
HAL Id: hal-02043798
https://laas.hal.science/hal-02043798

Submitted on 21 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Load-Optimal Local Fast Rerouting for Dense Networks
Michael Borokhovich, Yvonne-Anne Pignolet, Stefan Schmid, Gilles Trédan

To cite this version:
Michael Borokhovich, Yvonne-Anne Pignolet, Stefan Schmid, Gilles Trédan. Load-Optimal Local Fast
Rerouting for Dense Networks. IEEE/ACM Transactions on Networking, 2018, 26 (6), pp.2583-2597.
�10.1109/TNET.2018.2871089�. �hal-02043798�

https://laas.hal.science/hal-02043798
https://hal.archives-ouvertes.fr

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 1

Load-Optimal Local Fast Rerouting
for Dense Networks

Michael Borokhovich1 Yvonne-Anne Pignolet2 Stefan Schmid3 Gilles Tredan4
1 AT&T Labs 2 ABB Corporate Research, Switzerland 3 University of Vienna, Austria 4 CNRS-LAAS, France

Abstract—Reliable and highly available computer networks
must implement resilient fast rerouting mechanisms: upon a
link or node failure, an alternative route is determined quickly,
without involving the network control plane. Designing such fast
failover mechanisms capable of dealing with multiple concurrent
failures however is challenging, as failover rules need to be
installed proactively, i.e., ahead of time, without knowledge of
the actual failures happening at runtime. Indeed, only little is
known today about the design of resilient routing algorithms.

This paper introduces a general framework to reason about
and design local failover algorithms which minimize the resulting
load after failover on dense networks, beyond destination-based
routing. We show that due to the inherent locality of the failover
decisions at runtime, the problem is fundamentally related to the
field of distributed algorithms without coordination. We derive an
intriguing lower bound on the inherent network load overhead
any local fast failover scheme will introduce in the worst-case,
even though globally seen, much more balanced traffic allocations
exist. We then present different randomized and deterministic
failover algorithms and analyze their overhead load. In particular,
we build upon the theory of combinatorial designs and develop a
novel deterministic failover mechanism based on symmetric block
design theory which tolerates a maximal number of link failures
while ensuring low loads.

I. INTRODUCTION

Computer networks have become a critical infrastructure of
our information society. Accordingly, there are increasingly
stringent requirements on such networks, especially regarding
dependability (availability and fault-tolerance).
The Context: The Need for Fast Failover. The ability
to quickly recover from failures is a key requirement for
dependable computer networks. Especially link failures are
common and frequent today [20], and link failures do happen
concurrently [2], [6], [8]. Even without physically disconnect-
ing the underlying topology, these link failures can cause
routing failures disrupting communications between some
hosts.
The Problem: Slow Coordination. The reconvergence times
in traditional routing systems after failures are known to be high.
In a nutshell, in these traditional routing systems, whenever a
link or node fails, routing tables are recomputed by executing
the (distributed) routing protocol again. These recomputations
result in relatively long outages after failures, leading to high
packet loss rates [36].

While recent advances in routers have reduced reconvergence
times, they are still too high for critical services which are
sensitive to periods of traffic loss that are orders of magnitude
shorter than this.

The Solution: No Coordination. Modern computer networks
hence include pre-computed backup routes and rules for fast
failover, allowing for very fast failure detection and re-routing.
These local inband re-routing mechanisms are often meant
as a first line of defense, and the resulting fast but simple
rerouting is just a temporary solution, before the control plane
rigorously optimizes the flow allocation for the new network
topology. A most well-known example is Fast Reroute in MPLS
(e.g., [26]) where, upon a link failure, packets are sent along
a precomputed alternate path without waiting for the global
recomputation of routes.

Another example, particularly relevant in datacenters [29],
are failover schemes based on ECMP: when a link is detected
to be unavailable (e.g., using LLDP neighbor discovery), flows
are load-balanced (i.e., re-hashed) among the remaining shortest
paths.

