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Contact Dynamics and Coupled Stability of Massage ComplianRobotic
Arm With Impedance Controller

Yuancan Huanb?, Philippe Souérésand Jian L}

Abstract— The contact dynamics during massage manipulation recently developed to model complex dynamical systems[15]
by compliant robotic arm is described by using port-Hamiltonian  [16], to capture the contact dynamics during massage manip-
modeling approach, which is a powerful tool for modeling conplex ulation by the robotic arm with compliant joints. It deseib

dynamical systems due to the power port term. The nonlinear . . .
Hunt-Crossley model is used to replace the linear Kelvinvajt & complex system in terms of port variables and the intercon-

model in order to capture the behavior of soft tissues. Then, Nection of systems via the ports by means of power continuity
the impedance controller in [1], [2] is reformulated in full-  The resulting network is mathematically described by a ®ira

state feedback form, and coupled stability is reassured fan the  structure [17], which is a generalization of the Kirchhafivs
energetic viewpoint. Some experiments are given to verifyaupled ot circyit theory, The contribution of this work is threedol
stability during massage manipulation by compliant robotic arm. the impedance control in [1], [2] is reformulated from the
energetic viewpoints, and coupled stability is reassurethé
I. INTRODUCTION port-Hamiltonian framework; we can improve the interacted

Massage is a world-popular activity for relaxing muscle l?ehawor of impedance control with better knowledge on the

relieving stress and improving the circulation, but usukdbo- human dynam|cs_ during massage manipulation; new control
rious, time-consuming and short of experienced practtion schemes by portinterconnection , such as IPC_[18] and IDA-
Robots are naturally used to automate massage manipulatig’rl§C [1_9]’ may be used for massage mampula_tmn. .
Kume et al [3] designed a massage robot with two end- In this paper, th_e port-basgd_ network_ model_mg approach is
effectors to implement the repetitive action of grasping offitroducedin Section II, and rigid body kinematics and dyna
soft tissues. Jonest al. [4] showed that the ring and linear ICS ar€ briefly described in Section Ill. In Sections IV and V,

kneading manipulation can be realized by PUMA 562. Koggontact.kinematics and dynamics du_ring.massage mgnipulati
et al. [5], [6] developed an oral rehabilitation robot stimutefi '€ derived based on the port-Hamiltonian mechanism. Then,

the maxillofacial tissues via rotational movements. Ineory  IMPedance controller is reformulated in full-state feedba

have both good performance and safety, an integrated rotdRf™: @nd coupled stability is reassured form the energetic
compliant joint is designed [7], and thus a 4-DOF anthropo\f'eWpO'm in Section VI. Some experiments are given to vyerif

morphic complaint arm is developed for the traditional @sie coUPled stability during massage manipulation in Sectioh V
medicine remedial massage [8] by the authors. Finally, Section VIII concludes, and discusses the furtherks

Impedance control and its variants are used by all massaﬁ@ this research.
robots in the literature in spite of the criticism on its mef
mance and possible failure [9], [10], for they can guarantee
the stable interaction with an unknown environment [112]{1 A. Mechanism on Port-based Network Modeling
However, knowledge on contact dynamics is instrumental in
improving the performance of impedance control and exptpri
its limits [13], [14]. As our best knowledge, there is not ye ; N ! .
the relevant works on this aspect for massage robots. We the basic principles of physicse. energy conservation,

the port-based network modeling approach, which has begﬂs't've_ entropy production, an(_j power continuity. In t?”“
of the first law of thermodynamics.€., energy conservation
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Il. PORT-BASED NETWORK MODELING APPROACH

In the Universe, dynamical behaviors of macrophysical sys-
ems are commonly constrained, either implicitly or exilic



namical behaviors of physical systems can be modeled land .%; = T,M x Ry, and define a Dirac structur@(x) C
describing energy flows among subsystems. Fx X Fy.

