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Abstract: This paper is concerned with the asymptotic stability analysis of a one dimensional
wave equation subject to a nonmonotone distributed damping. A well-posedness result is
provided together with a precise characterization of the asymptotic behavior of the trajectories of
the system under consideration. The well-posedness is proved in the nonstandard Lp functional
spaces, with p ∈ [2,∞], and relies mostly on some results collected in Haraux (2009). The
asymptotic behavior analysis is based on an attractivity result on a specific infinite-dimensional
linear time-variant system.
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1. INTRODUCTION

This paper is concerned with the asymptotic behavior of a
one-dimensional wave equation subject to a nonmonotone
nonlinear damping. For control systems, it is always crucial
to consider nonlinear feedback laws. In particular, the
definition of the nonlinearity under consideration in this
paper includes the saturation, which models amplitude
limitations on the actuator. Such a phenomenon appears
in most of control systems, and it can lead to undesirable
behavior in terms of stability. Moreover, considering that
such a nonlinearity is nonmonotone is crucial for control
systems, because the model of the nonlinearity might have
some error.

However, as illustrated in many papers (Alabau-Boussouira
(2012), Haraux (2009), Marx et al. (2018), Slemrod (1989),
Feireisl (1993), etc.), the monotone property of the non-
linearity is crucial to first prove the asymptotic stability
of the system under consideration and second characterize
the trajectory of the latter system. In order to characterize
the asymptotic behavior of the trajectory of the system
under consideration, we consider the initial conditions in
an another functional setting than the classical one, that
is Lp(0, 1), with p ∈ [2,∞].

There exists a vast litterature about linear PDEs subject
to monotone nonlinear dampings. For instance, in Slemrod
(1989), asymptotic stability of the origin of abstract con-
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trol systems subject to monotone nonlinear dampings is
proved, using an infinite-dimensional version of LaSalle’s
invariance principle. These results have been then ex-
tended to more general infinite-dimensional systems in
Marx et al. (2017a). More recently, in Marx et al. (2018),
trajectory of such systems have been characterized via
Lyapunov techniques. Let us also mention Prieur et al.
(2016) and Marx et al. (2017b), where a wave equation
and a nonlinear Korteweg-de Vries, respectively, subject to
a nonlinear monotone damping are considered and where
the global asymptotic stability is proved. Finally, in Kang
and Fridman (2017), the local asymptotic stability of a
heat equation coupled with an ODE, controlled from the
boundary with a saturated feedback law, is proved.

The case of nonmonotone nonlinear damping have been
considered in few papers. In Feireisl (1993), the global
asymptotic stability of a one-dimensional wave equation
subject to a nonmonotone nonlinear damping is proved,
thanks to some compensated compactness technique. The
characterization of the trajectories is, however, not pro-
vided. In Martinez and Vancostenoble (2000), the tra-
jectory of a wave equation in two dimensions suject to
a nonmonotone damping is characterized, but for only a
specific nonmonotone damping. In this paper, we rather
focus on a more general nonlinear nonmonotone damping,
but only for a one dimensional wave equation. We are able
to characterize the trajectories of the system by studying
the functional spaces Lp(0, 1).

There exists also few papers dealing with the one dimen-
sional wave equation in this functional setting. Let us



mention Haraux (2009), which derives a well-posedness
analysis of a one dimensional wave equation in this func-
tional setting. Moreover, an optimal decay rate is obtained
for this equation. Recently, in Amadori et al. (2019), a
similar result have been obtained, using techniques coming
from conservation laws theory. Note that both of these
results hold true only for monotone nonlinear damping,
which is not the case of our paper.

In our paper, after introducing a general nonlinear non-
monotone damping, we propose a well-posedness analysis
of a one-dimensional wave equation subject to such a
damping. Futhermore, using Lyapunov techniques, we are
able to characterize the trajectory of this system in the Lp,
p ∈ [2,∞), provided that the initial conditions are in L∞.
This proof is mainly based on a result about linear time-
varying infinite-dimensional system, which is introduced
and proved in Appendix A.