These mechanisms avoid the complexities involved in
distributed coordination among switches or routers, but are
completely local approaches: the reaction of a router only
depends on the status of its incident links, and a router does not
inform other routers about failures. In this case, the disruption
time can be limited to the small time taken to detect the adjacent
failure and invoke the backup routes.
The Challenge: Multiple Failures. The challenge of designing
resilient local fast rerouting mechanisms is that these mech-
anisms need to rely on local knowledge only: in contrast
to dynamic routing tables which may change in response to
link failures (e.g., using link reversals [11]), failover routing
tables are usually statically preconfigured. However, rerouting
traffic along efficient paths based on local decisions only is
challenging in the presence of multiple failures: a real and
frequently studied threat, also in datacenters, e.g., due to shared
risk link groups [28] (see also RFC 8001), attacks [33], network
virtualization, cascading overload, or simply node failures
which affect all incident links [2], [9], [12], [27], [21], [17].

Things become even more difficult if packet tagging (i.e.,
keeping information about observed failures along the packet
trajectory in the packet header itself) is unavailable or undesired:
while including information in the packet header can be used
to keep track of observed failures along the path of the specific
packet [3], tagging comes with overheads (in terms of header
space, additional rules, and time) and can also cause problems
in the presence of middleboxes [24].

In this paper we focus on simple routing algorithms, which
do not require any dynamic state in the packet header nor
at the routers themselves. In particular, we consider the well-
established oblivious (i.e., non-adaptive) routing model [25].

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 2

The fundamental question is then [6]: how resilient can
static forwarding tables be? That is, how many link failures
can failover routing tolerate before connectivity is interrupted
(i.e., packets are trapped in a forwarding loop, or hit a dead
end) without invoking the control plane or using tagging? At
first sight, it seems difficult to implement a high degree of
fault-tolerance in a setting where routers are restricted to pre-
configured failover rules, have a local view, and cannot resort
to packet tagging. Furthermore, mechanisms based on ECMP
are limited to failover to shortest paths [17].
Our Contributions. This paper presents the design of very
resilient fast failover schemes for dense networks (as they
appear most prominently in datacenters), tolerating multiple
link and node failures, while keeping the network load low:
asymptotically matching an intriguing lower bound stating that
due to the inherent locality of the failover scheme, a certain load
cannot be avoided, even though seen globally, better solutions
would exist. Our re-routing algorithms take the source and
destination of a flow into account, and do not require packet
tagging.

We formally prove that our failover schemes provide an
optimal resilience (in the sense that no scheme can tolerate more
link failures) while minimizing link loads for many important
traffic models, including the frequently studied permutation
routing model [25], [35] or all-to-one routing [18].

Our approach is based on the insight that resilient local
failover mechanisms can be seen as distributed algorithms
without coordination: a subfield of distributed computing where
devices solve a problem in parallel without exchanging infor-
mation among them. In particular, we establish a connection to
combinatorial design theory [32] and present a novel failover
mechanism building upon symmetric block designs.

We focus on oblivious routing, where all packets of the
same (micro-)flow will be forwarded the same way (namely
based on source and destination only). However, we conjecture
that our techniques are relevant or even optimal in many other
scenarios as well (in particular for adaptive routing).

Our analytical worst-case results are complemented by
simulations, studying fault-tolerance, failover path lengths and
loads on different (but dense) topologies and in particular the
Clos datacenter network.
Background & Preliminaries. Our approach is generic, and
relevant for any resilient routing mechanism based on a static
failover technology. In particular, it applies to Software-Defined
Networks (SDNs) and their standard protocol, OpenFlow. In a
nutshell, an SDN outsources and consolidates the control over
a set of network switches to a logically centralized controller.
As this controller is decoupled from the data plane, interactions
with the controller introduce non-trivial latencies and overheads.
Accordingly, OpenFlow offers a local fast failover mechanism
which can provide high-throughput forwarding in the face of
multiple simultaneous failures without communication with
the controller: an OpenFlow switch can be pre-configured with
a set of failover rules for each flow. Different flows can be
defined e.g., based on layer-2, layer-3 and layer-4 header fields.
The failover rules become active based on the status of the links
incident to the given switch, without contacting the controller.

If a local fast failover scheme is implemented at the hardware

level, it can react near-instantaneously to link failures. Our
mechanism can be implemented in OpenFlow based on failover
group tables designed specifically to detect and overcome port
failures. A group has a list of action buckets and each bucket
has a watch port as a special parameter. The switch monitors
liveness of the indicated port. If it is down, this bucket will
not be used and the group quickly selects the next bucket (i.e.,
the backup tunnel) in the list with a watch port that is up.

