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Abstract— In this paper, we report the accurate estimation of vine grape yield from a three-dimensional radar imagery technique. 
Three ground-based frequency-modulated continuous-wave radars operating respectively at 24GHz, 77GHz and 122GHz are used for 
the contact-less estimation of grape mass in vineyards. 3D radar images are built from the beam-scanning of the vine plants and allow 
estimating the mass of grapes from the computation of appropriate statistical estimators. These estimators are derived from the 
measured polarization and magnitude of radar echoes. It is shown that the estimation of grape mass from the proposed ground-based 
radar imagery technique at millimeter-wave frequency range may be accurate within 1 per cent. 

Index Terms— Precision viticulture, Proximal sensing, Radar imagery

I. INTRODUCTION 
T has been 20 years now that the concept of precision viticulture (PV) was introduced by Bramley et al. [1]. PV was proposed 
to interpret temporal and spatial variabilities of cultures observed among parcels and consequently, to act at the right time and 

the right place. The technologies associated with PV are derived from those of the so-called precision agriculture (PA) but, contrary 
to PA, the aim of PV does not target intensive yield. Viticulture focuses actually on viniculture which is culturally related to the 
terroir, where quality and authenticity of the final product are hardly compatible with mass production. In some countries, the 
production is subjected to regulations which limit the yield and protect the terroir (see, e.g., “Appellation d’Origine Contrôlée” 
(AOC) in France, or “Denominazione di Origine Controllata” (DOC) in Italy). The production limitation, expressed in hectoliter 
by hectare, does not take into account eventual variabilities in the vineyard parcel due to micro-climates, ground topography, soil 
properties and/or grapevine diseases. Winegrowers have a strong interest in predicting and controlling the yield of their vineyard. 
Moreover, the estimation of grape yield before the harvest and as soon as possible, allows the early winegrowers intervention for 
removing part of grapevine and consequently, balancing the concentration of sugar, phenolic compounds and the titratable acid. 
This crucial intervention allows improving the quality of the final product. The early estimation of the yield brings other qualitative 
and economic impacts, such as, optimizing human resources and equipment during the harvest and, being fairly compensated by 
insurances in case of severe weather conditions that may damage vine stocks. 

Usually, estimating the grape yield is based on the use of remote sensors embedded in satellites or aircrafts and/or on so-called 
proximal sensors in ground-based systems [2]. However, this estimation in the framework of PV is still very challenging. Most of 
remote estimations uses ground-based optical or multispectral proximal sensors. The first optical detection of grapes was reported 
in 2006 by R. Chamelat et al. [3] from a Red Green Blue (RGB) camera, and many algorithms were developed from RGB images 
to detect red or white grapes [4]-[6], to count the grapes berries [7][8], or even to detect grapes at mid-stage of the fruit set [9]. 
These optical systems can be embedded on vehicles [10] and 3D reconstruction of grapes from images overlapping can be applied 
for the contact-less estimation of grapes volume [11]. Despite their detection of grapes with very high reliability [12], optical 
sensors do not succeed to estimate accurately the grape yield. Best reported results indicate correlation coefficients only of 79% 
between the grape yield and statistical estimators [9]. The main reason is that 2D or stereo images do not bring measurement data 
in depth of the scene. Moreover, optical sensors may fail to detect grapes that are partially or totally hidden by leaves, shoots or 
other grapes. Another drawback is that, due to luminosity variation of the scene, optical sensors require calibrations, which render 
their application not so flexible and convenient from a practical point of view.  

Other techniques are based on the measurement of the Normalized Difference Vegetation Index (NDVI) from satellites [13] at 
large scales, such as, e.g., the scale of several parcels [14] (correlation coefficient from 66% to 82%) or of a country like Portugal 
[15] (correlation coefficient ranging from 76% to 81%). However, NDVI provides indirect estimation of the yield without 
improving performances.  

To overcome limitations of optical and satellite-based techniques, we propose in this paper to use ground-based frequency-
modulated continuous-wave (FM-CW) microwave or millimeter-wave radars for the estimation of the grape yield. More 
specifically, we define appropriate statistical estimatorsof the yield from measurement data provided by microwave and millimeter-
wave FMCW radars. Radars aboard satellites [16][17] or aircrafts [18][19] have been already used for vineyard application (one 
of the most complete work using such radar in PV was reported in 2014 by Del Frate et al. [20] for the vigor measurement and 
heterogeneity mapping of vineyards). However, from the best authors’ knowledge, the use of ground-based radars as proximal 
sensors for the contact-less estimation of grape yield in vineyards is innovative. This technique was actually patented by the authors 
in 2016 [21]. In comparison with airborne radar systems, the influence of the soil and the canopy backscattering is strongly reduced. 
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Three-dimensional (3D) radar images are built here from the beam-scanning of the scene and allow estimating the mass of grapes 
from the computation of appropriate statistical estimators. These estimators are defined from the measured polarization and 
magnitude of radar echoes. The proposed approach allows detecting most of grapes in the scene of interest, even if the grapes are 
partially or totally hidden by leaves, shoots or other grapes. As microwave or millimeter-wave electromagnetic field are used, the 
luminosity of the scene and the color of grapes have no impact on the estimation accuracy of the grape yield. 
The paper is organized as follows. Section II presents the method with the detailed description of the vineyard site, and the 
technique from which 3D radar images are built from the beam-scanning of the scene. For performance comparison purposes, three 
FM-CW radars operating at different frequencies (24GHz, 77GHz and 122GHz) will be successively used for generating the 3D 
radar images. The choice of these three operating frequencies is motivated by the growing development of standalone FM-CW 
radars working at ISM or automotive frequency bands. 

Section II will also be devoted to the description of the so-called self-adaptive algorithm for computing contours in 3D radar 
images. Section III details results of the yield estimation based on polarimetric analysis at 24GHz and on radar echo magnitude at 
the three operating frequencies. In Section IV, discussion and interpretation of the obtained results are finally reported. 

II. MATERIAL AND METHODS 

A. Description of the vineyard 
The vineyard is located near Gaillac in the South-West of France, and radar measurements are performed within a parcel which 

alternates vine rows of different grape varieties. Rows are spaced 2.2m apart and the field presents no significant slope. Vine plants 
are separated by a trunk-to-trunk distance of 1m. Attention is first paid to avoid experiment during rainy days, but cloudy, sunny, 
windy or/and moisty atmospheres have been found acceptable weather conditions for radar measurement. Five varieties of red 
grapes are studied to analyze the performances of the proposed grape mass estimation technique: Mourvèdre (MO), Gamay (GA), 
Merlot (ME), Grenache (GR) and Alicante-Bouschet (AB).  