This paper is organized as follows. In Section 2, the main
results of the paper are collected. We propose a well-
posedness and an asymptotic stability theorems. The sec-
ond result proposes futhermore a precise characterization
of the trajectories of the system. Section 3 is devoted to
the proof of the main results. Finally, Section 4 collects
some concluding remarks, together with further research
lines to be followed. Appendix A introduces a result of
independant interest about exponential convergence of a
specific time-varying infinite-dimensional linear systems,
following a finite-dimensional strategy provided in Chitour
et al. (1995) and Liu et al. (1996), but which is instrumen-
tal for the proof of our asymptotic stability theorems.

Notation: For any p ∈ [2,∞), the space Lp(0, 1) denotes

the space of functions f satisfying
(∫ 1

0 |f(x)|pdx
) 1

p

< +∞.

The space L∞(0, 1) denotes the space of functions sat-
isfying ess supx∈[0,1] |f(x)| ≤ +∞. For any p ∈ [2,∞],

the Sobolev space W 1,p(0, 1) (resp. W 2,p(0, 1)) is de-

fined as follows W
1,p
0 (0, 1) := {f ∈ Lp(0, 1) | f ′ ∈

Lp(0, 1) and f(0) = f(1) = 0} (resp. W 2,p(0, 1) := {f ∈
Lp(0, 1) | f ′, f ′′ ∈ Lp(0, 1)}).

2. MAIN RESULTS

The aim of this paper is to provide an asymptotic stability
analysis of the following system:





ztt(t, x) = zxx(t, x)− σ(a(x)zt(t, x)), (t, x) ∈ R+ × [0, 1]

z(t, 0) = z(t, 1) = 0, t ∈ R+

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ [0, 1],
(1)

where z denotes the state, a : [0, 1] → R+ is measurable
and bounded by some positive constant a∞ and σ is
a scalar nonlinear damping which satisfies the following
properties:

Definition 1. [Scalar nonlinear damping] A function σ :
R → R is said to be a scalar damping function if

1. It is locally Lipschitz and odd;
2. One has σ(0) = 0;
3. For any s ∈ R, σ(s)s > 0;
4. The function σ is differentiable at s = 0 with σ′(0) =

C1 for some C1 > 0.

Due to this definition (especially, item 2), the origin is an
equilibrium point for (1). Note that this nonlinearity is
not assumed to be monotone. The monotone property is
in many cases really useful for either the well-posedness
of the equation or the asymptotic stability of the origin.
We refer the reader to Marx et al. (2018) for a complete
discussion on this topic.

Example 1. (Example of nonlinear dampings). Below are
listed some examples of nonlinear dampings:

1. The classical saturation, defined as follows:

σ(s) = sat(s) :=





s if |s| ≤ 1,
s

|s| if |s| ≥ 1,
(2)

satisfies all the properties of Definition 1.
2. The following nonlinearity

σ(s) = sat

(
1

4
s− 1

30
sin(10s)

)
(3)

is also a nonlinear damping. Note moreover that it is
not monotone, as illustrated by Figure 1.
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Fig. 1. For any s ∈ [−5, 5], the figure illustrates the
function σ given by (3)

As illustrated in Marx et al. (2018), some regularity is
needed to obtain a characterization of the asymptotic
stability of (1). To be more precise, we need the state zt
to be bounded in L∞(0, 1). With a monotone nonlinearity
σ, one would have this regularity result thanks to some
nonlinear semigroup theorems. In the case of the system
under consideration in this paper, we need to follow
another strategy.

Our strategy relies on the introduction of these functional
spaces:

Hp(0, 1) := W
1,p
0 (0, 1)× Lp(0, 1)

Dp(0, 1) := W 2,p(0, 1) ∩W
1,p
0 (0, 1)×W

1,p
0 (0, 1),

(4)

with p ∈ [2,∞]. The first functional space is equipped with
the following norm:

‖(z, zt)‖Hp(0,1) :=

(∫ 1

0

[zx(x)|pdx
) 1

p

+

(∫ 1

0

|zt(x)|pdx
) 1

p

, ∀p ∈ [2,∞),

‖(z, zt)‖H∞(0,1) :=‖zx‖L∞(0,1) + ‖zt‖L∞(0,1), for p = ∞.
(5)



The second one is equipped with the following norm

‖(z, zt)‖Dp(0,1) :=

(∫ 1

0

|zxx(x)|pdx
) 1

p

+

(∫ 1

0

|ztx(x)|pdx
) 1

p

, ∀p ∈ [2,∞)

