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We provide two hybrid numeric-symbolic optimization algorithms, computing exact sums of nonnegative circuits (SONC) and sums of arithmetic-geometricexponentials (SAGE) decompositions. Moreover, we provide a hybrid numeric-symbolic decision algorithm for polynomials lying in the interior of the SAGE cone. Each framework, inspired by previous contributions of Parrilo and Peyrl, is a rounding-projection procedure.

For a polynomial lying in the interior of the SAGE cone, we prove that the decision algorithm terminates within a number of arithmetic operations, which is polynomial in the degree and number of terms of the input, and singly exponential in the number of variables. We also provide experimental comparisons regarding the implementation of the two optimization algorithms.

Introduction

In this paper, we focus on certifying the output of polynomial optimization problems in a rigorous way. Finding the minimal value of a given polynomial in n variables under polynomial constraints is known to be NP-hard in general [START_REF] Laurent | Sums of squares, moment matrices and optimization over polynomials[END_REF]. The related problem of deciding nonnegativity of a polynomial under polynomial constraints is co-NP hard; see e.g., [START_REF] Blum | Complexity and real computation[END_REF].

This decision problem can be solved with the Cylindrical Algebraic Decomposition algorithm [START_REF] Collins | Quantier elimination for real closed elds by cylindrical algebraic decompostion[END_REF], which runs in time doubly exponential in n and polynomial in the maximal total degree d of the input functions. Further improved algorithms [START_REF] Grigoriev | Solving systems of polynomials inequalities in subexponential time[END_REF][START_REF] Basu | A new algorithm to nd a point in every cell dened by a family of polynomials[END_REF][START_REF] Bank | Generalized polar varieties: geometry and algorithms[END_REF], relying on critical point methods, allow to decide nonnegativity in singly exponential time in n. More generally, the complement of the problem lies in the existential theory of the reals, which can be solved in polynomial space and single exponential time [START_REF] Renegar | A faster PSPACE algorithm for deciding the existential theory of the reals[END_REF]. Safe validation of optimization problem results is mandatory for guaranted evaluation of mathematical functions [START_REF] Chevillard | Ecient and accurate computation of upper bounds of approximation errors[END_REF], certied roundo error bounds [START_REF] Magron | Certied Roundo Error Bounds Using Semidenite Programming[END_REF] or computer assisted proofs [MAGW15, HAB + 17].

In contrast to the algorithms mentioned above, several numerical frameworks have been developed in the last two decades. In the unconstrained case, one way to ensure nonnegativity of a given polynomial f is to decompose f as a sum of squares (SOS) of polynomials [START_REF] Parrilo | Structured Semidenite Programs and Semialgebraic Geometry Methods in Robustness and Optimization[END_REF][START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF], which provides a certicate that f is nonnegative over the reals. An SOS decomposition can be computed by solving a semidenite program (SDP) of size n+d n

. In the constrained case, certicates can be provided by the prominent moment-SOS hierarchy, also called Lasserre's hierarchy [START_REF] Lasserre | Global optimization with polynomials and the problem of moments[END_REF][START_REF] Lasserre | Moments, positive polynomials and their applications[END_REF]. Each relaxation is solved with a semidenite programming solver, implemented in nite-precision arithmetic, whose output is an approximate certicate. A drawback of these methods is that the size n+d n of the SDP matrices blows up when the degree d and number of variables n increases.

For larger values of n, a remedy consists of exploiting a potential sparsity/symmetry pattern arising in the input polynomials. A sparse version of Lasserre's hierarchy has been developed in [START_REF] Waki | Sums of Squares and Semidenite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity[END_REF][START_REF] Lasserre | Convergent SDP-Relaxations in Polynomial Optimization with Sparsity[END_REF] when the objective function can be written as a sum of polynomials, each of them involving a small number of variables. The framework from [START_REF] Riener | Exploiting Symmetries in SDP-Relaxations for Polynomial Optimization[END_REF] allows to take into account the symmetries of the polynomial optimization problem. One can also rely on the so-called bounded degree SOS hierarchy (BSOS) [START_REF] Lasserre | A bounded degree SOS hierarchy for polynomial optimization[END_REF]. In this hierarchy, positive polynomials are represented as a sum of two terms. The rst term is an SOS polynomial of degree xed in advance, while the second one belongs to the set of Krivine-Stengle representations, that is, is a nite combination of positive scalar weights and cross-products of the polynomials dening the set of constraints. This allows to handle larger instances than with the standard SOS hierarchy. The sparse variant of the BSOS hierarchy [START_REF] Weisser | Sparse-BSOS: a bounded degree SOS hierarchy for large scale polynomial optimization with sparsity[END_REF] can handle even bigger problems, under the same sparsity pattern assumptions than the ones used for the sparse SOS hierarchy.

If the support, i.e., number of monomial terms, of the polynomials is small in comparison to n+d n

, alternative relaxations based on geometric programming (GP) [START_REF] Dun | Geometric programming: Theory and application[END_REF], and, more generally, relative entropy programming (REP), potentially allow to obtain lower bounds in a more ecient way than SDP relaxations. Both GP and REP are (equivalent to) convex optimization problems over the exponential cone. These alternative relaxations also provide the possibility to obtain answers when the SDP relaxations cannot be implemented because their size is too large for state-of-the art SDP solvers.

A rst class of alternative certicates is given by sums of nonnegative circuit (SONC) polynomials. A circuit polynomial is a polynomial with support containing only monomial squares, at the exception of at most one term, whose exponent is a strict convex combination of the other exponents. In [START_REF] Iliman | Amoebas, nonnegative polynomials and sums of squares supported on circuits[END_REF], the authors derive a necessary and sufcient condition to prove that a given circuit polynomial is nonnegative. When the input polynomial has a more general support, a rst attempt is given in [START_REF] Ghasemi | Lower bounds for polynomials using geometric programming[END_REF][START_REF] Ghasemi | Lower bounds for a polynomial on a basic closed semialgebraic set using geometric programming[END_REF] to compute lower bounds while relying on GP. This approach is generalized in [START_REF] Dressler | An approach to constrained polynomial optimization via nonnegative circuit polynomials and geometric programming[END_REF] to compute SONC certicates when the set of constraints is dened as a nite conjunction of polynomial inequalities. In [START_REF] Dressler | A Positivstellensatz for Sums of Nonnegative Circuit Polynomials[END_REF] the authors provide a bounded degree hierarchy, which can be computed via relative entropy programming. In the recent contribution [START_REF] Seidler | An experimental comparison of sonc and sos certicates for unconstrained optimization[END_REF], the second and the third author develop an algorithm computing SONC certicates for sparse unconstrained polynomials with arbitrary support, together with a software library [START_REF] Seidler | POEM: Eective methods in polynomial optimization[END_REF], called POEM (Eective Methods in Polynomial Optimization). Although this framework yields a very ecient way to obtain a lower bound for a given polynomial, a drawback is that it currently remains unclear whether the number of circuits involved in a SONC relaxation is exponential in the number of terms of this polynomial. A second class of alternative certicates is given by sums of arithmetic-geometricmean-exponentials (SAGE) polynomials. An AGE polynomial refers to a signomial, i.e., a weighted sum of exponentials composed with linear functionals of the variables, which is globally nonnegative with at most one negative coecient. The framework from [START_REF] Chandrasekaran | Relative Entropy Relaxations for Signomial Optimization[END_REF] derives a hierarchy of convex relaxations providing a sequence of increasing lower bounds for the optimal value of signomial programs (SP). For an input polynomial belonging to the SAGE cone, one can compute a SAGE decomposition by solving an REP, involving linear and relative entropy functions. Furthermore, it is shown in [START_REF] Murray | Newton polytopes and relative entropy optimization[END_REF]Theorem 20] that the cones of SAGE and SONC polynomials are related through their equivalence in terms of extreme rays. Namely, the extreme rays of the SAGE cone are supported on either a single coordinate or a set of coordinates inducing a simplicial circuit (a circuit with elements containing -1 extreme points). Hence, both cones contain the same polynomials.