Nowadays, the yield of vineyard (from the end of August to mid of September) is in practice determined from the volume or 
mass measurement of grapes in vine plants. A scale is used here for this measurement with a precision of ±1g, and is referred as 
the “ground-truth” of the yield estimation. Illustrative data on the harvested masses and pictures of grapes at maturation are reported 
in Figure 1. Table I summarizes the key characteristics of each variety of vine grapes as well as the dates of ground-truth of the 
yield estimation. The large variation of the mass distribution for different varieties can be observed from these measurement results. 
With the average mass of 170g, MO has the heaviest grapes while GA is characterized by more homogeneous but lighter mass of 
grapes, with the average mass of 63g and the standard deviation of 26g. This heterogeneity between varieties will be used as an 
argument of flexibility for the grape yield estimation technique reported in this paper. Masses below 20g are viewed as residual 
berries that derived from main grapes, but they are taken into account in the estimation of the vine grape yield. 

 

  
 

Fig. 1. Masses of harvested grapes at maturation for five consecutive vine plants and for the five different varieties. Photographs 
of grapes at maturation are given for the following varieties: Mourvèdre (blue circles), Gamay (yellow up-triangles), Merlot (red 
pentagons), Grenache (green down-triangles) and Alicante-Bouschet (black stars). 

 



 
B. Experimental setup 

FM-CW radars (see, e.g., [22] for the detailed description of operating principle) as proximal sensors for the estimation of the 
grape yield are used here. Unlike pulse-Doppler radars, FM-CW technology offers a detection of targets at a short range with low-
cost devices (<$1000) and low output powers (≤100mW). The use of high operating (or carrier) frequencies instead of low 
frequencies for our proximal radar sensors can be justified as follows: 

i. as the wavelength at high frequencies (>15GHz) is smaller than the berry diameter (around 2cm), the electromagnetic 
interaction with grapes is stronger;  
ii. as the radar modulation bandwidth B can eventually reach 10% of the operating frequency, larger bandwidth –and as a result, 
higher depth resolution– can be achieved at higher frequencies.  

The three following commercial radars have then been selected for the experiment: (a) the DK-sR-1030e radar operating at 24GHz 
from IMST GmbH [23], (b) the RBK_8 radar operating at 77GHz from INRAS GmbH [24], and (c) the EasyRadar operating at 
122GHz from Silicon Radar GmbH [25]. Technical characteristics provided by manufacturers of these three radar sensors are 
summarized in Table II.  
 

 
 

Water is the main constituent (around 90%) of vine grapes. At the temperature of 20°C, the complex dielectric constant of water 
is of 20-30j at 24GHz, 10-15j at 77GHz and 8-10j at 122GHz [26]. The real relative permittivity is high and consequently, the 
electromagnetic reflectivity of grapes at the three selected frequencies can be advantageously used for grape detection. This 
detection could be achieved, at least in principle, from the illumination of the scene by a microwave or millimeter-wave 
electromagnetic field, and from the analysis of the resulting backscattered field or electromagnetic echoes. However, other natural 

TABLE I 
MASS OF 5 VINE GRAPE VARIETIES OF INTEREST 

Variety a MO GA ME GR AB 

Vine row ID 10 9 8 5 3 
Vine plants ID 14-17 2-6 2-6 1-5 2-6 
Date of 
harvesting b 08/25 09/01 09/05 09/13 09/15 

Total yield c (g) 9127 7465 9994 13157 8378 
Number of 
grapes d 53 114 110 108 75 

Average mass of 
a grape d (g) 170 63 89 120 110 

Standard 
deviation (g) 110 26 52 90 73 

a MO : Mourvèdre, GA: Gamay, ME: Merlot, GR: Grenache, AB:  
  Alicante-Bouschet 
b mm/dd for the year 2017 
c measured from 5 consecutive vine plants 
d measured from 5 consecutive vine plants without residual berries (mass<20g) 
 
 

TABLE II 
KEY CHARACTERISTICS OF THE THREE FMCW RADAR SENSORS USED IN THE EXPERIMENT 

Radar model DK-sR-1030e [23] RBK_8 [24] EasyRadar [25] 

Manufacturer IMST GmbH INRAS GmbH Silicon Radar GmbH 
Output power 20 dBm (100mW) 20 dBm (100mW) 20 dBm (100mW) 
Carrier (operating) frequency fc 23.8GHz 77.5GHz 125.4GHz 
Carrier (operating) wavelength λc 12.6mm 3.8mm 2.4mm 
Modulation bandwidth B up to 2.0GHz 3.0GHz 6.8GHz 
Theoretical depth resolution d 7.5cm 5.0cm 2.2cm 

Tx antenna(s) a Horn antenna with lens 4 arrays of (2x6) patches 
antennas Patch antenna with lens 

Tx antenna(s) gain a 28dBi 17.2dBi 0dBi 
Tx vertical beamwidth a 6° 13.2° 8° 
Tx horizontal beamwidth a 6° 51.0° 8° 

Rx antenna(s) b Rectangular horn 8 arrays of (1x6) patch 
antennas 

Patch antenna with a 
dielectric lens 

Rx antenna(s) gain b 20dBi 15.8dBi 0dBi 
Available polarization configuration VV – VH – HV– HH VV (MIMO c ) VV 
Grape varieties MO, GA, ME, GR and AB ME, GR and AB 
Elevation scanning  from 0° to 30° from -5° to 25° from 0° to 30° 
Azimuthal scanning from -20° to 20° Digital beamforming from -20° to 20° 

a Tx stands for Transmission 
b Rx stands for Reception 
c MIMO stands for Multiple Inputs Multiple Outputs 

 



or artificial electromagnetic reflectors (such as, e.g., trunks, leaves, shoots, irrigation hose, vine training and metallic stakes) may 
be present in the scene and eventually mask the vine grape echoes. The mitigation of these undesirable echoes or clutter is one of 
the key challenge for accurately estimating the grape yield. 

For each selected FM-CW radar, the experiment is driven as follows. First, the radar is positioned in front of a vine plant row, 
at the distance of 1.5m. The transmitting (Tx) antenna of the radar is directive (with a beamwidth of few degrees) and allows 
transmitting so-called chirps (i.e., triangular frequency-modulated signals) in controlled directions by mean of a beam scanning. 
The signal backscattered by the illuminated scene is collected by the radar receiving (Rx) antenna. In each direction, the so-called 
beat frequency spectrum is derived from the Fast Fourier Transform of the mixing of transmitted and reflected signals. This 
spectrum provides the magnitude of the backscattered signal in the corresponding direction (and at a given polarization) as a 
function of the distance or range from the radar. The theoretical depth resolution d is given by 𝑐𝑐 2𝐵𝐵⁄ , where c and 𝐵𝐵 denote 
respectively the speed of light in vacuum and the modulation bandwidth [22]. The angular scanning of the Tx-antenna results into 
a 3D electromagnetic backscattering map of the vine plant. The radar beam scanning is performed mechanically at 24 GHz and at 
122 GHz by using a pan-tilt. The angular scanning is performed between 0° to 30° in elevation (denoted by angle θ) and between 
-20° to 20° in azimuth (denoted by angle φ), with the angular step of 1°. The pan–tilt is synchronized with the transmitting of 
chirps through a Central Processing Unit (CPU). Instead of using an azimuthal beam scanning, the 77GHz RBK_8 radar performs 
a digital beamforming by using MIMO (Multiple Inputs Multiple Outputs) configuration, while the mechanical beam scanning is 
performed in elevation. Once the beam scanning of the scene is complete, the radar sensor is moved on the distance of about 1m 
along the vine row and another beam scanning is performed. The schematic of the measurement set up and the photography of the 
system are shown in Figure 2. 