‖(z, zt)‖D∞(0,1) :=‖zxx‖L∞(0,1) + ‖zt,x‖L∞(0,1), for p = ∞.
(6)

Considering that (z0, z1) ∈ H∞(0, 1), our aim is to prove
an L∞ regularity on the state zt so that we can obtain
a characterization of the asymptotic behavior of the tra-
jectory in Hp(0, 1), with p ∈ [2,∞). But before stating
such a result, we need a suitable notion of solution for
systems modeled with (1). Such a notion is provided by
the following well-posedness theorem:

Theorem 1. [Well-posedness] For any initial conditions
(z0, z1) ∈ H∞(0, 1), there exists a unique solution (z, zt) ∈
L∞(R+;W

1,∞(0, 1))×W 1,∞(R+;L
∞(0, 1)) to (1). More-

over, the following inequality is satisfied, for all t ≥ 0

‖(z, zt)‖H∞(0,1) ≤ 2max(‖z′0‖L∞(0,1), ‖z1‖L∞(0,1)).
1 (7)

Now that the functional setting is introduced, we are in
position to state our asymptotic stability result

Theorem 2. [Semi-global exponential stability] Consider
initial conditions (z0, z1) ∈ H∞(0, 1) satisfying:

‖(z0, z1)‖H∞(0,1) ≤ R, (8)

where R is a positive constant. Then, for any p ∈ [2,∞),
there exist two positive constants K := K(R) and β :=
β(R) such that

‖(z, zt)‖Hp(0,1) ≤ Ke−βt‖(z0, z1)‖Hp(0,1), ∀t ≥ 0. (9)

3. PROOF OF THE MAIN RESULTS

3.1 Proof of Theorem 1

The proof of Theorem 1 relies on the following wave
equation with a source term



ztt(t, x) = zxx(t, x) + h(t, x), (t, x) ∈ R+ × [0, 1]

z(t, 0) = z(t, 1) = 0, t ∈ R+

z(0, x) = z0(x), zt(0, x) = z1(x), x ∈ [0, 1],

(10)

where h denotes the source term. From (Haraux, 2018,
Theorem 1.3.8), we know that, provided that z0, z1 ∈ H2

and that h ∈ L2(R+;L
2(0, 1)), there exists a unique

solution z ∈ C(R+;H
1
0 (0, 1)) ∩ C1(R+;L

2(0, 1)) to (10).
In particular, since H∞(0, 1) ⊂ H2, this result holds
true also for initial conditions (z0, z1) ∈ H∞. The first
step of our analysis in this section is to prove that
picking initial conditions in H∞(0, 1) and the source term
h ∈ L2(R+;L

∞(0, 1)) improves also the regularity of the
solution z itself.

To do so, our aim is to give an explicit formula for the
latter equation, using the reflection method surveyed in
Strauss (1992). Roughly speaking, this method consists in
extending the explicit formulation of trajectory of the wave
equation in an unbounded domain to a bounded domain.
To do so, we extend the initial datas to the whole line to
be odd with respect to both x = 0 and x = 1, that is

z̃0(−x) = −z̃0(x) and z̃0(2 − x) = −z̃0(x), (11)

1 The term z
′

0
denotes the derivative of z0 with respect to x.

where z̃0 denotes the 2-periodic odd extension of z0. A way
to do this is to define z̃0 as follows:

z̃0(x) =






z0(x), 0 < x < 1

− z0(−x), −l < x < 0

extended to be of period 2

(12)

We can define similarly a 2-periodic odd extension of z1
(resp. h), denoted by z̃1 (resp. h̃). Thanks to (Strauss,
1992, Theorem 1, Page 69), we can therefore define the
explicit trajectory z of (10) (known as the D’Alembert
formula) as follows:

z(t, x) =
1

2
[z̃0(x+ t) + z̃0(x− t)] +

1

2

∫ x+ct

x−ct

z̃1(s)ds

+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

h̃(w, s)dwds.

(13)

We can further define zt as follows

zt(t, x) =
1

2
(z̃′0(x+ t)− z̃′0(x− t))

+
1

2
(z̃1(x + t)− z̃1(x− t))

+
1

2

∫ t

0

(
h̃(s, x+ (t− s))− h̃(s, x− (t− s))

)
ds

(14)

It is clear from these two latter equations that, when
picking (z0, z1) ∈ H∞(0, 1) and h ∈ L2(R+;L

∞(0, 1)),
then

z ∈ C(R+;W
1,∞(0, 1)) ∩ C1(R+;L

∞(0, 1)).