The deterministic failover mechanism presented in this paper
is based on combinatorial design theory [32]. In a nutshell,
combinatorial mathematics deal with the existence, construction
and properties of systems of finite sets whose arrangements
satisfy generalized concepts of balance and/or symmetry.
Traditionally, combinatorial designs are built around Balanced
Incomplete Block Designs (BIBDs), Hadamard matrices and
Hadamard designs, symmetric BIBDs, Latin squares, resolvable
BIBDs, difference sets, and pairwise balanced designs (PBDs).
Other combinatorial designs are related to or have been
developed from the study of these fundamental designs. We
refer the reader to [32] for more background.
Organization. The remainder of this paper is organized as
follows. Section II introduces our problem statement and formal
model. We derive a load lower bound in Section III, and
characterize resilient oblivious routing schemes in Section IV.
In Section V, we present our approach together with a formal
analysis. Section VI evaluates the performance of our failover
schemes by simulation, followed by a discussion of related
work in Section VII. The paper is concluded in Section VIII.

II. PROBLEM STATEMENT & MODEL

Consider an SDN-network G = (V,E) with n OpenFlow
switches (nodes) V = {v1, . . . , vn} connected by bidirectional
links E. Each node v stores two kinds of flow rules:

1) The original flow rules, describing the “regular” forward-
ing behavior for arriving packets of a given flow1.

2) The (conditional) failover flow rules, describing how
packets of a given flow arriving at v should be forwarded
in case of incident link or node failures. Both the original
and the failover flow rules are pre-installed by the
controller and are static.

We note that while the failover rules may be communicated
by a centralized (SDN) controller (“preprocessing phase”), the
actual failover will not require any communication (“runtime”).
In general, we will focus on oblivious routing schemes in this
paper: in oblivious routing, the route of a packet does not
depend on other packets, and in particular, is independent of
the load in the network. Moreover, if not stated otherwise, we
do not consider the possibility to match the inport in our rules.

We consider an initial network where all nodes are directly
connected (a clique, e.g., a backbone network). The communica-
tion pattern C is represented by a list of source and destination
pairs of nodes. For simplicity we call the ith item in C flow i,
with source si and destination di and assume unit resource
demands (e.g., bandwidth). For ease of presentation, we assume

1Note that multiple flows may have the same source and destination node.
However they may belong to different connections, e.g., TCP connections.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 3

that there are at most n flows in the first part of the paper and
later present an extension for more flows.

Definition 1 (Load Overhead). Let G = (V,E) be a graph,
and e ∈ E an edge. The load overhead φ(e) is the number of
additional flows fi crossing edge e due to rerouting. Henceforth,
let φ = maxe∈E φ(e) denote the maximum overhead load
(often called simply load in the remainder of the paper).

We study failover schemes that pursue two goals:
1) Correctness: The route taken by each flow is a valid

path; there are no forwarding loops. In this paper, we
will ensure correct paths even under a large number of
failures (a resilience property).

2) Balanced overhead: The resulting flow allocations are
“load-balanced”, i.e., minimize the overhead load of
the maximally loaded link in G after the failover:
min maxe∈E φ(e).

Note that flows that follow their path without rerouting
do not contribute to the overhead load. To analyse the load
overhead of a failover scheme in a network with F failed links
(we express node failures in terms of the node’s incident links
which fail with it2), we need some more definitions. In general,
to study the limits of the failover scheme, we focus on worst-
case overhead load: we assume the link failures are determined
by an adversary knowing the resilient routing protocol.

Definition 2. Let F be a set of failed links, F ⊂ E. Given a
communication pattern C, a worst case scenario constitutes a
set of failed links F that generate the worst overhead load φ,
chosen by an omniscient adversary knowing the failover scheme.
Fo(φ) is defined as the set of optimal attacks (in terms of
minimal required number of failures) leading to an overhead
load φ. That is, ∀φ ≤ n, ∀F ∈ Fo(φ), there is at least one
(non-failed) link e such that the overhead load φ(e) under a
link failure set F is φ and there are no link failure sets smaller
than f generating the same overhead load.

