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ABSTRACT
Network failures are frequent and disruptive, and can sig-
nificantly reduce the throughput even in highly connected
and regular networks such as datacenters. While many mo-
dern networks support some kind of local fast failover to
quickly reroute flows encountering link failures to new paths,
employing such mechanisms is known to be non-trivial, as
conditional failover rules can only depend on local failure in-
formation. While over the last years, important insights have
been gained on how to design failover schemes providing high
resiliency, existing approaches have the shortcoming that the
resulting failover routes may be unnecessarily long, i.e., they
have a large stretch compared to the original route length.
This is a serious drawback, as long routes entail higher la-
tencies and introduce loads, which may cause the rerouted
flows to interfere with existing flows and harm throughput.

This paper presents the first deterministic local fast failover
algorithms providing provable resiliency and failover route
lengths, even in the presence of many concurrent failures.
We present stretch-optimal failover algorithms for different
network topologies, including multi-dimensional grids, hyper-
cubes and Clos networks, as they are frequently deployed in
the context of HPC clusters and datacenters. We show that
the computed failover routes are optimal in the sense that
no failover algorithm can provide shorter paths for a given
number of link failures.

CCS Concepts
•Networks → Routing protocols;

Keywords
Fast Reroute, Static Resiliency, Network Algorithms

1. INTRODUCTION
Many computer networks are mission critical and depen-

dability requirements are increasingly stringent. It is hence
not surprising that network reliability is one of the main con-
cerns of operators [21]. Ensuring a high network availability
however is often non-trivial, especially under frequent and
concurrent link failures, which are becoming more likely with
the increasing scale of communication networks including
datacenter [9], backbone [14,16] or enterprise [17] networks,
but also due to virtualization and shared risk link groups [22].

For fast failover, most modern computer networks provide
some kind of local failover mechanism: routers and switches
store conditional forwarding rules which take effect only if an
incident link or port is unavailable. In MPLS networks, this

mechanism is known as MPLS Fast Reroute: upon a link
failure, packets are sent along precomputed alternate paths.
In Software-Defined Networks (SDNs) and in particular in
OpenFlow, local fast failover is supported using group tables.

Local fast failover can be significantly faster than, e.g.,
reconvergence using link state IGPs or indirections via a
(remote) OpenFlow controller. At the same time, local fast
failover mechanisms are severely limited in terms of the
possible routes that can be chosen under multiple failures: as
failover decisions need to be pre-computed and can only rely
on information about the availability of links directly incident
to the respective router or switch, the resulting paths can be
far from optimal. Accordingly, local fast failover mechanisms
are often used as a first line of defense, after which more
rigorous and global path reconfigurations are performed.

Over the last years, the question of how to compute local
fast failover rules has received signficant interest by the
networking community, and many solutions are known that
provably ensure a high robustness even in the presence of
multiple concurrent failures [3, 4, 5, 6, 15, 16, 18, 19]. However,
while the resiliency is fairly well-understood, less is known
about the “quality” of the resulting failover routes, in terms
of the length of the resulting detour.

Long failover routes (compared to the original route) are
undesirable, for several reasons: Long routes require more
resources as bandwidth needs to be allocated on each ad-
ditional hop. This also makes it more likely that the load
introduced by the rerouted flows leads to interference with
existing flows, harming throughput. Longer routes are also
likely to increase latency (additional queuing delay for each
hop).

Contributions. This paper initiates the study of determi-
nistic local fast failover algorithms which are not only very
robust (to a large number of simultaneous failures) but which
also account for the length (resp. the stretch) of the detours
resulting from local rerouting.

In particular, we propose to allocate failover paths such
that depending on the actual failures, flows preserve distan-
ces to their destination. We consider different fundamen-
tal network topologies, namely torus, hypercube, fat-tree
(Clos), and BCube networks as they typically occur in high-
performance clusters and datacenters. We present several
failover algorithms and prove that they come with attractive
worst-case guarantees: all algorithms presented in this paper
ensure an optimal stretch, among the class of all deterministic
local fast failover algorithms.