We assume now that h̃ is written as follows

h̃(t, x) := −σ(ã(x)y(t, x)), (15)

where ã is a 2-periodic extension of a, y ∈ L2(0, T ;L2(0, 1))
and σ is a scalar nonlinear damping (which is odd, due
to Item 1 of Definition 1). In particular, it means that
h ∈ L2(R+;L

2(0, 1)). The proof of Theorem 1 consists
first in applying a fixed-point theorem, which will allow us
to prove the well-posedness of (1) for a small time T > 0
and second in using a stability result in Haraux (2009),
stated as follows

Proposition 1. Let us consider initial condition z0, z1 ∈
H∞(0, 1). If there exists a solution to (1), then the time
derivative of the following functional along the trajectories
of (1)

φ(z, zt) :=

∫ 1

0

(F (zt + zx) + F (zt − zx)) dx, (16)

with F any even and convex function, satisfies

d

dt
φ(z, zt) ≤ 0.

The latter proposition implies that

φ(z, zt) ≤ φ(z0, z1), ∀t ≥ 0. (17)

In particular, following the discussion in the proof of Corol-
lary 2.3. in Haraux (2009), if one picks 2 F (s) = [Pos(|s|−
2max(‖z0‖L∞(0,1), ‖z1‖L∞(0,1)))]

2, then one obtains that

φ(z, zt) = 0, (18)

2 The function Pos : s ∈ R → Pos(s) ∈ R+ is defined as follows:

Pos(s) =

{
s if s > 0

0 if s ≤ 0.



which implies that, for all t ≥ 0

max(‖zx(t, ·)‖L∞(0,1),‖zt(t, ·)‖L∞(0,1)) ≤
2max(‖z′0‖L∞(0,1), ‖z1‖L∞(0,1)).

(19)

Noticing that

‖(z, zt)‖H∞(0,1) ≤ max(‖zx(t, ·)‖L∞(0,1), ‖zt(t, ·)‖L∞(0,1)),

it is clear then that, for all t ≥ 0

‖(z, zt)‖H∞(0,1) ≤ 2max(‖z′0‖L∞(0,1), ‖z1‖L∞(0,1)) (20)

This estimate implies that, once one is able to prove that
there exists a solution (z, zt) of (1) in

L∞([0, T ];W 1,∞(0, 1)) ∩W 1,∞([0, T ];L∞(0, 1)),

for a small time T > 0, then the well-posedness of (1) is
ensured in L∞(R+;W

1,∞(0, 1)) ∩W 1,∞(R+;L
∞(0, 1)).

Now, we are in position to prove Theorem 1.

Proof. Let us define FT the space of measurable functions
defined on [0, T ]×R which are bounded, odd and 2-periodic
in space. We endow FT with the L∞-norm so that it
becomes a Banach space. Hence, denoting by ‖ · ‖T the
norm of the latter functional space, we have, for every
y ∈ FT

‖y‖T := sup
(t,x)∈[0,T ]×R

|y(t, x)|. (21)

Let us consider BK(y) the closed ball in FT centered at
y ∈ FT of radius K ≥ 0, where K remains to be defined.

We can now define the mapping with which we will apply
a fixed-point

φT : FT → FT

y 7→ φT (y),
(22)

where

φT (y) =
1

2
(z̃′0(x+ t)− z̃′0(x− t)) +

1

2
(z̃1(x+ t)− z̃1(x− t))

− 1

2

∫ t

0

(√
ã(x + t− s)σ(

√
ã(x+ t− s)y(s, x− (t− s))

+
√
ã(−x+ t− s)σ(

√
ã(−x+ t− s)y(s,−x− (t− s))

)
ds

(23)

Using the fact that σ is locally Lipschitz, note that, for
every y0 ∈ FT and K > 0, there exists a positive constant
C(y0,K) such that, for every y, ỹ ∈ BK(y0)

‖φT (y)− φT (ỹ)‖T ≤ C(y0,K)T ‖y− ỹ‖T . (24)

Pick K such that

K := 2 (‖φT (y0)‖T + ‖y0‖T ) (25)

and T sufficiently small such that

C(y0,K)T ≤ 1. (26)

Consider a sequence (yn)n∈N defined as

yn+1 = φT (yn).