In computer science, the term ontology originated from The flow variables of energy-storing elements are given as
metaphysics in philosophy is used as an efficient way fok(t) and its effort variables a%%(x(t)), which implies that
mally representing knowledge as a set of concepts Withi(%(x(t))x(t» — %—'{'(x(t)) is the increase in energy. In order
a domain, and the relationships between pairs of concepts.have a consistent sign convention that energy flows framn th
With the analogous ideas, a systematic, meta-level, arettbj boundary ports into the system and from the internal network
oriented modeling approach, the port-based modeling m&twointo the energy storing elements, kt= —x andey = %_*j(_ In
approach, has been developed for modeling complex, multiddition, f, and e, are power variables associated to time
domain physical systems, where each object is determingdundary ports.
by constitutive relations on the one hand and its interface, An implicit port-Hamiltonian system oM is defined by the

being the power and signal ports to and from the externgkt of differential and algebraic equations (DAE):
environment, on the other hand. Objects may be described in

different levels and/or in different forms, but as long as th <_X,fb70j’%> € 2(x), VXM
interface (number and type of ports) is unchanged, they can ox

be interchanged in a straightforward manner. This allowss 10 yith the power-conservation property

down as well as bottom-up modeling and direct interconoacti

of (empty) submodels. Since empty submodel may be filled 0=(ef) = (80 f,) + (en,fy) = —a—HkJrerb
with specific description with various degrees of complexit ’ X ’ X

(i.e, models can be polymorphic), evolutionary and 'terat'VTrom which %_'? _ elfb-

modeling and design approaches are supported. Additjpna_l Obviously, source or dissipative terms can be added to the
submodels may be constructed from other submodels reg;ulngystem through the boundary ports

in hierarchical structures. Consider a kernel representation of an IPHS:
B. Dirac Structure and Port-Hamiltonian System “ oH
1) Dirac Structure:Let.Z# x .#* denote the space of power F(x) ( f ) +E(X) ( g ) =0.
variables, with.# being ann-dimensional linear space, which b
is the space of flowse(g, velocities in mechanical domain and Assume thatF and E can be split (non necessarily in a
currents in electrical domain), an&* being its dual, which unique way) as
is the space of effortse(g, forces in mechanical domain and
voltages in electrical domain), and let the dual prod{et) F = (FcFo, Fo,), E = (Ex Ep, Evy)
denote the power associated with the pef) € .7 x .7*. with rank Fy = n and rank(Fy Fo, Ep,) = n+m.
Definition 2.1: A (constant) Dirac structure on is a = = _ 4T oTOT
linear subspac& C .# x #* such thatZ = 2 with L the I__etf f_T(FTX Fou Br). B = (B Boy Foo)o y= (F, &), and
orthogonal complement with respect ¢9-), or, equivalently, u= (ebl by) -
dimZ = dimZ and (e.f) = 0,¥(e.f) € 2. Wehave — o\ L/
Remark 2.2:The condition implies that, if each pafe,f) F ( y ) +E( ? ) =0
belongs to the Dirac structure, or satisfies the network con-
straints, then(e,f) =0, i.e, the sum of instantaneous powersyith EET +EET = 0 andFE is invertible.
passing through the port equals zero, which is nothing Blse t  premultiplyingE -~ on both sides, there is
the Tellegen’s theorem. This will lead to a rigorous deg@ip
of a network structure which can be directly used for analysi ( —X ) — _F1g ( %—': )
Every Dirac structureZ admits a kernel representation. u )’
Given a basidy,...,f, in Z#, the corresponding dual basis ~ e . xop e
er,....enin .Z*, and any basis i, with dim% = m> n, the where F-E is skew-symmetric becauseE' + EF' = 0,

linear maps andE are represented by x n matrices (which which is rewritten as

we denote by the same symbol as the maps) satisfying PN J(x) 9(x)
F(E(X) = T :
EFT+FET = O —x'(x)  —B(x)
ranKF|IE] = n. with g arbitrary andJ and B both skew-symmetric.

o ) Finally, we obtain an explicit input/output PHS [15]:
2) Port-Hamiltonian SystemConsider a lumped-parameter

physical system defined on a manifald, with local coor- . oH

- . g X = J(X) 5 +g(xu,
dinatesx € R". The total energy of the system is given by ox
the HamiltonianH (x), and the system is assumed to hawe y = g(x)Tﬁ—H+B(x)u
boundary ports. For eache M we consider%y, = TuM x Ry, X '



[1l. R1GID BODY KINEMATICS AND DYNAMICS If X is orientable and smooth, therip) is well-defined and

The motion of a rigid body can be described by the speci@Mooth oveiX. Hence a derivative mapping :TX—TS? can

Euclidean groufSE(3), whose element denoted the rigid bodybe defined. This implies thgt, while a point move tangertiall
transformation relative to the reference frame. kebe the ©On the surfac& at the velocity € TX, then the normal vector

reference frame an@ the body frame. The element in theVaries at the velocityn.v c TS?. Since the vecton(p) is
group SE(3) may be represented by a homogeneous matrix &gmmonly orthogonal to the surfacé at p and the sphere

the form S? at n(p), an elemenn,v € TS? can be mapped directly as
Ta_ R: pf an elementn,v € TpX, whereP is the linear mapping from
b=\ o0 1) To(p)S? to TpX.