 

  
 

Fig. 2.  (a) Measurement set up for the elevation (left) and azimuthal (right) radar beam-scannings. (b) photograph of the proximal 
sensor including three FM-CW radars.. 

 

 

C. 3D radar images of the vine plants   
For each vine plant, the radar beam scanning generates 3D image from which the mass of vine grape must be derived. This 

image is composed of 3D unit cells, called voxels. The volume of one voxel 𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅)  at range 𝑅𝑅 from the radar is derived from a 
straightforward geometrical analysis and is given as follows: 

 
𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅) = �2𝑅𝑅2 + 𝑑𝑑2

6
� 𝑑𝑑𝑑𝑑𝜑𝜑 sin 𝑑𝑑𝜃𝜃

2
           (1) 

 
where dθ and dφ denote the angular resolutions in elevation and azimuth, respectively, and d designates the theoretical depth 
resolution of the radar. The voxel volume 𝑣𝑣𝑅𝑅𝑅𝑅𝑅𝑅(𝑅𝑅) as well as the azimuthal/elevation coordinates are illustrated in Figure 3. This 
volume at R=2m is of 91cm3 for the 24GHz DK-sR-1030e radar, while it is only of 27cm3 for the 122GHz EasyRadar due to the 
larger modulation bandwidth B. Moreover, the voxel volume at range R=2m of the 77GHz RBK_8 radar is of 85cm3 by selecting 
the azimuthal resolution dφ of 1.4° in the digital beamforming. 
 



 
 

(a) (b) 
Fig. 3.  (a) Representation of a voxel volume at range R from the radar (located at point O), and (b) azimuthal/elevation angles and 
Cartesian coordinates used for the beams-canning. The X, Y and Z axes refer respectively to the width, height and theoretical depth 
of the voxel volume. 

 
 

A geometrical transformation is applied to the representation of voxels in azimuthal/elevation coordinates (R, φ, θ) to derive this 
representation in Cartesian coordinates (X, Y, Z). The X, Y and Z axes refer respectively to the width, the height and the depth of 
the voxel volume. 

The radar echoes are displayed by computing isosurfaces. The isosurfaces are sets of voxels inside whom the echo has the same 
magnitude. These surfaces are computed from the marching cubes method [27][28] and are determined for different echo levels.  
They are superimposed to build the 3D radar image of the scene. For illustration purpose, isosurfaces are displayed in Figure 4 (a) 
for the vine plant GR n°3. They are obtained from the 24GHz DK-sR-1030e radar (polarizations of transmitted and received electric 
fields are linear and vertical). In each voxel volume, the magnitude (or level) of the radar echo is displayed by using a color scale 
(high levels are indicated in red while low levels are in blue). The Figure 4 (b) shows the photography of the corresponding 
illuminated scene. The canopy is clearly apparent in the radar image but, claiming that only vine grapes generate echoes is a 
misinterpretation of the image that would lead to an erroneous or highly inaccurate yield estimation. As previously mentioned, 
radar echoes can be generated by many natural or artificial scatterers in the scene such as, e.g., trunks, leaves, shoots, irrigation 
hose, vine training and metallic stakes. The fine analysis of such 3D radar image must be applied in order to isolate the echoes that 
originate from vine grapes only.  

 

 
 

Fig. 4.  (a) 3D radar images of the vine plant GR n°3 using the 24GHz FM-CW radar. Echo level takes values between -60dB 
(blue) and -40dB (red). The transmitted and received electric fields are both vertically polarized; (b) Photograph of the vine plant 
GR n°3 illuminated by the radar (Note that leaves hide most of grapes).  

 
 

D. Detection of all radar echo peaks from the self-adaptive algorithm   
In order to study the spatial distribution of echo peaks in 3D radar images, the standard marching squares algorithm [27] is used 

here. For a given echo threshold, the algorithm generates a contour in every (θ, φ) plane of the 3D image. For the sake of illustration, 
such contours are displayed in Figure 5 (a) for the GR n°3 and for different echo thresholds between -60dB (in blue) and -30dB 
(in red) at range R=1.725m. For lower thresholds, contours delimit surface domains with many peaks while for higher thresholds, 
some peaks are not surrounded by contours and as a result, they are not detected. To enhance the detection of all peaks in 3D radar 
image, the so-called self-adaptive algorithm is proposed here for computing the contours. As illustrated in Figure 5 (b), this 
computation allows deriving contours that surround one echo peak only. The algorithm, described by the flowchart displayed in 
Figure 6, consists of two following steps: (1) The contours are first computed for different echo thresholds t by using the function 



find_contours available from the scikit-image library [29]; (2) Next, the number of local maxima in the surface domain delimited 
by each contour is computed from the function maximum_filter from the Scipy library [30]. Until there is only one local maximum 
in the computed domain, other contours are generated for higher echo thresholds. As illustrated in Figure 5 (b) and as expected, 
this computation allows deriving contours that surround one echo peak only.  

 

 
Fig. 5.  (a) Contours generated at different echo thresholds from -60dB (blue) to -30dB (red) in the region of interest in the plane 
(φ, θ) at R=1.725m for the GR n°3 vine plant. This region is shown in (b) with contours (in red) computed from the proposed self-
adaptive algorithm. 

 

 
 
Fig. 6.  Flowchart of the proposed self-adaptive algorithm for the computation of contours used to isolate all echo peaks in 3D 
radar images. 

 
 
In the given (θ, φ) plane at range 𝑅𝑅, let 𝒞𝒞 be the contour delimiting the surface domain 𝑆𝑆 that includes only one echo peak. This 

contour is computed from the above-described self-adaptive algorithm. Eight useful descriptors are then derived: 
i.      the surface 𝑠𝑠(𝒞𝒞) (in pixels² or m²) of domain 𝑆𝑆; 
ii.     the number 𝑝𝑝𝑝𝑝(𝒞𝒞) of pixels in domain 𝑆𝑆; 
iii.   the volume 𝑉𝑉𝑉𝑉𝑉𝑉(𝒞𝒞) (in voxels3 or m3) of the cylinder with base 𝑆𝑆 and height d  [𝑉𝑉𝑉𝑉𝑉𝑉(𝒞𝒞)=𝑠𝑠(𝒞𝒞)𝑑𝑑 = 𝑝𝑝𝑝𝑝(𝒞𝒞)𝑣𝑣𝑟𝑟𝑟𝑟𝑟𝑟(𝑅𝑅)]; 



iv.    the echo threshold 𝑡𝑡(𝒞𝒞) (in dB) used for computing the contour 𝒞𝒞; 
v.     the coordinates 𝑅𝑅(𝒞𝒞), 𝜃𝜃(𝒞𝒞), 𝜑𝜑(𝒞𝒞) of the barycenter of  domain 𝑆𝑆; 
vi.   the echo peak 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚(𝒞𝒞) (in dB) in domain 𝑆𝑆; 
vii  the echo mean value 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒞𝒞) (in dB) in domain 𝑆𝑆; 
viii. the standard deviation 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠(𝒞𝒞) (in dB) of radar echoes within domain 𝑆𝑆.  
 