However, these alternative schemes share the same certication issues than the ones based on SDP relaxations. GP/REP/SP solvers rely on interior-point algorithms, implemented in nite-precision. Thus, they output only approximate certicates. In the unconstrained case, the rounding-projection procedure by Peryl and Parrilo [START_REF] Peyrl | Computing sum of squares decompositions with rational coecients[END_REF] allows to compute a weighted rational SOS decompositon of a polynomial f of degree d = 2k, belonging to the interior of the SOS cone. In the rounding step, the algorithm computes an approximate Gram matrix of f , i.e., a matrix G such that f v T k Gv k , where v k is the vector of all monomials of degree at most k, then rounds G in the space of rational matrices. In the projection step, the algorithm performs an orthogonal projection to obtain a matrix G, such that f = v T k Gv k . With sucient precision digits, there always exists an SDP matrix fullling the above equality, yielding an (exact) Gram matrix associated to f . The last step to retrive an exact weighted SOS decomposition for f consists of performing an exact LDL T procedure [GL96, 4.1]. Another framework [START_REF] Magron | On Exact Polya and Putinar's Representations[END_REF][START_REF] Magron | On Exact Polya, Hilbert-Artin and Putinar's Representations[END_REF], provides a hybrid numeric-symbolic framework, which computes exact SOS decompositions under the same assumptions. This is based on a perturbation-compensation algorithm.

In the perturbation step, one considers an arbitrary small perturbation of the input polynomial, and computes an approximate SOS decomposition with an SDP solver. In the compensation step, one relies on the perturbation terms to recover an exact SOS decomposition. By comparison with the rounding-projection procedure, this algorithm perturbates the input and provides an approximate LDL T decomposition of the approximate Gram matrix, instead of a projection. It is shown in [START_REF] Magron | On Exact Polya, Hilbert-Artin and Putinar's Representations[END_REF] that both procedures have a boolean running time, which is singly exponential in n and polynomial in d.

Practical experiments emphasize that the bit size of the SOS outputs obtained with the rounding-projection algorithm is often larger than the one obtained with the perturbationcompensation algorithm. The perturbation-compensation algorithm is inspired from prior work [START_REF] Magron | Algorithms for weighted sum of squares decomposition of non-negative univariate polynomials[END_REF], focusing on weighted SOS decompositions for nonnegative univariate polynomials, where the algorithm from [START_REF] Chevillard | Ecient and accurate computation of upper bounds of approximation errors[END_REF] is formalized and analyzed. In the unconstrained case, the framework from [START_REF] Magron | On Exact Polya, Hilbert-Artin and Putinar's Representations[END_REF] also extends the perturbation-compensation and rounding-projection algorithms to compute exact Polya and Hilbert-Artin's representations, respectively for positive denite forms and nonnegative polynomials, yielding decompositions into SOS of rational functions, under the assumption that the numerator belongs to the interior of the SOS cone. In the constrained case, further algorithms are proposed to derive exact rational Putinar's representations for positive polynomials over basic compact semialgebraic sets. All corresponding algorithms are integrated in the RealCertify [START_REF] Magron | RealCertify: a Maple package for certifying non-negativity[END_REF] Maple library.

The motivation of the present work is to improve the scalability of these existing certication frameworks, especially for large-size problems, which are currently out of reach when relying on SOS-based methods.

Contributions. In this paper, we provide a hybrid numeric-symbolic framework, in a similar spirit as [START_REF] Peyrl | Computing sum of squares decompositions with rational coecients[END_REF], to certify exactly lower bounds obtained after computing SON-C/SAGE decompositions with GP/REP relaxations. The resulting rounding-projection algorithms allow to handle unconstrained polynomial problems with such exact rational decompositions. Our rst contributions, given in Section 3, are two procedures, called optsonc and optsage, providing exact rational SONC and SAGE decompositions, respectively. These two algorithms allow to certify exactly lower bounds of unconstrained polynomials. Our framework is inspired from [START_REF] Peyrl | Computing sum of squares decompositions with rational coecients[END_REF], rst by rounding the output of a given GP/REP relaxation into rational numbers, next by performing an appropriate scaling of these numbers to obtain a solution satisfying exactly the (in)-equality constraints of the relaxation. We present another rounding-projection procedure called intsage in Section 4 to handle the case of polynomials belonging to the interior of the SAGE cone.

When the input is an n-variate polynomial of degree d with t monomial terms, and integer coecients of maximum bit size τ , we prove that Algorithm intsage outputs SAGE decompositions within O (τ • (4d + 6) 3n+3 t 7 log t) arithmetic operations. This is in contrast with the decision algorithm intsos from [START_REF] Magron | On Exact Polya, Hilbert-Artin and Putinar's Representations[END_REF], which certies nonnegativity of polynomials lying in the interior of the SOS cone in boolean time O (τ 2 • (4d + 2) 15n+6 ). The two optimization algorithms optsonc and optsage are available within the POEM software library. In Section 5, we provide experimental comparisons of these two algorithms.
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Preliminaries

Let Z be the set of integers and let R, R ≥0 and R >0 be the set of real, nonnegative real and positive real numbers, respectively. With Q being the set of rational numbers, one denes similarly Q >0 , Q ≥0 . The bit size of i ∈ Z is denoted by τ (i) := log 2 (|i|) + 1 with τ (0) := 1. Given i ∈ Z and j ∈ Z\{0} with gcd(i, j) = 1, we dene τ (i/j) := max{τ (i), τ (j)}. For two mappings g, h : N l → R, we use the notation g(v) ∈ O (h(v)) to state the existence of i ∈ N such that g(v) ≤ ih(v), for all v ∈ N l . Throughout the paper, we use bold letters for vectors (small) and matrices (capital), e.g., x = (x 1 , . . . , x n ) ∈ R n . For a given vector x, we denote the j-th coordinate of x by x j ∈ R, and x \j ∈ R n-1 as the vector obtained by x after removing x j . Furthermore, let R[x] = R[x 1 , . . . , x n ] be the ring of real n-variate polynomials. We dene Q[x] similarly. We denote the set of all n-variate polynomials of degree less than or equal to 2d by R[x] n,2d .