If n.(p)v=0 for all ve TpX, then the surfacX is locally
flat at p. If (v,Pn,v) > 0 for all ve TpX, then the surfacX is
locally convex atp.

whereR? is the rotation matrix of the body, belonging to the
special orthogonal groupQ(3), andpf the position vector of
the origin of body frame.

The instantaneous velocity of a body with the framBe

. : . B. Contact Kinematics During Massage Manipulation
relative to another body with the frant with respect to the g g P

reference frameA can be represented by a tWi@@c of the For sake of kinematic analysis, the massage head and the
form: ac human body are treated as two rigid bodies with the smooth,
{aC _ { (\A}Bc } orientable surface¥; and X, whose the Gauss maps are,
b b ’ respectively, defined as; and n,. As a result, the contact

kinematics is amounted to the motion between two pomts

and pz on the surface¥; and X, with the shortest distance.
Under the convexness assumptions, there are always such two
unique pointg; andp; in the boundary; UXz) whose linking

A generalized force acting on a rigid body consists of !J;‘me In is normal to t.)Oth the surfaceq andXp. _G|ven a point
linear component (pure force) and an angular componentce I (e.g., the desired con_tact point), there is a unique plane
(pure momenty acting at a point, which is usually expresseqo orthogonal tol, and passing through the poiatas shown

by the wrench of the body with the frant with respect to In Fig.1.
the reference framé:

<[]

a
Ty

Whereoaf)"c denotes the angular velocity of the boByrelative
to the bodyC with respect to the fram@, and\S“ the linear
velocity (relative to the fram€) of the fixed point in the frame
B, that passes through the origin of the frafme

The adjoint representation of a Lie group is indicated with

Ath?:
- %)

which transforms twists from the frani®to the framekK, i,e.,

tlé’b = Ad—rgtgb

Fig. 1: Two points onX; and X, with the shortest distance.

Letp;, i = 1,2, denote the position vector of the pomtin
its own frames 1 and 2. A minimum sign distantec R is

The dualityAd], transforms wrenches from the frarketo the defined as:
ie. ° A = (g, Tip — po)-
frameB, i,e., 2, 12P1—P2

wg = Adikakcj-

IV. CONTACT KINEMATICS DURING MASSAGE
MANIPULATION

If A >0, there is a distancé\ > 0 between the bodies;
otherwise, the bodies have a maximum penetration distance
of |A| for A < 0 or the contact for\ = 0. Here, a geometric
description of the bodies is assume to be inflexible. Thismaea
that the two bodies are allowed to intersect virtually.

In differential geometry, the Gauss map maps locally a The velocities ofp; and p, are uniquely determined by the
surface in Euclidean spad@ to the unit spher&?, i.e, given following equations [20]:
a surfaceX embedded irR3, the Gauss map is a continuous R _ R
mapn : X — S2 such thatn(p) is a unit vector orthogonal to  [N1.+ T2, TZ(1 + Any.) | pp = té’l+T21n2*(_An2—ti’2p2)
X at p, the normal vector toX at p. The Gauss map can be [na, + T2n1. TA(I + Anz,)| py = B2 + T2n1.(Ans —§'py),
defined globally if and only if the surface is orientable. The
Jacobian determinant of the Gauss map is equal to Gaussiahere;" = ~TH>?T7 can be any relative twist of the two
curvature. Its differential of the Gauss map is called thapsh bodies,A = (nz,f% lepl), andA > Anin for someAmin <0,
operator. which depends on the physical property of two bodies.