If we prove that this sequence converges to y⋆, then we
can deduce that

y⋆ = φT (y
⋆).

This means that there exists a fixed-point for the mapping
φT , which implies in particular that (1) is well-posed in the
desired functional spaces. To prove the convergence of this
sequence, we prove that it is a Cauchy sequence. Indeed,

since BK(y0) is complete, any Cauchy sequence converges
in this set. By induction, one can prove that

‖yn+1 − yn‖T ≤ (C(y0,K)T )n‖y0 − y1‖T (27)

and
yn ∈ BK(y0). (28)

Indeed, thanks to the choice of T in (26), these two
properties are easily proved for n = 0 and, moreover, we
have with (24), for all n ≥ 1

‖yn+1 − yn‖T =‖φ(yn)− φ(yn−1)‖T
≤C(y0,K)T ‖φ(yn−1)− φ(yn−2)‖T
≤(C(y0,K)T )n‖y0 − y1‖T .

(29)

The inequality (27) can be deduced from the above in-
equality. The property (28) can be proved as follows:

‖yn+1‖ ≤‖yn‖T + ‖y1‖T + ‖y0‖T
≤‖y0‖T + ‖φT (y0)‖T + ‖φT (y0)‖T + ‖y0‖T
≤K

(30)

where in the first line we have used (27) and, in the second
line, we have used the fact that yn ∈ BK(y0).

The two properties (27) and (28) show that the sequence
yn is a Cauchy sequence. Since BK(y0) is a complete set,
this sequence is therefore convergent. This means in partic-
ular that there exists a fixed-point to the mapping φT (y0),
which implies that, for sufficiently small time T , there
exists a unique solution z ∈ L∞(0, T ;W 1,∞(0, 1)) and
zt ∈ L∞(0, T ;L∞(0, 1)). Thanks to (20), we can deduce
that there exists unique solution z ∈ L∞(R+;W

1,∞(0, 1))
and zt ∈ L∞(R+;L

∞(0, 1)). This concludes the proof of
Theorem 1. •

3.2 Proof of Theorem 2

The proof of Theorem 2 is divided into two steps: first, we
transform the system (1) into a system in the form (A.1),
which is in particular a linear time-variant system, and
apply Theorem 3 for the spaceH2, which is indeed the only
Hilbert space among all the spaces Hp(0, 1). Second, using
the fact that the solutions are bounded in H∞(0, 1) thanks
to Theorem 1, and invoking an interpolation theorem,
which is the Riesz-Thorin theorem, we conclude.

Proof.

First step: semi-global exponential stability in H2.
We first fix p = 2, but still consider the initial conditions
(z0, z1) ∈ H∞(0, 1). Moreover, we suppose that there
exists a positive constant R such that the initial conditions
satisfy

‖(z0, z1)‖H∞(0,1) ≤ R. (31)

In particular, due to Theorem 1, one has

‖(z, zt)‖H∞(0,1) ≤ 2R, ∀t ≥ 0. (32)

The system (1) may be rewritten as follows





ztt = zxx − d(t, x)a(x)zt,

z(t, 0) = z(t, 1) = 0,

z(0, x) = z0(x), zt(0, x) = z1(x),

(33)

with

d(t, x) =





σ(
√

a(x)zt)√
a(x)zt

, if a(x)zt 6= 0,

C1, if a(x)zt = 0.

(34)



This function comes from the function t 7→ σ(
√

a(x)zt√
a(x)zt

,

extended at 0, which is possible due to the differentiability
of the function σ at 0.

This system is in the form (A.1), with H = H2, U = H2,
D(A) = D2, and the operators A and B defined as follows

A : D(A) ⊂ H → H

[v1 v2]
⊤ 7→

[
v2 v′′1

]⊤ (35)

and B =
[
0
√
a(x)

]⊤
. It is well known that A generates a

strongly continuous semigroup of contractions (see Haraux
(2018)). Now, let us check whether d(t, ·) satisfies (A.2),
for all t ≥ 0.