Besides considering n arbitrary flows, we also consider two
well-studied more specific communication patterns: all-to-one
communication (one flow to a specified node from all other
nodes) and permutation routing (one flow from each node to
one other node in the network).

The following table describes the use of the main variables.

Variable Meaning
n number of nodes in network
F set of failed links
f number of failures, f = |F |
φ(e) load overhead load on link e
φ maximum load overhead

III. A LOAD LOWER BOUND

Let us first investigate the limitations of local failover mech-
anisms from a conservative worst-case perspective. Concretely,
we will show that even in a fully meshed network (i.e., a
clique), a small number of link failures can either quickly

2Obviously, a node which failed can no longer be reached. Our approach
addresses a more general problem.

disrupt connectivity (i.e., the forwarding path of at least one
source-destination pair is incorrect), or entail a high load. This
is true even though the remaining physical network is still well
connected: the minimum edge cut (short: mincut) is high, and
there still exist many disjoint paths connecting each source-
destination pair.

Theorem 1. No local failover scheme can tolerate n− 1 or
more link failures without disconnecting source-destination
pairs, even though the remaining graph (i.e., after the link
failures) is still n/2-connected.

Proof. We consider a physical network that is fully meshed
and the all-to-one traffic pattern where all nodes communicate
with a single destination vn. To prove our claim, we will
construct a set of links failures that creates a loop, for any
local failover scheme. Consider a flow v1 → vn connecting
the source-destination pair (v1, vn). The idea is that whenever
the flow from v1 would be directly forwarded to vn in the
absence of failures, we fail the corresponding physical link:
that is, if v1 would directly forward to vn, we fail (v1, vn).
Similarly, if v1 forwards to (the backup) node vi, and if vi
would send to vn, we fail (vi, vn), etc. We do so until the
number of intermediate backup nodes for the flow v1 → vn
becomes

⌊
n
2

⌋
. This will require at most

⌊
n
2

⌋
failures (of links

to vn) since every such failure adds at least one backup node.
In the following, let us assume that the last link on the

path v1 → vn is (vk, vn). We simultaneously fail all the links
(vk, v∗), where v∗ are all the nodes that are not the intermediate
nodes on the path v1 → vn, and not v1. So, there are n−

⌊
n
2

⌋
−2

nodes v∗ (the minus 2 accounts for v1 and vk). By failing the
links to v∗, we left vk without a valid routing choice: All the
remaining links from vk point to nodes which are already on
the path v1 → vn, and a loop is inevitable.

In total, we have at most
⌊
n
2

⌋
+n−

⌊
n
2

⌋
−2 = n−2 failures.

Notice, that the two nodes with the smallest degrees in the
graph are the nodes vn (with degree of at least n

2 − 1) and vk
(with degree of at least n

2). The latter is true since the first⌊
n
2

⌋
failures were used to disconnect links to vn, and another

n−
⌊
n
2

⌋
− 2 failures were used to disconnect links from vk.

All the other nodes have a degree of n− 2.
The network is still n

2 − 1 connected: the mincut of the
network is at least n

2 . Consider some cut with k nodes on
the one side of the cut, and n − k nodes on the other side.
Obviously, one of the sets has a size of at most

⌊
n
2

⌋
; let us

denote this smaller set by S. If S includes at least one of the
nodes V \ {vk, vn}, then the number of outgoing edges form
the set is at least n− 2− (|S| − 1), thus the mincut is at least
n
2 − 1. If S includes only both vk and vn, the mincut is at
least n − 1 (the link (vk, vn) was failed). If only one of the
nodes {vk, vn} is in S, then the mincut is at least n

2 − 1.

Regarding the maximal link load we have:

Theorem 2. For any local failover scheme tolerating f link
failures (0 < f < n) without disconnecting any source-
destination pair, there exists a failure scenario which results
in a link load of at least λ̂ ≥

√
f , although the minimum edge

cut (mincut) of the network is still at least n− f − 1.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 4

vn

vi

vn

v1
i

vi

vn

v1
i

vi

v2
i

vn

v1
i

v3
i

vi

v2
i

Fig. 1. From left to right: failover path (vi → vn) where each time the last
hop to vn is failed.