We mostly regard sparse polynomials p

∈ R[x] supported on a nite set A ⊂ N n ; we write A (p) if a clarication is necessary. Thus, p is of the form p(x) = α∈A b α x α with b α ∈ R \ {0} and x α = x α 1 1 • • • x αn n .
Unless stated dierently, we follow the convention t = #A. Sparsity then means t

n+2d 2d = dim (R[x] n,2d
). The support of p can be expressed as an n × t matrix, which we denote by A, such that the j-th column of A is α(j). 

∈ R[x] is of the form p(x) = r j=1 b α(j) x α(j) + b β x β , with 0 ≤ r < n, coecients b α(j) ∈ R >0 , b β ∈ R, exponents α(j) ∈ (2Z) n , β ∈ Z n ,
such that the following condition holds: there exist unique, positive barycentric coordinates λ j relative to the α(j) with j = 1, . . . , r satisfying β = r j=1 λ j α(j) with λ j > 0 and r j=1 λ j = 1.

(2.1) For every circuit polynomial p we dene the corresponding circuit number as

Θ p = r j=1 b α(j) λ j λ j .
Condition (2.1) implies that A(p) forms a minimal ane dependent set. Those sets are called circuits, see e.g., [START_REF] Oxley | Matroid theory[END_REF]. More specically, Condition (2.1) yields that New(p) is a simplex with even vertices α(1), . . . , α(r) and that the exponent β is in the strict interior of New(p) if dim(New(p)) ≥ 1. Therefore, we call p β x β the inner term of p.

Circuit polynomials are proper building blocks for nonnegativity certicates since the circuit number alone determines whether they are nonnegative.

Theorem 2.2 ([IdW16], Theorem 3.8). Let p be a circuit polynomial as in Denition 2.1. Then p is nonnegative if and only if:

(1) p is a sum of monomial squares, or

(2) the coecient b β of the inner term of p satises |b β | ≤ Θ p .

The set of sums of nonnegative circuit polynomials (SONC) is a convex cone. For further details about SONC see [START_REF] De Wol | Amoebas, nonnegative polynomials and sums of squares supported on circuits[END_REF][START_REF] Iliman | Amoebas, nonnegative polynomials and sums of squares supported on circuits[END_REF][START_REF] Dressler | A Positivstellensatz for Sums of Nonnegative Circuit Polynomials[END_REF].

Let us consider p = poly(A, b) = α∈A b α x α . To algorithmically determine a lower bound of p via SONC, we take an approach, similar to the one described in [START_REF] Seidler | An experimental comparison of sonc and sos certicates for unconstrained optimization[END_REF]3]. As initial relaxation, each monomial non-square is equipped with a negative sign. 

λ β α • α = β α∈MoSq(p) λ β α = 1 λ β α ≥ 0 for all α ∈ MoSq (p) (LP)
If {α : λ α > 0} is not minimal, then we can reduce it by applying the following lemma.

The lemma is folklore, for a constructive proof see e.g. [SdW18a, Lemma 3.1].

Lemma 2.3. For every non-extremal point v ∈ A (p) \ Vert (p), we can eciently compute anely independent v 0 , ..., v m ∈ Vert (p) with m ≤ n such that and v ∈ conv ({v 0 , ..., v m }).

So for each β, we obtain a vector λ β of barycentric coordinates, relative to the simplex Cov β = α ∈ MoSq (p) : λ β α > 0 . We denote these computations by λ, (Cov) := cover(p).

Then, we solve the following geometric program (GP):

p SONC = min X β∈NoSq(p) X β,0 s.t. β∈NoSq(p) X β,α ≤ b α , α ∈ MoSq (p) , α = 0 , α∈Cov β X β,α λ β α λ β α = -b β , β ∈ NoSq (p) , X β,α ≥ 0 , α ∈ MoSq (p) , β ∈ NoSq (p) . (SONC)
For an overview about GPs, see [START_REF] Boyd | A tutorial on geometric programming[END_REF][START_REF] Boyd | Convex optimization[END_REF].

If p SONC is attained at X , then one has p β = α∈Cov β X β,α • x α + b β x β ≥ 0 by Theorem 2.2, and p + p SONC -b 0 = β∈NoSq(p) p β ≥ 0. Hence, b 0 -p SONC is a lower bound of p on R n .
These computations correspond to [SdW18a, 3.3.2], where each cover contains just a single non-square. The approach dispayed here simplies the computations, while keeping the quality of the results.

2.2. SAGE Polynomials. Let e := exp (1). The relative entropy function is dened for

ν, c ∈ R t + by D(ν, c) := t j=1 ν j log ν j c j
. A signomial p is a weighted sum of exponentials composed with linear functionals of a variable x ∈ R n : given t ∈ N, c 1 , . . . , c t ∈ Q and α(1), . . . , α(t) ∈ N n , we write p(x) = t j=1 c j exp (α(j) • x). Note that for general signomials, one considers c 1 , . . . , c t ∈ R and α(1), . . . , α(t) ∈ R n . However, for certication purposes, we restrict the coecients to the set of rationals and the exponents to tuples of nonnegative integers. A globally nonnegative signomial with at most one negative coecient is called an AM/GM exponential or arithmetic-geometric-mean-exponential (AGE).

Certifying the nonnegativity of an AGE is done by verifying an arithmetic-geometric-mean inequality. This is recalled in the following result, stated in

[CS16, Lemma 2.2]. Lemma 2.4. Let p(x) = t j=1 c j exp (α(j) • x) + β exp (α(0) • x), with c 1 , . . . , c t ∈ Q >0 , β ∈ Q and α(0), α(1), . . . , α(t) ∈ N n . Then p(x) ≥ 0 for all x ∈ R n if and only if there exists ν ∈ R t + such that D(ν, ec) ≤ β and t j=1 α(j)ν j = (1 • ν) α(0).
Given α(0), α(1), . . . , α(t) ∈ N n , the set of AGE signomials is a convex cone, denoted by C AGE , and dened as follows:

C AGE :=    (c, β) ∈ R t + × R : There exists ν ∈ R t + with D(ν, ec) ≤ β , t j=1 α(j)ν j = (1 • ν) α(0)    .
The set of sums of AGE (SAGE) polynomials is also a convex cone, denoted by C SAGE .