Example and Limitation of Prior Work. In order to
illustrate our problem and show the need for route-length
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Figure 1: Example of a 7×7 torus with three failures
(crossed out links) incident to the destination t, with
three different failover strategies using blue (solid),
red (dotted), and green (dashed) arcs, respectively.

aware algorithms, we consider a 2-dimensional torus in Fig. 1.
In this simple example, there is just a single flow, from

s to t. In the absence of failures, s can communicate with
t directly: the two nodes are adjacent. In case of incident
link failures, any node v will apply alternative conditional
rules which have been pre-installed. These rules can only be
conditioned on the availability of links incident to v and the
in-port, i.e., rerouting decisions are purely local. See later
(and related work [4, 6, 15,18]) for a more detailed model.

We are interested in strategies to pre-compute such condi-
tional failover rules which ensure that s is still able to route
to t, even in the presence of multiple failures. In the example
in Fig. 1, node s may have a conditional failover rule which
reroutes traffic to v7 if (s, t) is unavailable. Assume that v7
will forward traffic to v6, which cannot reach t either. If v6
has a conditional rule to forward traffic to v7 if link (v6, t)
is unavailable, a forwarding loop may result (indicated by
dotted red arcs). Prior work provided important insights in
how failover rules should be defined in order to avoid such
loops, even under multiple link failures, for example, relying
on Hamiltonian cycles [5]. However, in the worst case, these
schemes can result in very long paths: if s resorts to the
alternative route indicated by solid blue arcs, the stretch
(i.e., the actual length of the failover route divided by the
shortest possible distance) is in the order of Ω(n). Thus, we
are aiming to ensure that failover paths “preserve locality”,
without sacrificing resiliency. In other words, we are inte-
rested in algorithms to compute static failover rules which
result in paths like the one indicated by dashed green arcs.
Related Work. There exists much work on routing schemes
resilient to single failures as well as routing schemes resilient
to multiple failures with dynamic failover tables (hence link
reversal approaches [8] can be used). However, not much is
known about the design of resilient static forwarding tables,
especially if packet-header rewriting or packet-duplication is
impossible or undesired (the former consumes header space
and the latter introduces additional loads).

The most closely related works to ours are by Chiesa et
al. [5,6], Stephens et al. [18,19], and Pignolet et al. [15], who
developed robust failover schemes using static forwarding
tables. These approaches provide a very high resilience,
however, they do not guarantee any non-trivial deterministic

bounds for the resulting path lengths.
This paper aims to fill this gap, by initiating the study

of deterministic local algorithms for short failover paths. In
addition to new approaches, we build upon the concepts of
arc-disjoint spanning arborescences, which were also exploited
in prior work by Chiesa et al. [5, 6] and are reminiscent of
work for homotopic routing problems [12].
Organization. We present our formal model in § 2, and
derive a lower bound on the stretch in § 3. § 4 describes
optimal low-stretch failover algorithms for grids, tori and
hypercubes, and § 5 describes optimal failover algorithms for
Clos and BCube networks. We conclude in § 6.

2. MODEL
We consider a network G = (V,E) (a so-called symmetric

digraph) connecting n nodes (switches, routers, hosts) V =
{v1, . . . , vn} using bidirected (i.e., full-duplex) links E, that
is, on a link (u, v) packets can be sent from u to v and in
the opposite direction on (v, u). We assume that rules can
match packet header fields as well as the in-port1

Each node v forwards packets according to two kinds of
pre-installed flow rules:

1. Default flow rules describe the forwarding behavior for
packets at v if all links incident to v are available.

2. (Conditional) failover flow rules describe how v should
forward packets in case of incident link or node failures.

Both the default and the failover flow rules are pre-installed
and static. In particular, at the time the failover rules are
installed, let us call it t0, the set F of directed link failures is
not known yet. Moreover, for simplicity, we assume that the
f = |F | link failures occur simultaneously at some later time
t1 > t0. While this simplifies the analysis presented later in
this paper, our algorithms are also robust against failures
occurring at different points in time.