A. Gauss Map



V. CONTACT DYNAMICS DURING MASSAGE arm, the inertial mass with a spatial spring representirgg th
MANIPULATION human body with some kinematic constraints, the storage
elements representing elastic effect of soft tissue, amd th
] o __dissipation elements representing viscous effect of ssstie
The soft tissues on the human body exhibit viscoelasticitg,q coulomb friction. Optionally, one control port can be
The simplest model characterized viscoelasticity is kn@sn 544ed to regulate the behaviors of the robotic arm. Figure

the Kelvin-Voigt model, which is represented by the pafalle3 ghows the interconnection structure of port-based motlel o
of a linear spring and a viscous damper. However, the "neﬂﬁassage manipulation.

model is not suitable to describe the behavior of human
tissues, for viscous effects are substantial [21], [13]ntHand £—> Storage Elements
Crossley [22] showed that it is possible to obtain a behavior A

that is in better agreement with the physical intuition i&th
damping coefficient is made dependent on the body’s relative COIS

penetration: _
f(t)_{ kd'(t) + Ad"(t)d(t) d>0

0, d<o0 ____l______

|' hl
X | Effect of . |
where the exponenh is a real number, usually close to l:

unity, that takes into account the geometry of contact seda Dislpation Elementz

Indeed, since the contact surface increases as the pémetrat Fig. 3: Interconnection structure of port-based model.

depthd(t) increases, the exponent allows taking into account

the stiffness variation due to a larger contact area.
Moreover, the Hunt-Crossley model is consistent with th

A. Hunt-Crossley Model

Spatial Spring

Inertial Mass
With Spatial
Spring

g. Contact Dynamics During Massage Manipulation

notion of coefficient of restitution used to characterizergy 1) Contact Dirac StructureDefine the binary signad, as
loss during impacts and, even if nonlinear, retains a aertai 1 if A>0
computational simplicity. Beside these properties, itnigpor- Sp = { 0’ otherv;isé

tant to note that the physical consistency of the model can be ) . ) .
preserved by a proper generalization to the full geometricdnen, sa = 1 if there is no contact and, = 0 if there is
contact description [six degrees of freedom (DOF)], as digontact. . . _ .
cussed in [23], [24]. Therefore, we can use a spatial spring i I-_lere, we only consider the massage mqmpulatlons without
parallel with a spatial damper to describe soft tissues. rolling on the human body. Hence the motion can be decom-

posed into two terms involving rolling or not. A set of basis
B. Port-Based Network Description for Massage Manipulatio velocity screws ofsg3) are chosen as two screwsy,ry)

During massage manipulation, one is asked to sit on a ch&fPresenting the pure rotations around two axis lying@n
or to lie on a bed, to keep relaxed and steady as far as passified Passing through, and the othersty,ty,t;r7) the three
and not to actively exert any force back. It is reasonable thanslations and the pure rotation aroupdas shown in Fig.1.
the human body in massage manipulation is modeled as MW S€&3) has the following decomposition:
inerti:_al mass _vvith a spatial sprin_g and damper, repr_esgentin s6(3) = Ry ® (s€2) x Ty),
the viscoelastic property of soft tissues, and a spatiahgpr
representing the reaction force on the robotic arm from th&here Ry = span{ry,ry} and the Lie algebrese(2) x T,

chair or the bed, or by one who tries to keep his body steadigPresents the motions dd(s€(2)) together with the normal
see Fig. 2. translation alondn(T).

Define a projection operat®g )7, : S&3) — s€2) x T,. It
can be represented by the matfixvhile the coordinate system
is selected. Its adjoint operatBf,, ., (s€2) x T,)* — s€(3)
maps the wrenchs , € (sg2) x T,)* into the wrenctPTws , €
s€(3), the sum of the wrenches from the spatial spring and
damper as well as the friction effect.

The Dirac structure with the desired por@$?® wd),
(5W8), (5qt0rey Wetore) AN (15550 WEjso) i given as[24]:

,,,,,,,,,,,,,,,,,,,,

l 5 1 Spatial Sprin
A | Spatial Spring

| and Damper
Generalized q
Forces from
Robotic Arm d
Massage |
Head |

|
| Spatial Spring

,,,,,,,,,,,,,,,,,,,, 2(store)? 2(disg)’
aa
Fig. 2: Dynamical description for massage manipulation. wi :%a
wa 2
. . ) E We 2 +F | of -0
From the view point of port-based network modeling, a store Zc(itore)
contact Dirac structure may be used to interconnect thetimbo Wiiss Gldiss