Since the initial conditions (z0, z1) ∈ H∞(0, 1) and are
bounded by R in the H∞(0, 1) norm, then invoking Theo-
rem 1 we have, for all t ≥ 0

sup
x∈[0,1]

|zt(t, x)| ≤ 2R. (36)

Moreover, since
√
a(x) ≤ √

a∞, for all x ∈ [0, 1], and
because d is a continuous function, there exist two positive
constants d0 and d1, depending on R and a∞ such that

d0 := min
ξ∈[−2

√
a∞R,2

√
a∞R]

σ(ξ)

ξ
≤ d(t, x)

≤ max
ξ∈[−2

√
a∞R,2

√
a∞R]

σ(ξ)

ξ
:= d1.

(37)

Note moreover that the origin of the following system




zt = zxx − d0zt

z(t, 0) = z(t, 1) = 0

z(0, x) = z0(x), zt(0, x) = z1(x).

(38)

is exponentially stable in H2 for any initial conditions
(z0, z1) ∈ H2 (see e.g. Prieur et al. (2016)). The related
operator of this system is A − d0BB⋆, with domain
D(Ad0

) = D2. Therefore, all the properties required in
Theorem 3 are satisfied. Hence, there exist two positive
constants K := K(R) and β := β(R) such that

‖(z, zt)‖H2
≤ Ke−βt‖(z0, z1)‖H2

, ∀t ≥ 0. (39)

Second step: Semi-global exponential stability
in Hp(0, 1). From Theorem 1, we know that, for ev-
ery initial conditions (z0, z1) ∈ H∞(0, 1) satisfying
‖(z0, z1)‖H∞(0,1) ≤ R, and noticing that the trajectory
of (1) can be expressed with the evolution family W (t, 0)
associated to (33) 3 , one has

‖W (t, 0)(z0, z1)‖H∞(0,1) ≤ 2R, ∀t ≥ 0. (40)

Now, fix t > 0. Note that W (t, 0) is a linear operator
from (L2(0, 1))2 (resp. (L∞(0, 1))2) to (L2(0, 1))2 (resp.
(L∞(0, 1))2), if it associates (z′0, z1) ∈ L2(0, 1)2 (resp.
(z′0, z1) ∈ L∞(0, 1)2) to (zx, zt) ∈ L2(0, 1) (resp. (zx, zt) ∈
L∞(0, 1)2). Hence, we can apply the so-called Riesz-Thorin
theorem (Bergh and Löfström, 2012, Theorem 1.1.1, Page
2) and conclude that

‖W (t, 0)‖Hp(0,1) ≤ 2

(
K

2

) 2

p

e−
2β

p
t, ∀t ≥ 0, (41)

3 Evolution families are extension of semigroups for time-variant
linear infinite-dimensional systems.

where W (t, 0) corresponds exactly to the trajectory of (1)
with the initial condition z0, z1 ∈ H∞(0, 1). In particular,
for every (z0, z1) ∈ H∞(0, 1), one therefore has, for every
t ≥ 0

‖W (t, 0)(z0, z1)‖Hp(0,1) ≤‖W (t, 0)‖Hp(0,1)‖(z0, z1)‖Hp(0,1)

≤2

(
K

2

) 2

p

e−
2β

p
t‖(z0, z1)‖Hp(0,1).

This concludes the proof of Theorem 2. •

4. CONCLUSION

In this paper, we have provided a well-posedness analysis
of a one-dimensional wave equation subject to a nonlinear
nonmonotone damping. Futhermore, a characterization of
the asymptotic behavior of the latter system is given.
It is proved with Lyapunov techniques. This work paves
the way to many others. For instance, a first open and
natural question would be the case of multidimensional
wave equations, for which there does not exist any proof
of well-posedness in the functional setting introduced in
this paper.

Appendix A. EXPONENTIAL CONVERGENCE
RESULT FOR A LINEAR TIME-VARIANT SYSTEM

This appendix is devoted to the statement and the proof
of a theorem dealing with a time-variant linear infinite-
dimensional system. Indeed, as it is illustrated in Section
3.2, we can transform (1) as a time-variant linear infinite-
dimensional system. This transformation is inspired by
Chitour et al. (1995) and Liu et al. (1996), where such a
technique is applied for finite-dimensional linear systems
subject to a saturation. To define it, let us introduce H
(resp. U), a Hilbert space which is equipped with the norm
‖ · ‖H and the scalar product 〈·, ·〉H . The system under
study in this section is the following:





d

dt
v = (A− d(t)BB⋆)v := Ad(t)v

v(τ) = vτ ,
(A.1)

where A : D(A) ⊂ H → H , with D(A) the domain of
the operator A that we suppose densely defined in H ,
B ∈ L(U,H), B⋆ denotes the adjoint of B and d is a
continuous function. We assume moreover that A and its
adjoint A⋆ are dissipative, and that there exist positive
constants d0 and d1 such that d satisfies, for all t ≥ 0.