Without loss of generality, it is sufficient to focus on an
arbitrary single flow, from source s to destination t. Moreover,
we do not allow packet tagging: while marking packets is
known to improve the robustness of routing [3,6], it may not
be impossible in practice to add additional header fields or to
reuse existing fields, as they are needed by other protocols.

Our goal is to devise a (deterministic) algorithm A that
computes failover rules for the network nodes such that it
holds for every flow of packets from s to t:

1. Resiliency: The route taken by packets from s accor-
ding to algorithm A leads to t despite f link failures,
as long as there is still a path from s to t.

2. Low stretch: Let `0 denote the minimum distance pac-
kets have to travel from s to t without failures (shortest
path routing) and let `1 denote the route length using
algorithm A, given the worst possible f failures. A
good failover routing algorithm minimizes the additive
stretch, defined as σ = `1 − `0 ≥ 0. Moreover, we con-
sider local stretch-optimal failover algorithms, optimal
algorithms in the class of local algorithms for which
`1 ≤ `∗1, where `∗1 denotes the worst case route length
of any deterministic local failover algorithm A∗ subject
to f worst case failures.

1The in-port is crucial for resiliency. E.g., consider a network
with a dead-end, e.g., a node v which can only be reached
via a link from u after the failures. As packets are forced
to return back to u along link (v, u), i.e., the same link
from which they arrived, matching the in-port is needed to
facilitate a different routing decision at v, avoiding a loop.
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3. A LOWER BOUND
We start by pointing out a fundamental limit for low-

stretch local fast failover. The following lower bound on
the stretch σ is expressed in terms of the network’s girth
(the length of the shortest undirected cycle contained in the
network) and will also serve us to prove that the algorithms
presented later are local stretch-optimal.

Theorem 1. Consider any network G of some given girth
γ, and an arbitrary local failover algorithm ALG. Then, there
exists a set of f link failures such that the length of the failover
path of ALG increases by at least (γ − 2) · f .

Proof. The claim follows by induction over the number of
failures. Given a route from s to t we construct increasingly
large failure sets by iteratively removing the last link of the
current failover path chosen by ALG; the is the link whose
destination is t. Note that the claim holds for the first failure:
let v0 = s, v1, . . . , v` = t be the route taken in absence of
failures. By failing the last traversed link e = (v`−1, t), a
failover path v0 = s, . . . , v`−1, v

′
1, . . . , v

′
`′ = t used for routing

instead. We observe that in this case, i.e., by setting F = {e},
the route length increases by at least γ − 2 hops since the
girth of G is γ and there cannot be a path from v`−1 to t
with fewer than γ − 1 hops.

For the induction step, we note that by deleting links, the
girth cannot decrease. We use the following indistinguisha-
bility argument. Let F and F ′ be two different (possibly
empty) sets of failed links. Moreover, let ΓX(v) be the inco-
ming and outgoing links incident to v which have not failed,
i.e., are not part of set X. Therefore, since ALG is local
and deterministic, if ΓF (v) = ΓF ′(v) any node v receiving a
packet from a given port will forward the packet the same
way under F and F ′, even if F 6= F ′: the failures are locally
indistinguishable. Thus, for any path interval between two
nodes u and v in which failure sets are indistinguishable, the
routing paths pF (u, v) and pF ′(u, v) will be the same.

When we fail the next link, e′ = (v′`′−1, t), we know that
nodes v′`′−1 and t have not been visited before by the failover
path and hence the failure of e′ is not visible in the prefix of
the path. Thus, we can again increase the path by at least
γ − 2 hops, independently of the previous failures.

Interestingly, the above theorem also holds in the case of
undirected link failures, where each failure affects edges of
both directions (i, j) and (j, i). We will use Thm. 1 later to
show the optimality of our algorithms for various topologies.