with We have shown that the total kinetic energy of an

ls 0 (sn—1)AdLPT (sp—1)AdLPT link compliant robotic arm under the symmetry assumption
0 g (l—sA)Ad}iPT (1_SA)Ad_|'[iPT is composed of two parts: the kinetic energy of the rigid
E:= 0 0 o - o - robotic arm where we neglect the elasticity in the joint, and
0 0 0 0 the rotational kinetic energy of the rotors, namely
. 1. 1.1
and T(a,6,0,0) = 5a"M(a)a+ 567 B, 2
8 8 8 8 where M(q) is the inertia matrix of the rigid robotic arm,
F:= (s —1)PAdre (S — 1)PAd: | 0 , which can be calculated using standard techniques once the
N~ s (Sa— s —la

rotor masses are regarded as a part of the proximal links for
(Sa—1)PAdr  (sa—1)PAdg O —14 calculating their inertia tensor, arithe inertia matrix of the

where the switching element i& is used to switch off the rotors.

contact forceswvg,,. andw, while no contact occurs. Since  Next, the elastic potential of the spring is given as

the matrix F and E satisfy the rank condition, the power 1

continuity conditionEFT + FET = 0 holds for all values of P(q,0) = E(q— 6)"K(q—9),

SA.- . . . .

The connection of the storage and dissipation elemenfd'€r€ K is a diagonal matrix whose diagonal elements are
depends on whether the contact occurs or not, thus the Dirdle SPring stiffness coefficients. Invoking again the syrmne
structure is time-varying. assumption, the gravitational potential is a function owifiyg.

2) Compliant Robotic ArmsAs shown in Fig. 4, the serial 1herefore, the total potential energy is
elas_ticity in theith qomp!iant rotary joint is modeled as a linear U(q,8) = P(q,8) + G(q), (3)
torsional spring with stiffnesk;. Due to the extra degrees of o ) )
freedom introducing by the serial elasticity between théano Where the gravitational potential energy tefdtq) is found
shaft and the link, the motor rotor (including gear) has to b&om the standard formulae for rigid robots.
modeled by a fictitious link with its own inertiff. Thereby ~ The Lagrangian is
we can regard that z.;\mrllllnk co.mpllant robotic arm consists of L(q,0,4,0) = T(q,0,d,0) —U(q,0).

n actual links anch fictitious links [25].
For sake of clarity, the generalized coordinateand 6 are

6 k4 rewritten asq, anddg. Now the generalized momengg and
M pg are defined as
oL
Rotor inertia B, Link inertia I, P = a_qq’
Fig. 4: Diagram of the-th compliant joint oL
Pe = qu-

Assume that the the rotor inertia is symmetric with respect tgy, the Legendre transform af(qy, gy, G, dg) as a function of
the rotor axis of rotation so that the gravitational potaindind (8g: Ge), it follows that the Ham?ltoniag function is

also the velocity of the rotor center of mass are both indepen 1 1
dent of the rotor angular position. Normally, this assumpti Hr — p'm? +-piBt
hardly needs to be justified, for it is a norm in robot design. (qq,qlg,pq,pg) 2PaM " (da)Pq+5PoB P
_ T _ T }
Letg= (_ql,...7qn) aqd 6= (91,_...,6n) t_)e the genergl +§(qq _ %)TK(%—QQ) +G(d)-
ized coordinates for an-link compliant robotic arm wherg;
and 6, respectively, represent the angles of the lirdnd the Hence, the Hamiltonian system of the compliant robotic arm
rotori,i=1,...,n. are given as
The kinetic energy of théh rotor is , .
9y g = M 1(qq)pq

1 1. . . _
-I-ir:_m(\/ir)T\/ir+§6iTBi9|, 1) e = B 'py

2 -1
where V| denotes the velocity of the center of mass of the by = —%pamTwpq—K(qq—qe)—g(qq)
rotor, my the rotor mass, an@; the inertia of the rotor. Now _ g
by the symmetry assumption of the rotor the veloaftyonly Pe = K(dy—0ds),
depends on the link variables,...,q_1. Thus if the rotor G(dg)

mass is included as a part of the link 1 to calculate its Whereg(dg) = 99,
inertia tensor then the first term in (1) will be absorbed ia th  Assume thaty® = JR(dq)0q whereJ(qq) is the Jacobian of
translational kinetic energy of the link- 1. the rigid robotic arm. Its dual relation gy = Jg(qq)vv‘;1 where



