension -1 -1 65 66 -44 -30
Upper arm abduction-adduction 17 33 -2 5 10 9
Upper arm rotation 17 24 44 68 47 54
Forearm flexion-extension -17 -24 -9 -4 -15 3
Thigh flexion-extension -2 -2 16 22 2
Thigh adduction-abduction -5 -9.6 1 -4 2 2
Thigh rotation -6 0 1 9 8 6
Shank flexion 12 12 30 44 20 23

Table 2: Difference in the ranges of motion (RoM) in degrees, of the analyzed human
motions and the generated motion. The table shows the most relevant coordinates
during the take-off, flight and landing phases of the Parkour technique. Negative
values mean that the RoM of the generated motion is higher than the RoM of the
human experts.

4.5.1 Take-off

o At the beginning of the motion, linear momentum values were different between
the humans and the model. Throughout the motion, the linear momentum was
similar in the medial-lateral component while the antero-posterior and vertical
component of the linear momentum behaved differently. More antero-posterior
linear momentum was generated by the humans at the end of the take-off phase,
and more vertical linear momentum was generated by the model at the end of the
motion phase.

e Although at the beginning of the motion angular momentum values were dif-
ferent, angular momentum behaved similarly in the humans and the model in
the sequel. The angular momentum components around the antero-posterior and
vertical axes were almost zero at the end of the motion phase, while the angular
momentum component around the medial-lateral axis was not zero at the end of
the motion phase.

e Fig. 3 shows that upper-limbs were coordinated differently with the time evolu-
tion and that the trunk and hips were more flexed in humans.

e RoM of all coordinates were similar (Table 2). RoM of thigh abduction-adduction
and forearm flexion-extension were slightly higher with the model, while upper
arm abduction-adduction and rotation appear to be higher with the humans.
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Fig. 4: Momenta profiles of the humans (£ SD), and of the simulation model during
the take-off phase. The first row shows the medial-lateral, antero-posterior and verti-
cal components of the linear momentum normalized by the body weight. The second
row shows the angular momentum normalized by the body weight and height, about
the the medial-lateral, antero-posterior and vertical axis.

4.5.2 Flight

Momenta were not compared during this motion (see subsection 4.1.1). Figs. 3¢ and
3d show that the motion looks different at the beginning and at 50 % of the flight.
RoM were also different, specially in the case of the upper limb movement and the
shank flexion-extension (Table 2).
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4.5.3 Landing
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Fig. 5: Momenta profiles of the humans (£ SD), and of the simulation model dur-
ing the landing phase. In the first row: medial-lateral, antero-posterior and vertical
components of the linear momentum normalized by the body weight are displayed.
In the second row: angular momentum normalized by the body weight and height
around the the medial-lateral, antero-posterior and vertical axis are displayed.

Linear momentum profiles of the humans and the model were globally similar.
At the beginning of the landing phase, the model generated less angular mo-
mentum around the medial-lateral axis, while higher angular momentum was
observed around the antero-posterior and vertical axis.

e From Fig. 3, we can observe that the humans and the model landed with a similar
posture. At 25 % and 50 % of the landing phase, the trunk of the model is more
flexed than the the trunk of humans.

e RoM of the upper arm coordinates appear to differ slightly while the RoM of the
other coordinates look similar.
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4.6 Discussion

The analyzed and the generated motion were compared in terms of kinematics and
momenta. The results showed that the kinematics of the humans group were similar
to the kinematics of the simulated model, specially for the lower limbs. Time evolu-
tion of momenta was sometimes slightly different during the take-off phase, while it
was comparable during the landing phase. Whole-body coordination was congruent
between the humans and the model, although the upper limbs strategy did not evolve
similarly with time. In the next subsections we analyze the results per phase.

4.6.1 Take-off

During the take-off phase, we observed more antero-posterior linear momentum in
the motions generated with the model. For generating the desired ballistic profile,
the model compensated for the lack of antero-posterior linear momentum by in-
creasing the vertical linear momentum. This strategy allowed the model to reach
the initial CoM speed for landing at the requested distance. This increase of angu-
lar momentum of the model with respect to the humans one might explain why the
model jumped with the trunk more extended than the human (Fig. 3c), and why the
RoM of the trunk was higher. The time behavior of the vertical and antero-posterior
linear momentum was different in the model. This might be due to the task reference
behavior which imposes an exponential decay of the error between the actual and
desired value (as explained in section 3).

The profiles of angular momentum were similar for the humans and the model.
The arms, which contribute to angular momentum, behaved differently with time
evolution as shown in Fig. 3. The reason might be that the upper limbs contributed
also to increase the vertical linear momentum (which behaved differently in the
model). Note also that the RoM of the forearm flexion-extension motion was higher
in the simulation model. In spite of this, the model jumped with an angular mo-
mentum that allowed it to prepare properly the body posture for landing (Fig. 3e).
Controlling the posture before landing allows for a better control of stability and
impact damping (See subsection 4.1).

On angular momentum control during the take-off phase

We carried on simulations by decreasing and increasing the desired angular momen-
tum during the take-off phase. The results showed that when the angular momentum
is decreased, the model lands with a posture that makes it fall forwards (Fig. 6a).
Conversely, if the angular momentum is increased, the model lands with a posture
that makes it fall backwards (Fig. 6b). These results highlight the importance of
controlling the angular momentum when jumping.