4. GRIDS, HYPERCUBES, AND TORI
In this section, we will first present an algorithm to com-

pute a stretch-optimal failover path for a 2-dimensional torus
network. We will then move on and consider more general
topologies, namely higher-dimensional grids and tori, as well
as hypercubes, as they often occur in real networks.

4.1 The 2-Dimensional Torus
In this section we study the 2-dimensional torus, i.e., a

2-dimensional grid with boundary resp. wrap-around links.
We first briefly review prior work, then present a scheme for
k1 × k2 tori, k1, k2 ≥ 5, and lastly discuss smaller tori.
Hamiltonian cycles for the 2-dimensional torus.
Chiesa et al. [5] designed a 3-resilient failover routing scheme
that applies to the 2-dimensional torus by the specification of
two bidirected-link-disjoint Hamiltonian cycles. If a packet

encounters a failed link, the current Hamiltonian cycle is
traversed in the other direction, and the next failed link on
the path causes a switch to the second cycle, where the idea
is repeated. The resiliency of this scheme is optimal due to
the uniform out-degree of 4, but its stretch is Ω(n), see Fig. 1.
Optimal stretch for 2-dimensional tori of width ≥ 5.
We now show how to combine optimality for both resiliency
and stretch for any k1 × k2 torus, as long as k1, k2 ≥ 5.
The general idea is to construct a geometric routing scheme,
which “backs off” to a detour when a failure is encountered.

Theorem 2. Let G be a k1×k2 torus graph with k1, k2 ≥
5. There is a 3-resilient routing scheme for G with an additive
stretch of 2f for f ≤ 3 failures.

Proof. W.l.o.g., let t be centered at x1, x2-coordinates
(0, 0), and divide the grid into four quadrants of cyclic order:
(++) for x1 ≥ 0, x2 > 0, (−+) for x1 < 0, x2 ≥ 0, (−−) for
x1 ≤ 0, x2 < 0, and (+−) for x1 > 0, x2 ≤ 0. Next, we fix
a shortest-path routing tree Tt to be used for 0 failures, as
shown in Fig. 2. For each node v 6= t, we denote the unique
outgoing link towards t by et(v) (omitting v if clear from the
context). Another way to describe Tt is as follows:
• (++): decrease x1 to 0 when x1 > 0, then decrease x2

• (−+): decrease x2 to 0 when x2 > 0, then increase x1

• (−−): increase x1 to 0 when x1 < 0, then increase x2

• (+−): increase x2 to 0 when x2 < 0, then decrease x1
We always assume an initial orientation towards the link

et. The link directly counter-clockwise (“left”) / clockwise
(“right”) is denoted by e`, er, respectively, and the remaining
backward link is denoted by eb. The forwarding mechanism
can then be described in the following list items I, II, III:

I: If et is up and the incoming port is not et, then use et,

II: if node v is at the end of e`(w) with x1(w) = 0 or
x2(w) = 0 and the in-port is e`(v), traverse eb(v),

III: else, traverse the following links, ordered by priority, if
they are not failed: e`, eb, er.

The correctness of the above provided algorithm can be
proven by careful case distinction. Due to space constraints,
we only sketch the main ideas in the following.

Observe that if the current quadrant has no link failures,
we will route along a shortest path. Since there are at most
three link failures, at least one quadrant will have no failures.

Next, assume that for every node v, it holds: if et(v) failed,
then e`(v) is up, i.e., at most one failure hits per node. When
et failed and we fall back to using e`, the distance to the
destination is decreased, unless v has a x1 or x2 coordinate of
zero. In the latter case, as e` is always up, we will be at equal
distance to t after two steps. As such, we will eventually
reach a quadrant without failures (three failures allowed, four
quadrants), reaching the destination. Furthermore, every
failure induces an additional stretch of at most two.

For a packet to use er at some node, three failures at the
current/previous node are required, after which t is reached
by local rerouting with an additive stretch of at most 6. If
a quadrant is switched, routing rule II can come into play,
preventing the previous quadrant to be entered again.