As it will be shown in the next sections, these eight descriptors play a crucial role for extracting information about the 

electromagnetic backscattering of the scene and for estimating the grape yield from 3D radar images.  

III. YIELD ESTIMATION FROM PROXIMAL RADAR POLARIMETRY 
The first estimation of the grape yield is reported in this Section from a polarimetric analysis of radar echoes. 

A. Polarization parameter and yield estimation: definitions 
Throughout this paper, the subscript u denotes the vertical (u=V) or horizontal (u=H) polarization of a linearly-polarized electric 

field. Moreover, the subscript uv is called here the polarization configuration and refers to the vertical (u=V) or horizontal (u=H) 
polarization of the transmitted electric field, and the vertical (v=V) or horizontal (v=H) polarization of the received electric field. 
The estimation of grape yield from the 24GHz radar with vertically-polarized (transmitted and received) electric fields was recently 
reported by the authors in [31]. Promising results were obtained from such (non-polarimetric) analysis, but the estimation was 
dependent on the grape variety. For the first time, we propose in this section a variety-independent estimation of the yield.  

Let 𝜒𝜒𝑞𝑞
𝑝𝑝 be the polarization parameter defined as follows:   

 

𝜒𝜒𝑞𝑞
𝑝𝑝�𝒞𝒞𝑘𝑘

𝑝𝑝� = 𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀
𝑝𝑝 �𝒞𝒞𝑘𝑘

𝑝𝑝�

𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀
𝑞𝑞 �𝒞𝒞𝑘𝑘

𝑝𝑝�
                  (2) 

 
where p=uv and q=u’v’ denote two different polarization configurations, and  𝒞𝒞𝑘𝑘

𝑝𝑝 designates the k–th contour computed in the 
polarization configuration p from the self-adaptive algorithm applied to the 3D radar image (see section II.D). Moreover, 𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀

𝑝𝑝 �𝒞𝒞𝑘𝑘
𝑝𝑝� 

and 𝑒𝑒𝑀𝑀𝑀𝑀𝑀𝑀
𝑞𝑞 �𝒞𝒞𝑘𝑘

𝑝𝑝� in eq.(2) are the echo peaks (in linear scale) within the surface domain delimited by the contour 𝒞𝒞𝑘𝑘
𝑝𝑝 and for the 

polarization configurations p and q, respectively. As a consequence, if  𝜒𝜒𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉(𝒞𝒞𝑘𝑘𝑉𝑉𝑉𝑉) is much greater than 1 then the surface bordered 
by the contour 𝒞𝒞𝑘𝑘𝑉𝑉𝑉𝑉 strongly depolarizes the incident vertically-polarized electric field. Moreover, if 𝜒𝜒𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉(𝒞𝒞𝑘𝑘𝑉𝑉𝑉𝑉) is much greater 
than 1 then the depolarization of a vertically-polarized transmitted electric field is larger than the depolarization of a horizontally-
polarized transmitted field.  

Next, we conjecture that it exists a statistical estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 which is linearly-dependent on the grape yield of the n-th vine plant, 
which is:  

   
𝑦𝑦𝑛𝑛 = 𝛼𝛼𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 + 𝛽𝛽               (3) 

 
where 𝑦𝑦𝑛𝑛 is the total grape mass of the n-th vine plant, and the real coefficients α and β denote respectively the slope and the 
intercept of the linear model. The conjectured statistical estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 can be defined by assuming that the yield increases when 
the total surface of all domains delimited by the computed contours increases. Moreover, in order to reduce the impact of the clutter 
on the yield estimation, the k-th surface 𝑠𝑠𝑘𝑘

𝑝𝑝  bordered by contour 𝒞𝒞𝑘𝑘,𝑛𝑛
𝑝𝑝  can be weighted in the definition of 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 by the polarization 

parameter 𝜒𝜒𝑞𝑞
𝑝𝑝�𝒞𝒞𝑘𝑘,𝑛𝑛

𝑝𝑝  �, as follows: 
 
     𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 = ∑ ∑ 𝑎𝑎𝑞𝑞

𝑝𝑝 𝑥𝑥𝑛𝑛,𝑞𝑞
𝑝𝑝

𝑞𝑞≠𝑝𝑝𝑝𝑝=𝑉𝑉𝑉𝑉,𝑉𝑉𝑉𝑉,𝐻𝐻𝐻𝐻,𝐻𝐻𝐻𝐻            (4-a) 
 

with 

 𝑥𝑥𝑛𝑛,𝑞𝑞
𝑝𝑝 = 1

𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝 ∑ 𝑠𝑠𝑘𝑘

𝑝𝑝𝐾𝐾𝑛𝑛
𝑝𝑝

𝑘𝑘=1 �𝒞𝒞𝑘𝑘,𝑛𝑛
𝑝𝑝  � 𝜒𝜒𝑞𝑞

𝑝𝑝�𝒞𝒞𝑘𝑘,𝑛𝑛
𝑝𝑝  �           (4-b) 

 
where 𝐾𝐾𝑛𝑛

𝑝𝑝 is the number of computed contours for the polarization configuration p and for the n-th vine plant, and 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝  designates 

the reference surface defined as follows. First, let 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝  be the sum of all surfaces that are delimited by the contours computed from 

the self-adaptive algorithm described in Section II.D: 
 

𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝 = ∑ ∑ 𝑠𝑠𝑘𝑘

𝑝𝑝𝐾𝐾𝑛𝑛
𝑝𝑝

𝑘𝑘=1 �𝒞𝒞𝑘𝑘,𝑛𝑛
𝑝𝑝 �𝑁𝑁0

𝑛𝑛=1          (5) 
 
where 𝑁𝑁0 denotes the number of vine plants used for the grape yield estimation. This surface is displayed in Figure 7(a) for various 



polarization configurations p and as a function of the deviation δ𝑡𝑡 from the initial threshold 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 used for starting the self-adaptive 
algorithm.  
 

 
 

Fig. 7.  (a) Sum 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝  of all surfaces that are delimited by the contours computed from the self-adaptive algorithm described in 

Section II.D as a function of deviation δ𝑡𝑡 from the initial threshold 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and for various polarization configurations p (= VV, VH, 
HV and HH). (b) Reference surface 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅

𝑝𝑝  used for defining 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 (see eq.(4)) in order to minimize the impact of δ𝑡𝑡 on the mass 
estimation. 