From Biomechanics to Robotics 25

(a) Decrease of angular momentum (b) Increase of angular momentum

Fig. 6: Effects on posture at landing when modifying the desired angular momentum
during the take-off phase. The motion was generated by using the same hierarchical
controller. Only the desired values of the angular momentum were modified during
the take-off phase.

4.6.2 Flight

The kinematics of the humans and the model were different during the flight phase.
This might be due to the fact that the flight motion of the model was generated
without constraining the trunk which has the highest mass. Thus, segments with
small masses might have contributed less importantly to keep momenta constant
during flight. In fact, the RoM of the trunk was higher in the model whereas the RoM
of the upper arm coordinates was higher in the humans. Note that the final posture
(before landing) does not reflect the higher excursion of the upper arm coordinates
in the humans. Instants before landing, arms are swung backwards. Later on, when
contacting the ground, arms have already been swung forwards in preparation to the
landing phase. In the model, this swing strategy of the arms was not considered.

4.6.3 Landing

Linear and angular momentum were similar in the humans and the model. Never-
theless, upper-body coordination during the landing phase looks different (Fig. 3).
The model landed with the trunk more flexed than humans. Thus, upper-limbs might
compensate for this strategy by generating a counterbalancing angular momentum.
In fact, the RoM of the upper arm flexion-extension was higher in the model. It
turns out that the considered decay rate and hierarchy of tasks allowed the model to
replicate the evolution of the momenta in humans.
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5 Discussion

In this chapter, we presented an interdisciplinary methodology for generating hu-
man inspired motions with anthropomorphic systems such as robots. The approach
involves robust biomechanics methods to analyze the human movements and the
robotics framework to generate the motion. We showed that our approach is suitable
to reproduce highly dynamic and complex motions comparable to those of humans.
In this final section we summarize our methodology, we provide a discussion about
the interest on using the proposed methodology, we show the limitations of the pro-
posed approach, we give some perspectives for the future work, and we conclude
with remarks about the interpretation of our results.

5.1 Summary of the method ”’from Biomechanics to Robotics”

Important aspects of this approach can be summarized as follows:

e A physical model suitable for analyzing and/or generating the motion of interest
is selected/created.

e An experimental protocol for motion analysis is designed and the human move-
ments are recorded by using motion-capture techniques.

e The recorded motion is analyzed using robust biomechanics techniques and key
performance variables of the movement are identified. Performance variables
provide the information needed to create a set of tasks.

e By understanding how the identified performance variables favors the motion
generation in humans, the set of tasks is organized in a hierarchical manner ac-
cording to their importance in the execution of the motion. A stack of tasks is
created.

e The robot controller is further parameterized using information from control
strategies observed in humans by weighting the controller input. This informa-
tion can be obtained from biomechanical studies.

e The motion is generated through the task function approach in robotics using the
identified tasks and the physical model for motion generation.

e The human motion and the motion artificially generated are compared using the
same physical model created for analyzing the motion.

5.2 Interest of the proposed approach

There are interesting aspects of this approach that deserve further discussion. First,
our methodology differs from conventional task-space approaches, because it allows
for generating whole-body motion based on the biomechanics of human movement.
Quantifying and understanding the mechanics of human motion offers the possibil-
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ity to parameterize robotic algorithms based on human expertise to execute move-
ments. This provides a way to generate more robust and efficient motions. Further-
more, generating anthropomorphic motions that look more human-like is of great
interest for human-robot interaction. Second, comparing the analyzed human mo-
tion with the motion generated based on the robotics task function approach pro-
vides an interesting tool for validating hypotheses about the organization of human
movement based on task hierarchies.

5.3 Limitations and future work

Thought the biomechanics methodology provides an efficient tool for analyzing hu-
man movement, it is known to have some limitations. Some source of errors are the
simplifications made when modeling the human body (e.g. modeling segments as
rigid bodies, number of DoF of the model, or simplifications for modeling complex
human articulations), the estimation of anthropomorphic parameters and the data
processing (e.g. motion reconstruction, filtering of the noise, soft tissue artifacts).
The feasibility of the motion generated can be assessed in terms of joint torque and
joint power by adding inequality constraints (Eq. (19)). To this end, the hierarchi-
cal controller can be designed using quadratic programming QP as suggested in
subsection 3.4.1. A deeper analysis between the human and the model strategies to
compare other performance variables such as reactions forces, torques, power and
energy dissipation is also desirable. Furthermore, the behavior of the tasks (decay
rate of the task function) can also be modified to generate smoother trajectories
(see for example [27]). A vision task [5] could also be added to reflect the impor-
tance of vision in humans when performing this type of motions. Other approaches
can be used to generate highly dynamic and complex motions by considering the
whole trajectory along a finite time horizon, e.g. optimal control. In that case hy-
brid cost functions, usually described as weighted-sums of elementary criteria, are
considered. The difficulty is then to identify the set of weights that lead to the best
replication of the observed human movement.

Finally, though our results suggest that the proposed approach is suitable to gen-
erate motion similar to that of humans, we are not attempting to propose that hu-
mans compute inverse kinematics or inverse dynamics problems. This is still an
open question, which is outside the scope of this chapter. Nevertheless, we could
point out that strategies of task control have been observed in human motion. It was
shown that the central nervous system finds stable solutions of motor tasks in accor-
dance with the uncontrolled manifold theory "UCM” [45] and the motor abundance
principle [20]. It is also suggested that hierarchies in human motion appear at dif-
ferent levels such as neurons, muscles, joints and tasks [33, 20]. Lastly, the UCM
theory is linked to the equilibrium point [18] which is a physiological approach to
understand human motions.
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