To evoke the use of eb as a boundary link, two failures at
the current/previous node are required. The next quadrant
can have at most one failure, where the minimum torus width
of 5 ensures delivery within the promised stretch bounds.

Hence, we can now assume that no boundary links will
be activated by our routing scheme, and that at most two
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t

Figure 2: et rules, drawn in so-
lid. The “secondary” rules e` are
drawn dotted. Boundary links,
here not drawn, are neither part
of et or e`, all are eb or er. Note
that every node, except for t, be-
longs to exactly one quadrant.

(0, 0) (1, 0) (2, 0) (3, 0)

(0, 1) (1, 1) (2, 1) (3, 1)

(0, 2) (1, 2) (2, 2) (3, 2)

(0, 3) (1, 3) (2, 3) (3, 3)

Figure 3: Two arc-disjoint arbo-
rescences as in Lemma 1 for a fi-
nite 4×4 grid, with destination t =
(0, 0) and roots r1 = (1, 0), r2 = (0, 1).
The arcs of the trees T1 and T2 are
drawn in green (dashed) and red
(dotted), respectively.

(0, 1, 0)

(0, 1, 1)

(1, 1, 0)

(1, 1, 1)

(0, 0, 0)

(0, 0, 1)

(1, 0, 0)

(1, 0, 1)

Figure 4: 3-dimensional Hyper-
cube routing (finite 2 × 2 × 2
grid) for the destination t =
(0, 0, 0), with three trees, drawn in
green (dashed), red (dotted), blue
(dashdotted).

failures hit a packet per node. I.e., when eb is used by a
packet (by two failures at the current node or by failing e`
in addition to et being the incoming port), at most one more
failure can occur subsequently (or some time before), yielding
the desired stretch bounds of 4(+2). Due to the girth being
4, the additive stretch of 2f is optimal, see Thm. 1.

Small tori of width 3 and 4. Our above scheme remains
two-resilient on smaller tori, as using boundary links requires
two failed links in the current quadrant, leaving the other
quadrants failure-free. Three failures can result in a loop
though: E.g., on a 3 × k2 torus graph, three link failures
can change the distance from t to a v ∈ N(t) from one to
k2 − 1 ∈ Ω(n). Furthermore, on 3 × k2 tori, the girth is
3. Since the method of Chiesa et al. [5] is applicable to be
3-resilient on all k1 × k2 tori with k1, k2 ≥ 3, we conjecture
that dedicated constructions with optimal additive stretch
also exist for smaller 2-dimensional tori.

4.2 General Grids, Hypercubes and Tori
In this section, we present a resilient failover scheme for

the d-dimensional finite grid with optimal additive stretch.
Our scheme applies to hypercubes, as they are a special case
of finite grids. Furthermore, we can utilize our scheme for
tori, where stretch is optimal for a width of ≥ 4.
Preliminary definitions. We define a d-torus as a d-
dimensional torus graph with k1×· · ·×kd nodes and integral

coordinates
([
−
⌊
k1−1

2

⌋
,
⌊
k1
2

⌋]
, . . . ,

[
−
⌊

kd−1
2

⌋
,
⌊

kd
2

⌋])
,

k ≥ 3, and the destination t being located at (0, . . . , 0). In
addition to the links between nodes at distance 1 from each
other, there are links between nodes (x1, . . . , xd), (x′1, . . . , x

′
d)

with xi = −
⌊

ki−1
2

⌋
and x′i =

⌊
ki
2

⌋
and xj = x′j for all

j 6= i, the so-called boundary links. We will also study finite
d-grids, which are d-tori, with k ≥ 2, but without boundary
links. A special case are hypercubes, where k = 2 holds in
all dimensions. W.l.o.g the destination t is set to (0, . . . , 0),
adjusting the other coordinates accordingly. Note that t can,
e.g., be in a “corner”, where t has only d neighbors.
Upper bounds on resiliency. From prior work it is imp-
lied that d-dimensional hypercubes, a special case of finite
d-grids, have a resiliency of d − 1 [5]. To the best of our
knowledge, static failover resiliency for higher-dimensional
d-tori was not yet formally studied. A resiliency of 2f − 1
for f ≤ d can be proven by combining methods in [5, 20].