 
 
As expected, 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡

𝑝𝑝  decreases as δ𝑡𝑡 increases, and it can be observed that an extremely high linearity (the coefficient of determination 
R² is of 0.99) of 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡

𝑝𝑝  is obtained for all polarization configurations. As a result, 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝  may be modelled as follows: 

 
𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡
𝑝𝑝 = 𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅

𝑝𝑝  δ𝑡𝑡 + 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝           (6) 

 
where 𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅

𝑝𝑝  and 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝  denote respectively the slope and the intercept of the linear model in the polarization configuration p. In 

order to minimize the impact of δ𝑡𝑡 on the yield estimation, the reference surface 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝  is then defined as follows: 

 

𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝 = (1+δαδ𝑡𝑡) 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡

𝑝𝑝

𝑁𝑁0
             (7-a) 

 
where 𝛿𝛿𝛼𝛼 is derived from the following relationship:  
 

1 + δαδ𝑡𝑡 = 𝛼𝛼(δ𝑡𝑡)
𝛼𝛼

             (7-b) 
 
in which 𝛼𝛼(δ𝑡𝑡) is the slope of the linear model for the estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 and for the threshold deviation δ𝑡𝑡 (see eq.(3) for the definition 
of the slope α). From eq.(7-b), δα is found to be of 0.013 dB-1. The resulting reference surface is displayed in Figure 7(b) for 
various polarization configurations. 
 

B. Yield statistical estimator from a polarimetric analysis  
In this section, real coefficients 𝑎𝑎𝑞𝑞

𝑝𝑝 defined in eq.(4-a) are computed. These coefficients are derived from solving the following 
equation: 
 

𝑌𝑌 = 𝐴𝐴𝐴𝐴                (8) 
where 

 

with           

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑌𝑌 = [𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 … 𝑦𝑦𝑁𝑁]𝑇𝑇

𝐴𝐴 = �𝛽𝛽 𝛼𝛼. 𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 … 𝛼𝛼. 𝑎𝑎𝑞𝑞
𝑝𝑝 … 𝛼𝛼. 𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻�

𝑇𝑇

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎢
⎡1 𝑥𝑥1,𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉 … 𝑥𝑥1,𝑞𝑞
𝑝𝑝 … 𝑥𝑥1,𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 𝑥𝑥𝑛𝑛,𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉 … 𝑥𝑥𝑛𝑛,𝑞𝑞
𝑝𝑝 … 𝑥𝑥𝑛𝑛,𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻

⋮ ⋮ ⋱ ⋮ ⋱ ⋮
1 𝑥𝑥𝑁𝑁,𝑉𝑉𝑉𝑉

𝑉𝑉𝑉𝑉 … 𝑥𝑥𝑁𝑁,𝑞𝑞
𝑝𝑝 … 𝑥𝑥𝑁𝑁,𝐻𝐻𝐻𝐻

𝐻𝐻𝐻𝐻 ⎦
⎥
⎥
⎥
⎥
⎤      (9) 



 
In eqs.(8)-(9), the superscript T denotes the transpose operator, N designates the total number of measurements, 𝑋𝑋 is a 𝑁𝑁 × (𝑀𝑀 +
1) matrix where M is the total number of polarization configurations. The matrix A is computed from the following equation: 
 
                  𝐴𝐴 = 𝑋𝑋†𝑌𝑌 + [𝐼𝐼 − 𝑋𝑋†𝑋𝑋]𝑟𝑟       (10) 
 
where 𝑋𝑋†denotes the Moore-Penrose pseudo-inverse matrix of 𝑋𝑋, I is the identity matrix and r designates an arbitrary vector [32]. 
The coefficient of determination R² for the linear regression model of eq.(3) tends to 1 when the term [𝐼𝐼 − 𝑋𝑋†𝑋𝑋]𝑟𝑟 is smaller 
compared with the term 𝑋𝑋†𝑌𝑌. 𝑋𝑋† is calculated here by using the Python library (linalg.pinv function [33]) which computes the 
Singular Value Decomposition (SVD) method [34]. In eqs.(5)-(6) the vector Y is composed of masses of grapes per vine plant, as 
well as the sum of masses of grapes in consecutive vine plants. Such combination is illustrated in Figure 8 for a given variety of 
grapevine. Grape masses m1, m2, m3, m4 and m5 of five consecutive vine plants are displayed in black color. Red, blue, purple and 
green colors represent respectively the masses of two (m1+m2, …, m4+m5), three (m1+m2+m3, …, m3+m4+m5), four (m1+m2+m3+m4, 
m2+m3+m4+m5) or five (m1+m2+m3+m4+m5) consecutive vine plants. These colors will be used throughout the paper for identifying 
mass combinations.  
 

 
 
Fig. 8.  Illustration of the combination of grape masses applied to a given variety of grapevine for building the vector Y in eqs.(8)-
(9). Throughout the paper, these colors are used for indicating the corresponding mass combination.  

 
 

The coefficients 𝑎𝑎𝑞𝑞
𝑝𝑝 in eq.(6) are derived from the mass of grapes measured after the harvest for the five grapevine varieties 

(MO, GA, ME, GR and AB) and by using successively the different mass combinations. In Table III, the coefficients 𝑎𝑎𝑞𝑞
𝑝𝑝 as well 

as ratios σ/µ between the standard deviation and mean value of these coefficients are reported. The ratio σ/µ for 𝑎𝑎𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉 , 𝑎𝑎𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻, 𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  
and 𝑎𝑎𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 exceeds 10% and, as a result, we observed that the yield is overestimated when these four coefficients are included in the 
computation of the vector A. Consequently, they are removed from further yield estimation and only the eight remaining 
coefficients 𝑎𝑎𝑞𝑞

𝑝𝑝 are used for computing the vector A in eq.(6). 
 

 
 

TABLE III 
COEFFICIENTS 𝑎𝑎𝑝𝑝

𝑞𝑞 AND THEIR RELATIVE DISPERSIONS σ/µ  

N * 45 60 70 75 σ/µ ** (%) 

𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  -0.40 -0.44 -0.42 -0.42 2.9 
𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  0.37 0.39 0.37 0.37 1.4 
𝑎𝑎𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉  -0.10 -0.10 -0.09 -0.09 4.0 
𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 -0.03 -0.03 -0.03 -0.03 6.4 
𝑎𝑎𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉  0.10 0.12 0.11 0.11 1.2 
𝒂𝒂𝑯𝑯𝑯𝑯𝑽𝑽𝑽𝑽  0.02 0.02 0.02 0.01 22.3 
𝒂𝒂𝑽𝑽𝑽𝑽𝑯𝑯𝑯𝑯 0.01 0.01 0.01 0.00 24.8 
𝑎𝑎𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 -0.10 -0.10 -0.10 -0.10 5.4 
𝒂𝒂𝑯𝑯𝑯𝑯𝑯𝑯𝑯𝑯  0.01 0.01 0.01 0.02 39.7 
𝒂𝒂𝑽𝑽𝑽𝑽𝑯𝑯𝑯𝑯 -0.01 -0.01 -0.01 -0.01 11.5 
𝑎𝑎𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻  0.68 0.65 0.66 0.66 0.8 
𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 -0.44 -0.42 -0.43 -0.44 1.0 

*   total number of combination of grape masses, with N0=25 vine plants 
** ratio between the standard deviation and mean value of coefficient 𝑎𝑎𝑞𝑞

𝑝𝑝 



The final yield estimation is reported in Table IV. For the five selected grapevine varieties, Figure 9(a) displays the estimated 
grape mass (obtained before the harvest) as a function of the harvested mass. The coefficient of determination for the linear 
regression model is found close to 1 (R²=0.96)  and enlightens the high linearity of the estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃.  