Text represents the external torque acting on the end-effettor dere, T (t) is a 4x 4 homogeneous matrix of the form
robotic arm. If one control porfu,y) and one interacted port

(t5%,wd) are attached, we obtain a port-Hamiltonian system cos§  —sind 0 x
. . . ) sin@ cos8 0O vy
with two ports, written in more compact form: T) = 0 0 1 7
g 0 0 Ig O 0 0 0 1
Ye = OI 8 8 lg where@ is the rotational angle around the lihe
P _Oq . 0 0 The stiffness matrix on a manifold requires differentiatio
Po —'e of the generalized force in the direction of the generalized
(qq)pq 0 velocity. Given a potential functio®, the force one-formy
B pg 0 is therefore:
X oM™ —
398 25 pg + K (0q — g) + 9(ag) 0 7 =ao.
—K(qq Jg) u Assume that the vectqtsl, ... ;L4 are basis for the Lie algebra
0 sg2) x T, the vectorsLy,...,L4 form a basis of the tangent
0 space at any point € SE(2) x T, whereL;, i =1,...,4, are
+ J;(qq)wg the left invariant vector fields &t. In order to give the stiffness
0 matrix, the manifold is endowed with an affine connection so
y = —K(g— ) that the covariant derivativdyX, of a vector fieldX with
’ qa— e respect to a vector field may be defined. IfX is a set of
6" = Jr(0g)dg basis vector fields, there is
whereu represents the motor torque vector. Ox Xj = MK X
3) Inertial Mass With Spatial SpringThe Hamiltonian of e
the inertial mass with spatial spring is where the c:oefficientE‘Jfi are called Christoffel symbols.
Hence, the coefficients of the stiffness maMg((Tc(sltore))
Hi(a,a) = 2Q| M (0)a + 5 (Q| o) "Ki(a)(ar —a), are [26]
cl 0
whereq, is the configuration vectoM, (q,) the inertia matrix, kisj (T store) = {Og, dRspring L)

andK; (q;) the linear spatial spring stiffness matrgf. is some
reference position.

Let p, = Mi(q)q,. The port-Hamiltonian equation with the Weiore = Ks (TZC 1) 6t
port pair (5% w?) is

Finally, we have

(store)

4 = 71(Q|)D| (g, wherecSt2 (store FEPrEsents the variation of the twié}lstore)
1 Likewise, the dissipative parts are expressed in the form:
pl = _}pl Mpl Ki (ql)(ql _qlo) ws.. =D 5’[C1 Cl K t
dq diss = d( d|ss)) 2disg T KT (dlss)
0,7 9Ki(a)
—5(% -ar) T(% —a) where Dy (5t dlss) is the damping matrix defined by the
|
W= J(q)ws, Rayleigh functionRyamperin the way thatf§, o= 5;:;2’7”“2
whereJ (q)) is the transformation matrix from the frame A to@nd Kt is the constant friction coefficient matrix. Here, only
The energy balancing relation is The total energy of the viscoelastic and friction parts is
dH (Wa)Tta’a Hv = Pspring+ Rdampert Rfric
o — W)
oo o  with .
4) Viscoelastic Coupling Desgnpnon and Coulom_b fr|ct|on. Reric = = (tg,(tiss)) Kft (dlss)
Normally, the massage head is made by ceramic material, 2

which is much stiffer than the human body, and thus may be/I. | MPEDANCE CONTROLLER AND COUPLED STABILITY
regraded as a rigid body. Therefore, the contact poities
on the surface of the human body, and then the planis
the tangent plane of the surfaceatAs a contact frame€ is
defined, the deformation at tinteis calculated as:

A. Impedance Controller

From the energy shaping viewpoints, an impedance con-
troller with two feedback loops is constructed in [1], [2].
Rewritten in the matrix form, the torque inner loop is

/ istore (DT (T)T. u=BB; v+ (1 -BB; 1)K (qy—dg) + DK (G — tg),  (4)



wherev is an intermediate control input vectd, the motor VIlI. EXPERIMENTAL VERIFICATION

apparent inert_ia vector with respect W and D the desired g yverify coupled stability, pressing, kneading, and pingk
dampm.g matrix. _ _ _ are realized on the human body by the 4-DOF anthropomorphic
The impedance outer loop is a PD controller with gravitysompliant robotic arm in two scenarios with sitting on a chai

compensation: and lying on a bed, see Fig. 5. Their manipulation processes
d _ can be described as an up and down cyclic motion vertical
V= ~Kq(0g — dg) — Datlg +9(dg) (3)  to the surface of human body, a circular and rectilinearicycl

motions tangential to the surface of human body, respdgtive
All of three massage movements have a downward force
on the human body. During massage manipulation process,

wherqu is the desired rotor angular position vector.