For the upcoming proof of Theorem 3 we leverage rooted
spanning arborescences, a known approach for resilient rou-
ting [6]. For directed graphs, let (u, v) denote a directed arc
from node u to v. A directed subgraph T is an r-rooted
spanning arborescence of (the directed version of) G if (i)
r ∈ V (G), (ii) V (T ) = V (G), (iii) r is the only node without
outgoing arcs and (iv), for each v ∈ V \ {r}, there exists only
a single outgoing edge and a directed path from v to r.

When clear from the context, we use the term arborescence
to refer to an r-rooted spanning arborescence. A set of
arborescences T = {T1, . . . Tk} are arc-disjoint if no pair
of arborescences in T share common directed arcs, i.e., if
(u, v) ∈ E(Ti) then (u, v) /∈ E(Tj) for all i 6= j .

It is known that k arc-disjoint arborescences exist in any k-
connected graph [7] and can be computed efficiently [2], in a
runtime of O(|E|+nk3 log2 n). As thus, the total complexity
of computing our following failover schemes will be low, even
more so for the already discussed case of the 2-dimensional
torus, where we provided the rules explicitly.

Theorem 3. There is a resilient routing scheme for the
d-dimensional finite grid or hypercube with optimal additive
stretch of 2f for f ≤ d− 1 failures.

Our proof will rely on the following Lemma 1, giving us
d pairwise arc-disjoint shortest path arborescences to the d
neighbors of the destination in an d-dimensional orthant. A
d-dimensional orthant is the d-dimensional analogon of the
2-dimensional quadrant or 3-dimensional octant. For ease of
construction, we only consider orthants that have a width of
at least two nodes in every dimension.

Lemma 1. Let G be a finite d-dimensional grid or hy-
percube with destination t, and let G′ be a d-dimensional
orthant of G. Let N ′(t) be the d neighbors of t in G′. For each
v ∈ N ′(t), there is a shortest path arborescence Tv in G′ \{t},
such that these d arborescences are pairwise arc-disjoint.

Proof. W.l.o.g., we can assume that G′ is the d-
dimensional orthant of G where all coordinates are non-
negative. For completeness reasons, we start with d = 1: the
whole orthant is just a line, where we orient the only possible
arborescence Tx1 towards t. For illustrative purposes, the
two arborescences for d = 2 are presented in Fig. 3. Formally,
for d = 2, we use the 1-dimensional construction for both ar-
borescences T1, T2, with r1 = (1, 0) and r2 = (0, 1), as follows:
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the 1-dimensional orthant G′T1,1 spanned by (0, 0) + x′1(1, 0),
x1 ∈ N≥0 has the same arborescence as in in d = 1, analo-
gously for T2 in G′T2,1 with (0, 0) + x′2(0, 1), x2 ∈ N≥0. Arcs
incident to nodes not in G′T1,1 ∪G

′
T2,1 are added to the arbo-

rescences as follows: for T1, add arcs that are directed such
that they always decrease the distance in the x2-coordinate,
while for T2, always the distance in the x1 coordinate is
decreased. For T1 in nodes in G′T2,1, we add arcs that enforce
the following rule: increase the distance in x1, analogously
for T2 in G′T1,1. Both arborescences are arc-disjoint, and
provide shortest paths, as they always decrease the distance
to the respective destination r1, r2 in every hop, see Fig. 3.

We will now use d = 2 as a base case for induction. Assu-
ming Lemma 1 holds for the case of d dimensions, we will
show how to extend it to d+ 1 dimensions.