 

 
 

 

                                                               (a)                                                                 (b)  
 

 
(c) 

 
Fig. 9.  (a) Estimated mass versus harvested mass of grapes derived from the estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 at 24GHz. (b) estimation error 𝜀𝜀𝑚𝑚 
versus harvested mass. (c) Estimated mass versus harvested mass of grapes after harvesting (i.e., without grapes in the vine plant).   

 
 

 
 

TABLE IV 
YIELD ESTIMATION BASED ON THE PROPOSED POLARIMETRIC ANALYSIS 

Characteristics Model parameters 
Total harvested mass (kg) 48.1 α (g) 3.2E-5 
Total estimated mass (kg) 48.6 β (g) 3.1E-3 

R² 0.96 𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  -0.40 
error εlin (kg) a 0.50 𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  -0.09 
εm (m>3kg) b 15.0% 𝑎𝑎𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉  0.03 
εm (m>4kg) b 7.0% 𝑎𝑎𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 -0.04 
εm (m>5kg) b 5.5% 𝑎𝑎𝐻𝐻𝐻𝐻𝑉𝑉𝑉𝑉 0.23 
εm (m>6kg) b 4.8% 𝑎𝑎𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 -0.06 
εm (m>7kg) b 7.2% 𝑎𝑎𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 0.76 

εm total 1.1% 𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 -0.43 
a error of the linear model [see definition in eq. (11)] 
b mean error of the yield estimation for harvested mass higher than the  
  given mass m [see eq. (12-a)] 
 



The estimation error 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 of the linear model for N combination of grape masses can be defined as follows: 
 

𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 = �1
𝑁𝑁
∑ �𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙,𝑛𝑛 − 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛�

2𝑁𝑁
𝑛𝑛=1              (11) 

 
where 𝑚𝑚𝑙𝑙𝑙𝑙𝑙𝑙,𝑛𝑛is the grape mass derived from the linear model, and 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛 denotes the estimated grape mass of the n-th vine plant. 
The estimation error 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 is of 0.50kg. Moreover, the mass estimation error 𝜀𝜀𝑚𝑚,𝑛𝑛 for the n-th vine plant can be defined by the 
following relationship:  
 

   𝜀𝜀𝑚𝑚,𝑛𝑛 = �𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛−𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛�
𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛

         (12-a) 

 
where 𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛 denotes the harvested mass for this plant. As a consequence, the mass estimation error for the N measured vine 
plants can be computed as follows: 
 

𝜀𝜀𝑚𝑚 = ∑ �𝑚𝑚ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑛𝑛−𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛�𝑁𝑁
𝑛𝑛=1

∑ 𝑚𝑚𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛
𝑁𝑁
𝑛𝑛=1

          (12-b) 

 
The total harvested mass of grapes (including all varieties) is of 48.1kg while the total estimated grape mass is of 48.6kg. It leads 
to a very low estimation error of yield (𝜀𝜀𝑚𝑚=1.1%). This error is displayed in Figure 9(b) as a function of the harvested mass. It can 
be observed that the higher is the mass, the lower is the error. This experimental result may be interpreted as follows:  
i.  In practice, grape mass per vine plant is measured manually plant per plant, but some grapes are located at the vicinity of two 
vine plants. It generates error of the ground-truth measurements which is compensated by the combination of masses of consecutive 
vine plants; 
ii. Side lobes of the radar transmitting antenna (around 18dB between the amplitude at the peak of the main lobe and the amplitude 
at the peak of the side lobes) interrogate vine plant on both sides of the main lobe direction. Consequently, the radar image may 
contain echoes from plants located on both sides of the plant illuminated by the radar main lobe. As a result, an estimation error of 
the yield may occur, but is compensated from the combination of grape masses of consecutive vine plants. 

The proposed polarimetric analysis is also useful to assess the complexity of the vineyard environment. For example, the 
obtained positive value of 𝑎𝑎𝑉𝑉𝑉𝑉𝐻𝐻𝐻𝐻 (= +0.66) means that, compared with the VH polarization configuration, the electromagnetic 
backscattering of regions containing grapes is higher in the HH polarization configuration. At the opposite, the negative value of 
coefficient 𝑎𝑎𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 (= –0.44) indicates that the backscattering of regions without vine grapes is higher for the polarization configuration 
HH than for the configuration HV. 

To complete the yield estimation from the proposed polarimetric analysis, measurements of vine plants are performed after the 
harvesting, that is, without grapes in vine plants. In this case, the estimation of grape mass is expected to be zero. The mass is 
estimated using the coefficients 𝑎𝑎𝑞𝑞

𝑝𝑝 reported in Table IV and is displayed in Figure 8(c) as a function of the harvested mass. It can 
be observed that the mass estimation is (unfortunately) not zero. It means that the yield is not estimated from the electromagnetic 
backscattering of grapes only, but also from the clutter (leaves, shoots, trunk …). After the harvesting, when grapes are no more 
present in the scene, the clutter generates erroneous estimations of the yield. However, we note a degradation of the estimator 
linearity (R²=0.73), which means that 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 is indeed an good estimator of the grape yield. It seems that this estimator does not 
detect grapes as isolated targets, but as targets “in a grapevine environment”. At first glance, this could be problematic but leaves 
and shoots (which contribute to the measured EM backscattering) are related to the foliage density and the vine vigor of the 
grapevine. It has been demonstrated that these two vegetal indicators are strongly correlated to the grape yield [35] [36], and 
consequently, may not degrade the yield estimation.  The estimation errors 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 and 𝜀𝜀𝑚𝑚 provided by the estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 defined in 
eq.(4-a) are reported in Table V for various deviations δ𝑡𝑡 from the initial threshold 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. For δ𝑡𝑡 ranging from −4𝑑𝑑𝑑𝑑 to +2𝑑𝑑𝑑𝑑, it 
can be observed that the mass estimation error 𝜀𝜀𝑚𝑚 does not exceed 3.7%. If required, this error could be reduced by re-computing 
δα, 𝛼𝛼𝑅𝑅𝑅𝑅𝑅𝑅

𝑝𝑝  and 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅
𝑝𝑝  from the measurement of more vine plants. Table V reports also the estimation errors 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 and 𝜀𝜀𝑚𝑚 provided by 

the estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 for the truncated elevation angle range ∆𝜃𝜃 = [𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀, 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀] of the beam-scanning. When the truncation ∆𝜃𝜃 is about 
few degrees, the estimation accuracy of the yield is not degraded. However, this is not the case when 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 ≤ 26° and 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 ≥ 8°. 
Consequently, the estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 is accurate only for given range ∆𝜃𝜃 of elevation angle that comprises a given number of radar 
echoes with a proximal error 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 of ±2° and 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀 of ±4°. If a larger or smaller ∆𝜃𝜃 is used, the number of radar echoes respectively 
increases or decreases, and the 𝑎𝑎𝑞𝑞

𝑝𝑝 coefficients should be re-calculated. 
 