By [CS16, Proposition 2.4], one has the following characterisation.

Theorem 2.5. A signomial f = t i=1 b j exp (α(j) • x) lies in C SAGE if and only if there is c (1) , . . . , c (t) , ν (1) , . . . , ν (t) ∈ R t satisfying the following conditions:

t j=1 c (j) = b , t i=1 α(i)ν (j) i = 0 , -1 • ν (j) \j = ν (j) j , c (j) \j , ν (j) \j ≥ 0 , D ν (j) \j , ec (j) \j ≤ c (j) j , j = 1, . . . , t .
(SAGE-feas) One way to obtain lower bounds of a signomial f is to solve the following REP:

f SAGE = sup{C ∈ R : f -C ∈ C SAGE } . (SAGE)
The constraints of (SAGE) correspond to (SAGE-feas), after replacing b by the vector of coecients of f -λ.

Exact Optimization via SONC/SAGE

In this section, we present two algorithms for converting a numerical solution for SONC and SAGE into a lower bound in exact arithmetic. For a polynomial p = α∈A b α x α , we assume 0 ∈ A, so there exists a constant term p(0) = 0. Furthermore, we require that every non-square monomial lies in the interior of New (p) or on a face of New (p) including the origin. We denote numerical solutions X, c, ν with a tilde, intermediate rational solutions X, c with a hat, and our nal rational solution with regular letters.

3.1. Symbolic Post-Processing for SONC. We focus on certifying exactly lower bounds of a given polynomial via SONC decompositions. We rely on the numerical procedure from Section 2.1, which starts to compute a covering of this polynomial. Under these assumptions, we design an algorithm, called optsonc, to convert numerical lower bounds, corresponding to SONC decompositions obtained via GP, into exact lower bounds.

Algorithm 3.1. optsonc Require:

p = α∈A b α x α ∈ Q[x], rounding precision δ ∈ Q >0 , precision parameter δ ∈ Q >0 for the GP solver. Ensure: Matrix X of rational numbers, coecients of the decomposition, certied lower bound C ∈ Q of p on R n . 1: (λ, Cov) ← cover(p) 2: X ← GP(p, δ, λ, Cov)
Solve (SONC) with accuracy δ 3: X ← round X, δ In line 2, the function GP calls a GP solver to compute a δ-approximation X of (SONC). This approximation is then rounded in line 3 to a rational point X with a prescribed maximal relative error of δ. The projection step from line 5 scales the entries of X, yielding β X β,α = b α , for all β ∈ MoSq (p), to satisfy the rst set of equality constraints of (SONC). In line 9, we round the coecient up, with relative error δ, so that we have

X β,0 ≥ λ β 0 •   -b β • α∈Cov β λ β α X β,α λ β α   1 λ β 0
.

As in Section 2.1, each p β := α∈Cov β X β,α • x α + b β x β is a nonnegative circuit polynomial. Hence, C is a lower bound for p. Our assumption that every circuit polynomial contains a constant term, is necessary to ensure that λ β 0 = 0 for all β ∈ NoSq (p) in our computations above.

3.2. Symbolic Post-Processing for SAGE. Similarly to Algorithm 3.1, our algorithm optsage takes a given polynomial as input, obtains a numerical lower bound related to a SAGE decomposition computed via REP, and applies a post-processing to nd a certied lower bound .

Algorithm 3.2. optsage Require:

g = t i=1 b i x α(i) ∈ Q[x], rounding precision δ ∈ Q >0 , precision parameter δ ∈ Q >0 for the REP solver.
Ensure: Matrices c, ν of rational numbers, coecients of the decomposition, certied

lower bound C ∈ Q of g on R n . 1: f ← g(exp x -exp(-x))
2: Build the (n + 1) × t matrix Q with columns (α(1), 1), . . . , (α(t), 1)

3: c, ν ← REP(f, δ)
Solve (SAGE) with accuracy δ 4: c ← round c, δ , ν ← round ν, δ rounding step 5: for j ∈ {1, . . . , t} do 6:

LP ← Q • ν (j) = 0, ν (j) \j ≥ 0, ν (j) -ν (j) ∞ ≤ δ, ν (j) 
1 ≥ δ 7:

ν (j) ← some element from LP projection step 8:

c (j) \j ← c (j) \j , c (j) 
j ← b j -1 • c (j) \j 
9: end for 10: for j ∈ {1, . . . , t} do 11:

power ← 1 -log ν (j) 1 -1 ν (j) 1 c (j) j -i>1,i =j ν (j) i log ν (j) i ec (j) i 12: c (j)
1 ← round-up exp (power) , δ adjust constant term 13: end for

14: C ← b 1 -t j=1 c (j) 1 15: return c, ν, C
Given a polynomial g(y) = t j=1 b j y α(j) , one could apply the change of variables y i := exp x i when y ∈ R n >0 . Since this transformation is only valid on the nonnegative orthant, one workaround used in optsage is to dene the signomial f (x) = g(exp x -exp(-x)) from line 1, in a such a way that a lower bound of f yields a lower bound of g. The REP function in line 3 calls an REP solver to compute a δ-approximation ( ν, c) of (SAGE). This approximation is then rounded to a rational point ( ν, c) with a prescribed maximal relative error of δ. The projection steps in line 7 and line 8 ensure that (ν, c) satises exactly the linear equality constraints of (SAGE), i.e., Qν (j) = 0 and t j=1 c (j) = b. The rst projection step boils down to exactly solve an LP with the constraint that ν (j) 1 > 0, for all j = 1, . . . , t, to ensure that further computation in line 12 are well-dened. Note that this projection could be done while relying on the pseudo-inverse of Q, but one obtains better practical results via this procedure. To ensure that the relative entropy inequality constraints of (SAGE) are satised, the last step of optsage aims at nding c (1)

j such that c (j) j ≥ D ν (j) \j , ec (j) \j = i>1,i =j ν (j) i log ν (j) i ec (j) i + ν (j) 1 log ν (j) 1 ec (j) 1
. Thus, one relies on the round-up procedure in line 12 to compute c

(j) 1 ≥ exp 1 -log ν (j) 1 -1 ν (j) 1 c (j) j -i>1,i =j ν (j) i log ν (j) i ec (j) i
. Eventually, one has t j=1 c

(j) i = b i , for all i > 1 and t j=1 c

(j) 1 = b 1 -C, which certies that f -C ≥ 0 on R n . We refer to appendix A.2 for an example of exact SAGE decomposition obtained with optsage.