In a d+1-dimensional orthant G′d+1, there are d+1 different
d-dimensional orthants spanned from the destination by a
linear combination of d of the d+ 1 different root coordinates
as vectors. However, each of these d-dimensional orthants
only has “blueprints” for d different trees, and we have no
routing rules for nodes outside of these orthants.

We first perform an intermediate step, where we match
each of the d+ 1 d-dimensional orthants with one root that
takes part in spanning it, where the chosen blueprint is
defined by the contained remaining roots. A perfect matching
always exists, applying Hall’s marriage theorem [11]. For
ease of notation, we denote the d+ 1 d-dimensional orthants
by G′T1,d

, . . . , G′Td+1,d
. For an example with d = 3, see Fig. 4,

where the 3 contained 2d blueprints are provided by Fig. 3.
We now add the outgoing arcs for nodes v not contained

in the d+ 1 orthants for each Ti, such that the distance to
G′Ti,d

along the vector orthogonal to G′Ti,d
is decreased.

It remains to specify the arcs in the d+ 1 d-dimensional
orthants. First, we apply the d-dimensional routing blueprint
to all d roots contained in the respective orthant. For each
of the d+ 1 d-dimensional orthants, it remains to add the
arcs for the one root not contained in it. To this end, we
assign the outgoing arc for the respective arborescence along
the vector orthogonal to the respective orthant.

Observe that the constructed arborescences inside the
orthants are arc-disjoint by the induction assumption. By
construction, when considering all these rules in total, along
with the arcs incident to nodes not contained in any of the
d+ 1 d-dimensional orthants, we have arc-disjointness. For
the arcs constructed in the previous paragraph, observe that
they are in the opposite direction of the arcs “entering” the
orthants, i.e., all d+ 1 arborescences are arc-disjoint, and as
they decrease the distance to their root in every step, they
have the shortest path property in grids.

Putting it all together. Chiesa et al. [6] showed how
decompositions of G into arborescences T can be used for
failover routes: when encountering a failed link at node v, v
forwards the packet along a different arborescence Tj , where
the current tree is determined by the incoming port. By
defining a circular order on the arborescences, one obtains
(d− 1)-resiliency of such circular-arborescence routing on d
arc-disjoint arborescences, as each directed link/arc is used
in at most one arborescence, which we use to prove Thm. 3.

Proof. We define a circular order on the arborescences
promised by Lemma 1, switching to the next arborescence in
case a failure is encountered, where the current arborescence
can be identified by the incoming port. As the arborescen-
ces are provided only for each orthant, we remove multiple

outgoing arborescence links at the orthant boundary nodes
arbitrarily, until only one remains, obtaining d arc-disjoint
arborescences for the whole graph, yielding the stated resi-
liency of d− 1. It remains to show the stretch property. As
the arborescences have the shortest path property, switching
between two arborescences induces only an additive stretch of
at most 2, with the girth of finite grids and hypercubes being
4. By starting the routing on an arborescence with minimum
distance to the destination t, the theorem follows.

Corollary 1. There is a resilient routing scheme for the
d-dimensional tori of minimum width 4, with optimal additive
stretch of 2f for f ≤ d− 1 failures.

Proof. Resiliency follows analogously by ignoring the
boundary links, but it remains to show the stretch property.
However, as we “centered” the destination t in the torus,
shortest paths to the destination in a current orthant are
also always shortest paths in the torus. Lastly, a minimum
width of 4 enforces a girth of 4.

5. CASE STUDIES: CLOS AND BCUBE
The failover algorithms presented so far addressed grid

and hypercube graphs connecting “nodes”, which raises the
question how to instantiate these approaches for actual da-
tacenter networks connecting servers and routers/switches,
using topologies such as Clos [1], F10 [13] and BCube [10].
However, it turns out that our techniques for low-stretch
rerouting are directly applicable to such networks as well,
sometimes even at an improved robustness.