Proof. Let us first describe an adversarial strategy that induces
a high load: Recall that in the absence of failures, each node vi
(i 6= n) may use its direct link to vn for forwarding. However,
after some links failed, vi may need to resort to the remaining
longer paths from vi to vn. Since the failover scheme S tolerates
f failures and vi remains connected to vn, S will fail over to
one of f + 1 possible paths. To see this, let vji (j ∈ [1, . . . , f])
be one of the f possible last hops on the path (vi → · · · →
vji → vn), and let us consider the paths generated by S:

(vi → vn),

(vi → · · · → v1i → vn),

(vi → · · · → v1i → · · · → v2i → vn),

. . .

(vi → · · · → v1i → · · · → v2i → · · · → vfi → vn).

E.g., the path (vi → · · · → v1i → vn) is generated if the first
failure is link (vi, vn), and the path (vi → · · · → v1i → · · · →
v2i → vn) if the second failure is link (v1i , vn) (see Fig. 1 for
an illustration). Notice that the last hop vji is unique for every
path; otherwise, loop-freeness would be violated.

For each i ∈ [1, . . . , n− 1] (i.e., for each possible source)
consider the set Ai = {vi, v1i , . . . , v

√
f

i }, and accordingly, the
multiset

⋃
iAi is of size |

⋃
iAi| = (n − 1)(

√
f + 1) many

nodes. Since we have n− 1 distinct nodes (we do not count
vn), by a counting argument, there exists a node w ∈

⋃
iAi

which appears in at least
√
f sets Ai.

If for each i such that w ∈ Ai, the adversary will cause vi
to route to vn via w, then the load of the link (w, vn) will
be at least

√
f . This can be achieved by failing at most

√
f

links to vn in each such set Ai. Thus, the adversary will fail√
f×
√
f = f links incident to vn, while the maximum loaded

link (w, vn) will have a load of at least
√
f .

It remains to prove that the network remains highly con-
nected, despite these failures: The proof is simple. In a clique
network without failures, the mincut is n − 1. In the worst
case, each link failure will remove one link from some cut,
and hence the mincut must eventually be at least n−f −1. By
the same argument, there are at least n− f − 1 many disjoint
paths from each node vi to the destination: initially, without
failures, there are n− 1 disjoint paths (a direct one and n− 1
indirect ones), and each failure affects at most one path.

Interestingly, we can prove analogously that if failover rules
only depend on destination addresses, the result is even worse.

Theorem 3. Consider any local destination-based failover
scheme in a clique graph. There exists a set of f failures

(0 < f < n), such that the remaining graph will have a mincut
of n− f − 1 and λ̂ ≥ f.

Proof. In order to construct a bad example, we first fail the
direct link (v1, vn), and hence v1 will need to reroute to some
path with the last node before vn being some node vi. When
we fail the link (vi, vn), vi will have to reroute and some
other node vj will become the last hop on the path to vn. We
repeat this strategy to fail the links from the newly selected
last hop and the destination vn. This results in a routing path
v1 → · · · → vi → · · · → vj → · · · → w → vn with at least f
intermediate nodes. Since the algorithm is destination-based,
i.e., forwarding rules depend only on the destination of a packet,
the load on the link (w, vn) is at least f + 1: all the nodes on
the path v1 → vn send their packets along the same route.

IV. CHARACTERIZING RESILIENT ROUTING SCHEMES

A naive solution to implement load-optimal fast failover
would be to use rules defining a forwarding behavior for all
possible combinations of failures. Indeed, at first sight such
a combinatorial approach may seem unavoidable in order to
minimize the load. However, the number of required rules
would be combinatorial (exponential) in the number of ports;
as we will show, this overhead is unnecessary.

Our proposed failover scheme can be best described in the
form of a matrix. The matrix indicates, for each of the n
flows (one per row), the backup forwarding sequence. That is,
any failover scheme S can be represented in a generic matrix
form M = [mi,j] (see also upcoming example in Figure 2):

M =


m1,1 m1,2 . . . m1,n

...
...

. . .
...

mi,1 mi,2 . . . mi,n

...
...

. . .
...

mn,1 mn,2 . . . mn,n

 .