Deciding Nonnegativity via SAGE

We denote by int (C SAGE ) the interior of the cone C SAGE of SAGE signomials. A sig- nomial f = t j=1 b j exp (α(j) • x) lies in int (C SAGE ) if and only there is c (1) , . . . , c (t) , ν (1) , . . . ,

ν (t) ∈ R t such that t j=1 c (j) = b , t i=1 α(i)ν (j) i = 0 , -1 • ν (j) \j = ν (j) j , c (j) \j , ν (j) \j > 0 , D ν (j) \j , ec (j) \j < c (j) j , j = 1, . . . , t . (INTSAGE-feas)
Without the assumptions from Section 3, we state and analyze a decision algorithm to certify nonnegativity of signomials belonging to the interior int (C SAGE ) of the SAGE cone. The resulting hybrid numeric-symbolic algorithm, called intsage, computes exact rational SAGE decompositions of such signomials.

For complexity analysis purpose, we recall the following bound for the roots of univariate polynomials with integer coecients: Lemma 4.1. [Mig92, Theorem 4.2 (ii)] Let f ∈ Z[x] of degree d, with coecient bit size bounded from above by τ . If f ( x) = 0 and x = 0, then 1

2 τ +1 ≤ | x| ≤ 2 τ + 1. Lemma 4.2. Let f = t j=1 b j exp (α(j) • x) ∈ int (C SAGE ) of degree d with τ = τ (f ). Then, there exists N ∈ N such that for ε := 2 -N , f -ε t j=1 exp (α(j) • x) ∈ C SAGE , with N ≤ τ (ε) ∈ O (τ • (4d + 6) 3n+3 ).
Proof. Since f ∈ int (C SAGE ), there are c (1) , . . . , c (t) , ν (1) , . . . ,

ν (t) ∈ R t such that t j=1 c (j) = b, t i=1 α(i)ν (j) i = 0, -1 • ν (j) \j = ν (j) j , c (j) \j , ν (j) \j > 0 and D ν (j) \j , ec (j) \j < c (j) j ,
for all j = 1, . . . , t. Therefore, there exists N ∈ N such that for ε := 2 -N , one has D ν (j) \j , ec

(j) \j + ε < c (j)
j , for all j = 1, . . . , t. For all i, j = 1, . . . , t, For the second claim, we start to perform the change of variable y i := exp x i , for all i = 1, . . . , n, dene g(y, z) := t j=1 b j y α(j) -z t j=1 y α(j) , for all y ∈ R n >0 . It is enough

to select ε = 2 -N such that ε ≤ inf y∈R n >0 t j=1 b j y α(j)
t j=1 y α(j) . Let us consider the algebraic set V dened by:

V := (y, z) ∈ R n+1 : g(y, z) = ∂g ∂y 1 = • • • = ∂g ∂y n = 0 .
Using [MSED18, Proposition A.1], there exists a polynomial in Z[z] of degree less than (d + 1) n+1 with coecients of bit size less than τ • (4d + 6) 3n+3 such that its set of real roots contains V . By Lemma 4.1, it is enough to take N ≤ τ • (4d + 6) 3n+3 , yielding the desired result.

4.1. Algorithm intsage. We present our algorithm intsage computing exact rational SAGE decompositions for signomials in int (C SAGE ).

Algorithm 4.3. intsage Require:

f = t j=1 b j exp (α(j) • x) ∈ int (C SAGE ), rounding precision δ ∈ Q >0 , precision
parameter δ ∈ Q >0 for the REP solver.

Ensure: Matrices c, ν of rational numbers.

1: Build the (n + 1) × t matrix Q with columns (α(1), 1), . . . , (α(t), 1) if for all j ∈ {1, . . . , t}, ν (j) \j , c The routine pseudoinv in line 2 computes the pseudo-inverse of Q, i.e., a matrix Q + such that QQ + Q = Q. Next, we enter in the loop starting from line 4. The REP function calls an REP solver to compute a δ-approximation ( ν, c) of (INTSAGE-feas). The projection steps ensure that (ν, c) satises exactly the linear equality constraints of (SAGE-feas), i.e., Qν Lemma 4.4. Let f = t j=1 b j exp (α(j) • x) ∈ int (C SAGE ) of degree d with τ = τ (f ). Let ε be as in Lemma 4.2.

2: Q + ← pseudoinv(Q) 3: ok ←
ν (j) ← (I -Q + Q) ν (j) 9: c (j) \j ← c (j) \j , c (j) 
(j) \j ≥ 0, c (j) j ≥ D ν (j) \j , ec (j) 
(j) = Q(I -Q + Q)ν (j) = Q -QQ + Q = 0
(1) There exists a solution of (ν, c) of (INTSAGE-feas) and

δ ∈ Q >0 such that δ ≤ 1, (ν, c) satises, D ν (j)
\j , e c (j)

\j + δ1 + ε 2 ≤ c (j)
j , t j=1 c (j) = b, for all i, j = 1, . . . , t.

(2) There exists a solution (ν, c) of (INTSAGE-feas) and δ ∈ Q >0 such that (ν, c) satises D ν (j) \j + δ1, ec

(j) \j + ε 2 ≤ c (j)
j , for all j = 1, . . . , t.

(3) There exists a solution (ν, c) of (INTSAGE-feas) and

δ ∈ Q >0 such that (ν, c) satises D (1 + δ)ν (j)
\j , ec

(j) \j + ε 2 ≤ c (j)
j , for all j = 1, . . . , t. In each case, τ (δ) ∈ O (τ • (4d + 6) 3n+3 ).

A proof for this lemma is provided in appendix A.1. Theorem 4.5. Let f = t j=1 b j exp (α(j) • x) ∈ int (C SAGE ) of degree d and τ = τ (f ). There exist δ and δ of bit size less than O (τ • (4d + 6) 3n+3 ), such that intsos(f, δ, δ) terminates and outputs a rational SAGE decomposition of f within O (τ • (4d + 6) 3n+3 t 7 log t) arithmetic operations.