d0 ≤ d(t) ≤ d1. (A.2)

Due to these properties, the domain of Ad(t) is equal to
D(A) and, therefore, does not depend on t. Moreover,
always because of these properties, and since A and A⋆

are dissipative, one can prove that, for all t ≥ 0 and for all
v ∈ D(A)

〈Ad(t)v, v〉H ≤ 0, 〈A⋆
d(t)v, v〉H ≤ 0, (A.3)

which implies that each operator Ad(t) generates a
strongly continuous semigroup of contractions. Hence,
due to the discussion provided in (Chicone and La-
tushkin, 1999, Page 123), there exists an evolution family
(W (θ, τ))θ≥τ solving (A.1). In particular, this means that
there exists a unique strong solution v ∈ C(R+, D(A)) to
(A.1) for every v0 ∈ D(A).

We are now in position to state the following result.



Theorem 3. Consider the system given by (A.1). Sup-
posing that the origin of the following system





d

dt
v = (A− d0BB⋆)v := Ad0

v,

v(0) = v0

(A.4)

is globally exponentially stable, then, for any initial condi-
tions v0 ∈ H, the origin of (A.1) converges exponentially
to 0 with τ = 0.

Remark 1. The global asymptotic stability is not en-
sured for the linear time-variant system (A.1). Indeed, for
such systems, the global asymptotic stability has to be
proven for every initial condition vτ and for every τ ≥ 0.
This is not an issue for us. Indeed, we use this result to
prove the attractivity of (1). The stability of (1) already
holds thanks to Theorem 1. ◦

Proof. Since the origin of (A.4) is globally exponentially
stable, then, due to Datko (1970), there exist a self-adjoint
operator P ∈ L(H) and a positive constant C such that
the following inequality holds true

〈PAd0
v, v〉H + 〈Pv,Ad0

v〉H ≤ −C‖v‖2H , ∀v ∈ D(A)
(A.5)

Moreover, note that Ad0
is also a dissipative operator,

which means in particular that

〈Ad0
v, v〉H + 〈v,Ad0

v〉H ≤ 0, ∀v ∈ D(A). (A.6)

Now, consider the following candidate Lyapunov func-
tional for (A.1):

V (v) := 〈Pv, v〉H +M‖v‖2H , (A.7)

where M is a positive constant which has to be defined.
The time derivative of V along the trajectories of (A.1)
yields

d

dt
V (v) =〈(P +MIH)Ad(t)v, v〉H + 〈(P +MIH)v,Ad(t)v〉H

=〈PAd0
v, v〉H + 〈Pv,Ad0

v〉H
+M(〈Ad0

v, v〉H + 〈v,Ad0
v〉H)

− 〈B(d(t) − d0IH)B⋆v, (P +MIH)v〉H
− 〈(P +MIH)v,B(d(t) − d0IH)B⋆v〉H .

≤− C‖v‖2H − d0M‖B‖2L(H,U)‖v‖2H
+ 2(d1 − d0)‖B⋆‖L(H,U)‖P‖L(H)‖v‖2H
− 2M〈(d(t)− d0)B

⋆v,B⋆v〉U ,
(A.8)

where we have used (A.2) and (A.6) to get the inequality.
Recalling that d(t)− d0 ≥ 0, and setting

M =
2(d1 − d0)‖P‖L(H)

d0‖B‖L(H,U)
,

one has
d

dt
V (v) ≤ −C‖v‖2H , ∀v ∈ D(A). (A.9)

Since V satisfies the following inequalities

M‖v‖2H ≤ V (z) ≤ (‖P‖L(H) +M)‖v‖2H (A.10)

one can conclude that

‖v‖2H ≤ ‖P‖L(H) +M

M
exp

(
− C

‖P‖L(H) +M
t

)
‖v0‖2H ,

(A.11)
which ends the proof of Theorem 3. •
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