First, topologies like Clos and F10 are decomposable into
trees of connected complete bipartite graphs and can be made
resilient using the circular arborescence constructions for
shared-link-failure-free routing functions introduced in [5,6].
It is easy to see that here the stretch is bounded by an
additive term of 2f , where f < k and k is the number of
partially overlapping rooted trees describing the Clos and
F10 topology, using a simple induction argument over the
tree layers. Since Clos and F10 networks form bipartite
graphs with girth 4 we can apply Theorem 1 to derive the
optimality of this construction with respect to stretch.

A second important class of datacenter topologies are
formed by hypercubic networks. As an example, we consider
the BCube: BCube topologies are organized in k layers of
server blocks of size n. Each of the total nk servers is provided
with a k-digits address written in base n. That is, server
a has address(a) = a0a1 . . . ak−1 with ai ∈ {0, 1, . . . , n −
1},∀i. At the physical level, each server a is connected to
k n-port switches: these switches connect a to all other
servers at hamming distance 1 from a (that is, to servers b

where
∑k−1

i=0 (address(b)[i] 6= address(a)[i]) = 1). A switch
deployed at level i will connect n servers sharing identical
addresses with the exception of the ith digit.

Therefore, at the logical (server-to-server) level, all servers
at hamming distance one are connected as a clique. In
particular, consider a BCube with parameter n = 2, which is
essentially a standard k-dimensional hypercube at the logical
level. We exploit this observation to apply the low-stretch
failover algorithm for hypercubes to the physical topology
of BCubes as follows. Let G = BCube(n, k). Let s ∈ V
a source of address s0s1 . . . sk−1. We can assume without
loss of generality that the target address t = t0 . . . tk−1 =
0k. Consider the set of servers V ′ whose address is the
combination of the address elements of s and the address
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elements of d when they differ. For elements where s and t
are the same, we pick the values according to a permutation σ
to add further servers to the set. Thus we have |V ′| = 2k, i.e.,
every address element of servers in V ′ can be one of two values.
Formally, V ′ = {v ∈ V s.t.∀i ∈ 0..k − 1, (address(v)[i] =
ti) or ((address(v)[i] = si if si 6= ti) or (address(v)[i] =
σ(di) if si = ti))}. Consider the subgraph of G induced by
those nodes: it is the hypercube H(k). Moreover, observe
that this hypercube nicely spans the physical topology: each
node has a degree k in H(k), and each of those k neighbors
is reachable through a different switch.

Deploying a circular arborescence scheme on H(k) is thus
possible, since each node has a direct correspondence between
its in-port and the corresponding neighbor in the topology,
and since each node knows its position in H(k) by comparing
its address with the destination’s address.

One interesting observation to make here (and in contrast
to the graph models considered in previous sections) is that
the flows between servers can be even more resilient than
the degree of the individual switches, i.e., the local failover
routing scheme can tolerate complete switch failures. In such
a setting, each 2-port switch connects a pair of servers, and
hence, at the physical level, the network is only 2 connected.
However, using robust routing, we can ensure (k−1)-resiliency
for flows between servers: the redundancy offered by the k
switches provides servers with a greater robustness.

6. CONCLUSION
This paper presented the first deterministic local fast failo-

ver algorithms which guarantee not only resiliency but also
short routes. As such, our solutions can lead to significantly
shorter failover routes with optimal stretch.

We described our algorithms in terms of bidirected links.
Our approach has however implications also for undirected
failures, where an adversary fails links in “both directions”.
In such a scenario our 2d-torus algorithm has identical perfor-
mance. However, when using algorithms relying on directed
arborescences, a single undirected failure can impact two
arborescences. Thus, in this case, the resiliency is halved
and the stretch is doubled.

Our work opens several interesting directions for future
research. For example, this paper has focused on a hop dis-
tance metric, which is natural to capture resource allocations
and loads; however, it would be interesting to generalize
our results to arbitrary link weights (e.g., representing la-
tencies). The main open question in terms of algorithms
however concerns low-stretch failover algorithms for more
general graph classes or even arbitrary graphs. The study
of rerouting techniques with header re-writing constitutes
another interesting direction for future research.
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