Proof. We rst show that the loop of Algorithm intsage terminates with δ and δ of bit size bounded by O (τ • (4d + 6) 3n+3 ). Let ε be as in Lemma 4.2. When running the procedure REP, one solves (SAGE-feas) at precision δ, thus one nds an approximate solution ( ν, c) such that

t j=1 c (j) -b ∞ ≤ δ, D ν (j) \j , e c (j) \j +ε ≤ c (j) j + δ, and Q ν (j)
∞ ≤ δ, for all j = 1, . . . , t. After the rounding and projection steps, one obtains ν (j) = (I -Q + Q) ν (j) and ν (j) -ν (j) ∞ ≤ δ. Since α j (i) ≤ d, for all i, j = 1, . . . , t, the bit size of the entries of the matrix Q is upper bounded by τ (d). Thus, the pseudo-inverse Q + has rational entries of bit size bounded by O (t log t + t log d) = O (t log t), since the bit size is the same as for the determinant length, see [START_REF] Basu | A new algorithm to nd a point in every cell dened by a family of polynomials[END_REF]Corollary 8.13]. This implies that the bit size of the dierence between the entries of ν and ν is upper bounded by O t log t + τ ( δ) + τ ( δ) . Similarly, the bit size of the dierence between the entries of c and c is upper bounded by O τ + τ ( δ) . By Lemma 4.4, one can perform any absolute or relative perturbation of ν and c, and still ensure that the resulting (ν, c) satises D ν

(j) \j , ec (j) \j ≤ c (j) j , if the
perturbation is small enough with bit size at most O (τ • (4d + 6) 3n+3 ). This implies that one must choose δ and δ small enough, with the same upper bound on their bit sizes. The same reasoning applies to ensure that ν 

√

N log(N )) iterations; see e.g. [Ren01, Section 2.4]. For (x, y, z) ∈ R 3 , the standard barrier complexity of a single relative entropy constraint x log(x/y) ≤ z, x, y ≥ 0 is equal to 4. In addition, the barrier complexity of a set of constraints is upper bounded by the sum of the complexities of the individual constraints. Therefore, the relative entropy formulation given in (SAGE-feas) has a barrier complexity of N ≤ 4t 2 . At each iteration of the interior-point method, one needs to solve an LP involving 2t 2 variables, which can be done within O (t 6 ) arithmetic operations. This yields the upper bound of O (τ • (4d + 6) 3n+3 t 7 log t) on the total number of arithmetic operations required while calling intsage. All other arithmetic operations performed by the algorithm have a negligible cost with respect to the REP procedure.

Experimental Comparisons

We discuss the actual bit sizes and physical running time of optsonc and optsage procedures, given by Algorithm 3.1 and Algorithm 3.2. We describe the setup of our experiment and explain how our random instances were created. Afterwards, we discuss https://www3.math.tu-berlin.de/combi/RAAGConOpt/poem.html

For our experiment, POEM calls a range of further software and solvers for computing the certicates. For the numerical solutions of SONC and SAGE, we use CVXPY 1.0.12 [START_REF] Diamond | CVXPY: A Python-embedded modeling language for convex optimization[END_REF], to create the convex optimization problems, together with the solver ECOS 2.0.7 [START_REF] Domahidi | ECOS: An SOCP solver for embedded systems[END_REF]. The symbolic computations were done in SymPy 1.3 [START_REF] Joyner | Open source computer algebra systems: Sympy[END_REF].

Investigated Data

The experiment was carried out on a database containing 2020 randomly generated polynomials. The possible numbers of variables are n = 2, 3, 4, 8, 10; the degree takes values d = 6, 8, 10, 18, 20, 26, 28 and the number of terms can be t = 6, 9, 12, 20, 24, 30, 50. For each combinations we create instances, where the number of negative terms is one of a few xed ratios of t. In particular, the size of (SAGE) grows quadratically in t. We created the database using POEM, and it is available in full at the homepage cited above. Our instances are a subset of those from [START_REF] Seidler | An experimental comparison of sonc and sos certicates for unconstrained optimization[END_REF]. In that paper, we also describe their creation in more detail. The overall running time for all our instances was 6780.0 seconds.

Hardware and System

We used an Intel Core i7-8550U CPU with 1.8 GHz, 4 cores, 8 threads and 16 GB of RAM under Ubuntu 18.04 for our computations.

Stopping Criteria For the accuracy of the solver and the precision of the rounding in Python we used a tolerance of ε = 2 -23 . The restriction t ≤ 50 was chosen, since otherwise we already encounter problem in the numerical solution of (SAGE). The bound d < 30 was chosen, because for large degree we had a signicant increase in the memory required to perform the rounding. Both thresholds were obtained experimentally.

Evaluation of the Experiment.

In this section we present and evaluate the results of our experiment and highlight our most important ndings, when investigating the computational data. We focus on the results given by the procedure optsage (Algorithm 3.2) via SAGE decompositions and in the end give a comparison to optsonc. Running time decreases with growing number of variables. The formulation of (SAGE) shows that the size of the problem only depends on the number of terms t, but in the SAGE decomposition, the number of summands is the number of monomial nonsquares. Most signicantly, for more variables, our generating algorithm simply results in a smaller number of these terms. Additionally, for n ≥ 8 and d ≤ 10, most exponents lie on faces of the Newton polytope. This leads to a simpler combinatorial structure, which we believe to result in lower bit sizes and thus in faster solving faster the exact LP from line 6 of optsonc. Next, we have more equality constraints in this LP, which could also improve the running time. Lastly, the exponential upper bound is just the worst case, which does not seem to actually happen among our examples. For some selected parameters, we exhibit that behavior in Table 1.

Dependency of bit size and running time of degree and terms To illustrate how bit size and running time of optsage vary for dierent degrees and numbers of terms, we restrict ourselves to at most 4 variables. Our numbers from the previous point show, that in these cases bit size and time are similar for xed (d, t), hence we may aggregate those instances. The results are shown in Table 2. We can see that running time and bit size roughly have a linear dependency. On the one hand, their growth is quadratic in the number of terms, which matches with the growth of the problem size in (SAGE). On the other hand, bit size and running time are basically unaected by the degree. This shows that the bound, given in the worst case analysis, usually is not met.

Quality of the rounding-projection Our experiments verify that in the majority of cases the symbolical lower bound does not diverge far from the numerical bound. The detailed distribution is shown in Figure 1. Most notably, in 30 instances, the exact lower bound is even better than the numerical bound. In 81.9% of the instances, the exact bound diers by at most 0.001 from the numerical value. Only in 256 instances the dierence lies above 1. Thus, in the clear majority of examples, the lower bound in exact arithmetic does not dier much from the numerical bound. Also, among the instances with large dierence, it can also be that the numerical solution actually lies far away from an exact solution. So it is unclear, whether a large dierence is due to bad behavior of the numerical solution, or a large error in the rounding algorithm. Rounding time versus solving time In nearly every case the rounding procedure takes longer than the numerical solving. Only in 8 instances, the rounding took less time.

The ratio of the rounding time to the total time ranges from 21.6% to 96.8%, with an average of 88.6%. However, one can implement the rounding procedure much closer to the hardware level, instead of working in Python. Thus, we expect that these ratios can be signicantly improved.