Obviously, the impedance controller is a full-state feexba
controller. Unfortunately, the control law (5) does notisfat
the required passivity condition. A solution is to choasas
a function ofgg and its derivativegg by replacingg, with its
stationary equivalent tg,(dg), namely:

V= —Kq(04(ds) — o) — Daliq(de) + 9(Gq(qe)), ()

In the sufficiently small neighborhood of the equilibrium
point, G4(dg) can be solved from

(a) Sitting scenario (bﬁ_ying scenario

B Fig. 5: Two scenarios for verifying coupled stability

dg = f(0g) = Gg + K™ [~Kq(dg — dg) +9(ag)]-

Generally, the inverse functidn® has not analytic expression. force curves are measured by JR_S 6DO_F force-torque Sensors

For a giverd, itis possible to approximate the valgg(dg) = 50M31. The experimental results in in Fig. 6 and Fig. 7 show
6 6 that coupled stability is guaranteed during different iatted

f7"(ap) with arbitrary precision by iteration method. (.0 oi0c a5 indicated by the foregoing theoretical aisaly
Due to gravity compensation and propositional terms in the

controller, the Hamiltonian of the closed-loop system is

| =
1o 1, :
HR(dq» G- Pa: Pe) = 5PqM ™ (dq)Pq + 5P6Ba "o
1 T 1 e q N
+5(8q—0g) K(tg—dg) +5(0g —dq) K(dg —dg)- =l M

It has been shown [] that, for the robots only with rotational (@) Pressing
joints, there is

dHS , . . . . . ;
Gt = —06Dqflo— (8 — ) "D (Ge — ig) + (W) "5
< W)TH?, :
i.e,, the overall closed system is strictly passive with respect (b) Kneading
to the port pair(t;® wa). The compliant robotic arm with the
impedance controller is a port-Hamiltonian system. :

. /\AMi\/\’*W*\*/VV\\H
B. Coupled Stability

The Hamiltonian of the total interconnection systems is . el S G
(c) Plucking

H =H{+H +Hy.

. o ] Fig. 6: Force curves of massage manipulation in lying séenar
By their definition, we have evidently

dH
0, Vsn. VIIl. CONCLUSIONS ANDDISCUSSIONS

— <
dt In this paper, the port-Hamiltonian modeling approach is
In other words, the compliant robotic arm with impedanceised to model the massage manipulation by compliant robotic
controller is asympotically stable no matter whether ittagts  arm. Its use is substantiate three aspects: the impedantrelco
with the human body or not. for compliant robotic arm in [1], [2] is reformulated fromeh



M
@
1 A /A
(a) Pressing [5]
f g /\77\,7,// /_/H\\/— = [6]
[7]
W
(b) Knéading
[8]
N/~ '"\7,:
[
[10]
(c) Plucking [11]

Fig. 7: Force curves of massage manipulation in sitting @den [12]

(13]
energetic viewpoints, and coupled stability is reassurethé
port-Hamiltonian framework; it is possible to improve the i
teracted behavior of impedance control with better knogted
on the contact dynamics for massage manipulation; the aont!®!
schemes by portinterconnection, which have been intelgsive
studied in the literature, may be used for massage manipulat [16]
Then, pressing, kneading, and plucking are realized on the
human body by the 4-DOF anthropomorphic compliant robotig 7]
arm in two scenarios to verify the coupled stability during
massage manipulation. The results show that coupled isyabil[w]
is guaranteed during different interacted scenarios, disated
by the foregoing theoretical analysis.

In the future, we will use the contact dynamics to stud)ngl
the massage performance of impedance control, to explore
the influence of the impedance variation, and to develop new
control schemes and new model so that more complicat
massage manipulation is realizezlg, rolling on the human
body in which nonholonomic constraints must be consideret?l]
and tapping on the human body in which we need to descril‘[;gz]
impact dynamics.

(14]

[23]
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