 
 

Although it provides encouraging results, the polarimetric analysis requires radar sensor with independent transmission and 
reception channels (Note that the receiving antenna has been alternatively rotated by 0° and 90° to receive both vertically and 
horizontally polarized field, since the DK-sR-1030e radar has only one transmitting channel). Moreover, the transmitting antenna 
must have a narrow beamwidth for a sufficient image angular resolution and consequently, may lead at 24 GHz to large antenna 
dimensions. 

 

IV. YIELD ESTIMATION FROM RADAR IMAGES IN THE POLARIZATION CONFIGURATION VV 
In this section the grape vine yield is estimated from radar images obtained in the polarization configuration p=VV only and at 

three frequencies (24GHz, 77GHz and 122GHz).  
Let 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 be the statistical estimator of grape mass of the n-th vine plant defined as follows: 
 

𝐸𝐸𝑛𝑛
𝑀𝑀𝑀𝑀𝑀𝑀 = � 𝑎𝑎𝑞𝑞  𝑥𝑥𝑛𝑛,𝑞𝑞

𝑉𝑉𝑉𝑉
𝑞𝑞=𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑠𝑠𝑠𝑠𝑠𝑠              (13-a) 

 
with  

𝑥𝑥𝑛𝑛,𝑞𝑞
𝑉𝑉𝑉𝑉 = 1

𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅
𝑉𝑉𝑉𝑉 ∑ 𝑠𝑠𝑘𝑘𝑉𝑉𝑉𝑉

𝐾𝐾𝑛𝑛𝑉𝑉𝑉𝑉
𝑘𝑘=1 �𝒞𝒞𝑘𝑘,𝑛𝑛

𝑉𝑉𝑉𝑉  � 𝑒𝑒𝑞𝑞�𝒞𝒞𝑘𝑘,𝑛𝑛
𝑉𝑉𝑉𝑉�     (13-b) 

 
where 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚�𝒞𝒞𝑘𝑘,𝑛𝑛

𝑉𝑉𝑉𝑉�, 𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝒞𝒞𝑘𝑘,𝑛𝑛
𝑉𝑉𝑉𝑉� and 𝑒𝑒𝑠𝑠𝑠𝑠𝑠𝑠�𝒞𝒞𝑘𝑘,𝑛𝑛

𝑉𝑉𝑉𝑉� denote respectively the echo peak, echo mean value and standard deviation of radar 
echoes in the surface domain delimited by the k-th contour 𝒞𝒞𝑘𝑘,𝑛𝑛

𝑉𝑉𝑉𝑉  and in the polarization configuration VV. The computation of the 
reference domain 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉  is detailed in Section III.A. The real coefficients 𝑎𝑎𝑞𝑞  in eq.(13-a) are derived from solving the following 
equation: 
 

𝑌𝑌𝑉𝑉𝑉𝑉 = 𝐴𝐴𝑉𝑉𝑉𝑉𝑋𝑋𝑉𝑉𝑉𝑉              (14-a) 
 
where  
 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑌𝑌

𝑉𝑉𝑉𝑉 = [𝑦𝑦1 𝑦𝑦2 … 𝑦𝑦𝑛𝑛 … 𝑦𝑦𝑁𝑁]𝑇𝑇

𝐴𝐴𝑉𝑉𝑉𝑉 = [𝛽𝛽 𝛼𝛼. 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 𝛼𝛼. 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝛼𝛼. 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠]𝑇𝑇

𝑋𝑋𝑉𝑉𝑉𝑉 =

⎣
⎢
⎢
⎢
⎡1 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑉𝑉 𝑥𝑥1,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑉𝑉 𝑥𝑥1,𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉

⋮ ⋮ ⋮ ⋮
1 𝑥𝑥𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑉𝑉 𝑥𝑥𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑉𝑉 𝑥𝑥𝑛𝑛,𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉

⋮ ⋮ ⋮ ⋮
1 𝑥𝑥𝑁𝑁,𝑚𝑚𝑚𝑚𝑚𝑚

𝑉𝑉𝑉𝑉 𝑥𝑥𝑁𝑁,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
𝑉𝑉𝑉𝑉 𝑥𝑥𝑁𝑁,𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑉𝑉 ⎦
⎥
⎥
⎥
⎤       (14-b) 

  
These coefficients are computed from the technique described in Section III.A. The characteristics and parameters of the estimator 
𝐸𝐸𝑛𝑛
𝑀𝑀𝑀𝑀𝑀𝑀 are reported in Table VI. The estimated mass of grapes obtained at 24GHz, 77GHz and 122GHz, as well as estimation error 

TABLE V 
IMPACT ON THE YIELD ESTIMATION GIVEN BY 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 OF DEVIATION 𝛿𝛿𝛿𝛿 FROM 

THE INITIAL THRESHOLD 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 
δ𝑡𝑡 (dB) -4 -2 0 2 4 

 εlin (kg) a 0.59 0.58 0.50 0.69 0.98 
εm (%) b 3.7 0.2 1.1 2.1 10.1 

R² 0.955 0.952 0.965 0.939 0.883 
∆𝜃𝜃 (°) [0°,30°] [0°,28°] [0°,26°] [0°,24°] [0°,22°] 

 εlin (kg) a 0.50 0.51 0.74 1.45 2.04 
εm (%) b 1.1 1.0 25.4 31.5 62.0 

R² 0.965 0.964 0.932 0.910 0.882 
∆𝜃𝜃 (°) [0°,30°] [2°,30°] [4°,30°] [6°,30°] [8°,30°] 

 εlin (kg) a 0.50 0.52 0.54 0.67 0.97 
εm (%) b 1.1 1.5 0.5 0.6 1.5 

R² 0.965 0.963 0.959 0.938 0.883 
a εlin : mass estimation error from the linear model (N0=25 vine plants for N=75 
combinations of grape masses), as defined in eq.(11). 
b εm : mass estimation error (N0=25 vine plants for N=75 combinations of grape 
masses), as defined in eq.(12-b) 



𝜀𝜀𝑚𝑚 at these frequencies are displayed in Figure 10 as a function of the harvested mass (NB: because measurements at 122GHz 
were performed only for the three varieties ME, GR and AB, the yield estimation form 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 at 24GHz and 77GHz is also given 
in this section only for these three varieties).  
 

 
 
 

      

                                                     (a)                                                                                         (b)   
 

 
(c) 

 
Fig. 10.  Estimated mass (left) and estimation error 𝜀𝜀𝑚𝑚 (right) versus harvested mass of grapes derived from the estimator 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 at 
(a) 24GHz, (b) 77GHz and (c) 122GHz. 