Comparison between SONC and SAGE In their qualitative behavior, optsonc and optsage are similar. However, optsonc runs faster and has smaller certicates than optsage, as shown in Table 3. But one should note that optsonc only computes some lower bound (not necessarily the optimal SONC-bound), whereas optsage computes the best bound, that can be obtained via this approach. Still it shows, that for very large instances, SONC is the method of choice, when other approaches fail due to the problem size.

Comparison with SOS For polynomials lying in the interior of the SOS cone from [MSED18, Table 2], we performed preliminary experiments with optsage and optsage, which are currently unable to provide nonnegativity certicates. For benchmarks from our database with n ≥ 8 and d ≥ 10, RealCertify often fails to provide SOS certicates. We plan to provide detailed experimental comparisons with SOS methods in the future.

Conclusion and Outlook

We make two main contributions in this paper. First, we present an algorithm to decide whether a given multivariate polynomial over the rationals lies in the interior of the SAGE cone. If that is the case, then the algorithm also computes a certicate in exact arithmetic. Additionally, we analyze the arithmetic complexity of the algorithm, which is polynomial in the degree and the number of terms, and exponential in the number of variables. Second, we use our numerical methods to obtain lower bounds via SAGE and apply a single iteration of the rounding-projection method, to obtain an exactly certied lower bound. This method, we run on a large number of test cases. Based on these experiments, we draw the following conclusions.

(1) In the majority of cases, the exact solution lies close to the numerical solution, with a dierence of at most 0.001. For few instances, the exact lower bound is even better than the numerical one.

(2) The running time and the bit size grow quadratically in the number of terms, which corresponds to the growth of the problem size.

(3) For the investigated parameters, increasing the degree or the number of variables does not increase the running time or the bit size. This also corresponds to the fact, that the size of the REP is independent of the degree and the number of variables.

(4) For very large instances, SONC should be the rst choice, to obtain a certied bound, since it runs signicantly faster than the other methods.

For future work, the most interesting development would be to have an REP-solver with arbitrary precision, so that we can actually implement intsage and compare it to similar approaches. Furthermore, in a signicant amount of instances, we encountered computational problem, when calling optsonc or optsage. So we would like to increase the robustness of our implementation. Another issue, we have left out so far, is the presence of exponents of monomial non-squares, which lie on a face of the Newton polytope, that does not include the origin. These result in values λ 1,j = 0 (SONC) or ν Using that for all d ≥ 2,

t ≤ n + d n = (n + d) • • • (d + 1) n! = 1 + d n 1 + d n -1 • • • (1 + d) ≤ d n-1 (1 + d) ≤ 2d n ,
one has τ (t) ∈ O (n log 2 (d)). Since τ (δ) ≤ τ (ε) + τ (t), we obtain the rst claim.

To prove the second claim, we rely on the following three auxiliary inequalities.

For ν, δ such that 0 < ν < δ ≤ 1 2 , one has (A.1) (ν + δ) log(ν + δ) ≤ 0 , since 0 < ν + δ < 1 and the function x → x log x is negative on (0, 1).

For ν, δ such that 0 < δ ≤ ν, one has Indeed, if ν ≤ ec, the left hand side is less than 0. Otherwise, ν ≥ 1 implies that log( ν ec ) ≤ ν log( ν ec ). Now, by the rst claim, there exist ε c , ε ∈ Q >0 , with τ (ε c ), τ (ε) ∈ O (τ • (4d + 6) 3n+3 ), and ν, c satisfying ν We give an upper bound of each summand of the right hande side, depending on the value of ν j i , for all i, j = 1, . . . , t and i = j. Note that -log(ec j i ) ≤ log(eε c ), for all i, j = 1, . . . , t and i = j. The proof of the third claim is very similar and we omit it for the sake of conciseness.

  Hence, p is uniquely described by the pair (A, b), written p = poly(A, b). If 0 ∈ A, then p(0) is called the constant term. Let us denote by New(p) := conv ({α ∈ N n : b α = 0}) the Newton polytope of p and Vert (p) := {α ∈ A (p) : α is vertex of New (p)} be its vertices. We dene MoSq (p) := {α ∈ A (p) : α ∈ (2N) n , b α > 0} as the set of monomial squares in the support of p. Moreover, we use the notation NoSq (p) = A (p) \ MoSq (p) for all elements of the support of p, which are not monomial squares. We indicate the elements of the support which are in the interior of New(p) by int (p) = A (p) \ ∂ New(p).

2. 1 .

 1 SONC Polynomials. We now introduce the fundamental facts of SONC polynomials, which we use in this article. SONC are constructed by circuit polynomials, which were rst introduced in [IdW16]: Denition 2.1. A circuit polynomial p = poly(A, b)

  This allows us, to restrict ourselves to the positive orthant; see e.g., [IdW16, Section 3.1] for further details. Next, we compute a covering Cov, which is a sequence of sets Cov β β∈NoSq(p) ⊆ A such that NoSq (p) ⊆ β∈NoSq(p) Cov β and each Cov β is the support of a nonnegative circuit polynomial p β with interior point β. To obtain a covering, we write each non-square as a minimal convex combination of monomial squares, by solving the following LP for each β ∈ NoSq (p), as explained in [SdW18a, Algorithm 3.3]. α∈MoSq(p)

  α ∈ MoSq (p) and β ∈ NoSq (p) do 5: X β,α ← b α • X β,α / β ∈NoSq(p) X β ,α projection step 6: end for 7: for β ∈ NoSq (p) do 8: coeff = λ β 0 • -b β • α∈Cov β λ β α 0 ← round-up coeff, δ adjust constant term 10: end for 11: C ← b 0 -β∈NoSq(p) X β,0 12: return X, C

j

  let us dene b by bi := b i -ε, as well as c by c-ε. Note that b is the coecient vector of f -ε t j=1 exp (α(j) • x). Then c(1) , . . . , c(t) , ν (1) , . . . , ν (t) satisfy (INTSAGE-feas) after replacing b by b, yielding the rst claim.

  ν) ← REP(f, δ) 6: c ← round c, δ , ν ← round ν, δ

j ← b j - 1

 1 

  and t j=1 c (j) = b. If the inequality constraints are not veried in line 11, the rounding-projection procedure is performed again with more accuracy. 4.2. Arithmetic Complexity. Before analyzing the arithmetic complexity of intsage, we rst establish lower bounds for the nonnegative components of the solutions related to SAGE decompositions of polynomials in int (C SAGE ).

  give an upper bound on the number of arithmetic operations. For convex optimization problems having barrier complexity equal to N , the standard interior-point methods compute a δ-accurate solution in O (τ ( δ)

  a few selected examples, which exhibit well the dierences of the methods, and present how the program behaved on a large set of examples. 5.1. Experimental Setup. We give an overview about the experimental setup. Software The entire experiment was steered by our Python 3.7 based software POEM 0.2.0.0(a) (Eective Methods in Polynomial Optimization), [SdW18b], which we develop since July 2017. POEM is open source, under GNU public license, and available at:

Figure 1 .

 1 Figure 1. Number of instances where the dierence of numerical lower bound and exact lower bound lies in the given interval; note that the exact bound sometimes is better.

j

  (SAGE), so our computation is undened. However, these problems can be circumvented and we plan to do so in a future version of the software. Next, we plan to extend our framework to constrained problems and provide more detailed experimental comparisons with SOS-based approaches from[START_REF] Peyrl | Computing sum of squares decompositions with rational coecients[END_REF][START_REF] Magron | On Exact Polya, Hilbert-Artin and Putinar's Representations[END_REF], as well as with methods based on critical points and cylindrical algebraic decomposition. Given a polynomial in the interior of the SAGE cone, our decision algorithm intsage is linear with respect to the distance of this polynomial to the border of the cone. In order to improve this bound, one could rene the bit size analysis for this distance. A further theoretical aim would be to analyze the boolean running time of intsage, which requires to prove bit complexity estimates for relative entropy optimization problems.Appendix A. AppendixA.1. Proof of Lemma 4.4. We start with the rst claim. By Lemma 4.2, there exist ν, c and ε ∈ Q >0 , with τ (ε) ∈ O (τ • (4d + 6) 3n+3 ), such that ( ν, c) satises t j=1 c (j) = b, c , for all j = 1, . . . , t. Let us dene δ := ε i = j = 1, . . . , t, and c (j) j := c (j) j -tδ, for j = 1, . . . , t. Thus, one has t j=1 c (j) = b. For all j = 1, . . . , t, one has ν (j) \j > 0. Combining this together with the fact that the log function is increasing yields D ν

(A. 2 )

 2 (ν + δ) log(1 + δ/ν) ≤ 2δ , since ν + δ ≤ 2ν and log(1 + δ/ν) ≤ δ/ν.For each ν, δ, c > 0 such that ν ≥ 1, one has(A.3) δ log ν ec ≤ δ max 0, ν log ν ec .

  all j = 1, . . . , t.For each δ ∈ Q >0 with δ ≤ 1 2 , and all j = 1, . . . , t, one has:D ν (j) \j + δ1, e c

≤j

  2δ log(eε c ) . If δ ≤ ν j i ≤ 1, one has (eε c ) + 2δ , where we use the fact that δ log ν (j) i ≤ 0 and bound the last term of the right hand side via (A.2).If ν j i ≥ 1, we write the rst inequality as in the former case and obtain where we rely on (A.3) to bound the second term and the fact that δ + ν \j+ 2δ(t -1)| log(eε c )| + 1) j -(1 + 2δ)ε + 2δt| log(eε c )| ≤ c (j) j -(1 + 2δ)ε + 2δ(|b j | + t| log(eε c )|) , using c (j) j = b j -1 • c (j) \j ≤ b j , thus c (j) j ≤ max{0, b j } ≤ |b j |. To ensure that D ν , it is sucient to have -(1 + 4δ)ε + 4δ(|b j | + t| log(eε c )|) ≤ 0, which is guaranteed by selecting the largest positive rational δ such that δ ≤ ε 4(|b j |+t| log(eεc)|-ε) . Since τ (|b j |) ≤ τ , τ (t) ∈ O (d log 2 n), | log(eε c )|) ≤ τ (ε c ), and τ (ε c ), τ (ε) ∈ O (τ • (4d + 6) 3n+3), one can select δ with bit size at most O (τ • (4d + 6) 3n+3 ).

Table 1 .

 1 Dependency of the average bit size and the average running time of optsage, with the number of variables, for xed values of degree d and number of terms t; For n = 8 we observe a drastic drop both in running time and bit size.

		d = 8, t = 20	d = 10, t = 24	d = 10, t = 30
	n bit size time	n bit size time	n bit size time
	2	27723	5.82	2	38872	8.26	2	61198 12.41
	3	23572	4.99	3	33938	7.26	3	57833 11.81
	4	22965	4.83	4	31278	6.34	4	53596 10.82
	8	5678	1.12	8	7042	1.42	8	13343	2.55
	10	1749	0.35	10	3778	0.91	10	6974	1.41

Table 2 .

 2 Bit size (upper part) and running time (lower part) of optsage in dependency of the degree d and the number of terms t for up to 4 variables; A × indicates, that we do not have instances with these parameters in our data set.

	t \ d	6	8	10	18	20	26	28
		912	1000	1002	1170	1014	955	900
	6							
		0.24	0.26	0.26	0.28	0.26	0.28	0.26
		2731	2673	2808	2890	2621	3166	2471
	9							
		0.66	0.65	0.70	0.68	0.61	0.82	0.62
		5599	6054	5449	5747	5478	6007	5027
	12							
		1.30	1.40	1.27	1.27	1.21	1.53	1.18
		9990	24078	20985	21364	19324	24096	17210
	20							
		2.26	5.08	4.40	4.43	3.96	5.23	3.59
	24	×	36301 7.62	33414 6.99	37080 7.49	29266 5.87	37618 7.87	28090 5.43
	30	×	57744 11.90	56354 11.44	61564 12.57	48622 9.32	59975 12.76	55000 10.80
	50	×	×	180971 36.11	174464 34.64	146218 27.80	196511 38.19	183598 38.36

Table 3 .

 3 Comparison of running time and bit size of the certicates between optsonc and optsage; optsonc runs faster and has signicantly smaller certicates than optsage.

	t bit size SONC bit size SAGE time SONC time SAGE
	6	432	1005	0.06	0.26
	9	806	2696	0.19	0.66
	12	1261	5568	0.37	1.29
	20	2592	19203	0.64	4.00
	24	3826	32543	0.97	6.66
	30	5029	53160	1.34	10.58
	50	10622	167971	3.95	32.78

A.2. An Example of Exact SAGE Decomposition. Let

x 2 2 x 2 3 + 268x 6 1 x 2 3 . Our optimization algorithm optsage returns (ν, c) corresponding to the following exact rational SAGE decomposition: f (x) = 12 j=1 f j (x), where f j is the polynomial with coecient vector c (j) for j ∈ {1, . . . , 12}, f j = 0 for j ∈ {1, 3, 4, 7, 11, 12}, and

, 0, 1494563 131072 , 0, 0, 0, 0, 0, 0, 0, 0