 

TABLE VI 
YIELD ESTIMATION BASED ON RADAR ECHO MAGNITUDES IN POLARIZATION 

CONFIGURATION VV 
Radar sensor Characteristics Parameters 

(24GHz) 
DK-sR-1030e 

Total harvested mass (kg) 48.1 α (g/dB) 3.4E-4 
Total estimated mass (kg) 56.7 β (g) 3.5E-2 

R² 0.79 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 -0.55 
error εlin (kg) a 1.37 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.52 
εm total (%) b 17.8 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 0.64 

 Total harvested mass (kg) 48.1 α (g/dB) 5.7E-6 
 Total estimated mass (kg) 51.9 β (g) 3.3E-3 

(77GHz) R² 0.90 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 -0.67 
RBK_8 error εlin (kg) a 0.91 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.61 

 εm total (%) b 7.3 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 0.40 
 Total harvested mass (kg) 31.4 α (g/dB) 2.7E-5 
 Total estimated mass (kg) 31.1 β (g) 2.9E-3 

(122GHz) R² 0.97 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 -0.38 
EasyRadar error εlin (kg) a 0.47 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 0.39 

 εm total (%) b 0.9 𝑎𝑎𝑠𝑠𝑠𝑠𝑠𝑠 0.83 
a εlin : mass estimation error from the linear model model (N0=15 or N0=25 
vine plants for respectively N=45 or N=75 combinations of grape masses), as 
defined in eq.(11). 
b εm : mass estimation error (N0=15 or N0=25 vine plants for respectively 
N=45 or N=75 combinations of grape masses), as defined in eq.(12-b) 
 



 
At 24GHz, the coefficient of determination (R²=0.79) deviates significantly from 1. From Figure 10(a) it can be observed that 

the error 𝜀𝜀𝑚𝑚 does not tend towards 10% as the harvested mass increases. Moreover, the total harvested mass (including all varieties) 
is of 48.1kg while the total estimated mass is of 56.7kg. As a result, it can be concluded that the estimation error (𝜀𝜀𝑚𝑚=17.8%) is 
large when using the polarization configuration VV at 24 GHz. No significant improvements are observed when only three varieties 
(ME, GR or AB) is considered. 

At higher frequencies and for larger modulation bandwidth, better results are obtained from this specific polarization 
configuration. As it can be derived from Figure 10(b), when using the MIMO FM-CW radar operating at 77GHz (bandwidth B of 
3GHz), the coefficient of determination (R²=0.90) is higher than one obtained at 24GHz, and the estimation error is lower 
(𝜀𝜀𝑚𝑚=7.3%). However, these results obtained at 77GHz from the polarization configuration VV  are not as good as those derived  
from the polarimetric analysis based on the estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃 (see section III.B). Moreover, although the digital beamforming allows 
fast radar echo measurements, the angular resolution of the RBK_8 radar is limited by the large beamwidth (51° in azimuth) of the 
transmitting antennas. Note that the coefficient of determination R² reaches 0.93 when only three varieties (ME, GR or AB) is 
considered with an estimation error 𝜀𝜀𝑚𝑚 of 4.5%. 

The best mass estimation results are obtained when using the FM-CW radar operating at 122GHz. From Figure 10(c) it can be 
derived that the estimator 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 is linearly-dependent on the harvested mass (R²=0.97) and the estimation error of grape mass is 
much lower than 10 % (𝜀𝜀𝑚𝑚=0.9%). These excellent performances originate in the available larger modulation bandwidth 
(B=6.8GHz) leading to higher depth resolution, as well as a smaller wavelength that increases the interaction between grapes and 
incident EM field. For the sake of illustration, Figure 11 displays the estimated mass of grapes per contour before (i.e., with grapes) 
and after (i.e., without grape) the harvest. This mass is derived from the estimator 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 at 122GHz and for five consecutive vine 
plants of Grenache. A clear difference can be observed on the number of contours that is clearly representative of a direct detection 
of fruit quantity.  

 

 
 

Fig. 11.  Estimated mass of grapes per contour at 122GHz provided by estimator 𝐸𝐸𝑛𝑛
𝑀𝑀𝑀𝑀𝑀𝑀

 before and after the harvest of five vine 
plants of Grenache. Dark purple contours contain more grapes than lighter contours (threshold of 50g). 

 
 
The sum 𝑠𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑉𝑉𝑉𝑉  of all surfaces that are delimited by the contours computed at 122GHz from the self-adaptive algorithm (see Section 

II.D) is calculated from eq.(5). The reference surface 𝑠𝑠𝑅𝑅𝑅𝑅𝑅𝑅𝑉𝑉𝑉𝑉  defined by eq.(7-a) is then derived from eq.(7-b) with δα=6.1E-2 dB-1. 
The resulting estimation errors 𝜀𝜀𝑙𝑙𝑙𝑙𝑙𝑙 and 𝜀𝜀𝑚𝑚 provided by the estimator 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 are reported in Table VII for various deviations δ𝑡𝑡 
from the initial threshold 𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡. Compared with estimator 𝐸𝐸𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃, the impact of deviation δ𝑡𝑡 on the yield estimation provided by 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 
is lower. In order to guarantee an estimation error lower than 5%, δ𝑡𝑡 can be chosen such that −2𝑑𝑑𝑑𝑑 < δ𝑡𝑡 ≤ 2𝑑𝑑𝑑𝑑. The computation 
of 𝐸𝐸𝑛𝑛

𝑀𝑀𝑀𝑀𝑀𝑀 for different values of ∆𝜃𝜃 = [𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀, 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀]  shows that more than 50% of the estimated mass of grapes is calculated for an 
elevation between 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀=10° and 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀=20°. Another 25% of the grape mass is found between 𝜃𝜃𝑀𝑀𝑖𝑖𝑖𝑖=0° and 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀=10°. Finally, the 
remaining 25% is estimated for an elevation angle between 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀=20° and 𝜃𝜃𝑀𝑀𝑀𝑀𝑀𝑀=30°. 

 



 

V. PERSPECTIVES 
 

The next step consists of embedding the proximal sensors on vehicles (quads, agricultural straddles or tractors …) to perform 
the convenient grape yield estimation for entire vineyards. Such on-the-fly estimation will require the simultaneous control of 
measurement time of radar data, ground speed of the vehicle, estimation error of the grape mass and analyses of repeatability. 
Moreover, the reported work was focused on the yield estimation at the maturation stage of vine plants and for five grape varieties 
only. Future works will assess the yield estimation at earlier stages of the fruit growth, for different environmental conditions and 
for more varieties of grapes. 

VI. CONCLUSION 
This paper has reported the contact-less estimation of vine grape yield from a three-dimensional radar imagery technique. Three 

ground-based frequency-modulated continuous-wave radars operating respectively at 24GHz, 77GHz and 122GHz have been used. 
Two statistical estimators of grape mass have been defined from the polarization and magnitude of radar echoes. Accurate 
estimation (within 1 per cent) has been obtained at 122GHz from the polarization configuration VV for three varieties of vine 
plants. Yield estimation with the 77GHz MIMO radar is also encouraging with an estimation error of the mass of 7.3% for five 
varieties of vine plants. It demonstrates the feasibility of accurate and contact-less estimation of vine grape yield from millimeter-
wave proximal radar sensors. Therefore this result must be accompanied and validated by numerous measurements in various 
environmental conditions on an integrated vehicle. 
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