Any failover scheme instance S will always forward a
message directly to the destination, if the corresponding link
is available. Otherwise, if a message of the ith flow from
source si cannot reach its destination di directly via (si, di),
it will resort to the sequence of alternatives represented as
the row i in the matrix M (the “backup nodes” for the ith

flow), as described in Algorithm 1. Node si will first try to
forward to node mi,1, if this link is not available to node mi,2,
and so on. More generally, if a message with source si is
currently at node mi,j it will be forwarded directly to the
destination di, if the link (mi,j , di) is available. Otherwise, the
failover scheme will try to send it to mi,j+1, mi,j+2, etc. In
other words, if the link (mi,j ,mi,j+1) is not available, then the
link (mi,j ,mi,j+2) is tried next, and so on. If (mi,j ,mi,j+2)
is available, the message will be forwarded to node mi,j+2.
If this node cannot reach di, that is (mi,j+2, di) failed, the
link (mi,j+2,mi,j+3) will be tried, etc.

In general, we can observe that in order to avoid loops (and
provide maximal resilience), each row should contain each
non-source/non-destination nodes exactly once. To make the
analysis and description simpler, we also allow the source and
destination nodes to appear in each row: the failover scheme

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 5

1

2

3

4

5

6

M1 =


1 2 3 4 5 6
2 3 4 5 1 6
3 4 5 1 2 6
4 5 1 2 3 6
5 1 2 3 4 6
5 1 2 3 4 6



Fig. 2. Example: Rerouting of flow i from 1 to 6, according to M , where
the ith row without source and destination nodes is [2, 3, 4, 5]. If the links
{(1, 6), (2, 6), (2, 3)} failed, packets of this flow are first forwarded to node
2 from node 1. Since there is no direct link from 2 to 6, the next entry in the
row, 3, is considered. As the link between 2 and 3 is missing and the next
entry is 4, packets are then forwarded to node 4, from where they can reach
their destination.

Algorithm 1 Rerouting given a Failover Matrix M
Upon receiving a packet of flow i at node v:

1: if destination not reached yet, di 6= v then
2: if (v, di) available then
3: forward packet to di
4: else
5: let j be v’s index in row i /* mi,j = v */
6: while mi,j+1 = si or (v,mi,j+1) unavailable do
7: j = j + 1
8: forward packet to mi,j+1

simply ignores them when they occur. Thus, each row is a
permutation of all nodes in our schemes.

Figure 2 illustrates the use of a failover matrix for a flow
from node 1 to node 6, when the link {(1, 6), (2, 6), (2, 3)} fail.
Observe that while the specific permutation does not matter
for correctness, it matters in terms of performance. Figure 3
shows an example for n = 6 in a scenario with flows from
each node to node 6 (no flow from node 6 to another node).
We assume that the links {(1, 6), (2, 6), (3, 6)} fail. On the left,
the resulting failover routes for matrix M1 are shown, where
the ith flow originates from node i. The elements in bold
indicate the prefixes of the rows that are used for rerouting.
The resulting maximum overhead load is 3 on (4, 6): the load
of 3 flows aggregates along the failover path. On the right, a
failover scheme resulting in load 2 only is shown. For example,
this can be achieved with the following failover matrix:

M2 =


1 2 3 4 5 6
2 5 1 3 4 6
3 4 5 1 2 6
4 1 2 5 3 6
5 3 4 2 1 6
5 1 2 3 4 6

 .

Intuitively, the bad performance of M1 comes from the
similarity of each node’s scheme: as nodes all rely on similar
failover schemes, the failover flows will all end up on the same
route, leading to a high link congestion.

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Fig. 3. Example: Rerouting of flows from nodes 1,2, and 3 due to link failures
{(1, 6), (2, 6), (3, 6)} according to M1 (left) and M2 (right) respectively. A
failover matrix rerouting flows to similar paths can lead to a high overhead
load (left). Accordingly, failover matrixes should be designed where node
repetitions in row prefixes are minimized (right).

V. RESILIENT OBLIVIOUS ROUTING

A. How to Create Good Failover Matrices?

Before we present the proposed schemes to compute resilient
oblivious routing matrices, let us first make some observations.
We will first focus on the fundamental All-to-One Routing
scenario which is often considered in related works [18]: all
nodes communicate to a single destination d, let us say vn
(we assume vn does not communicate to anyone else, so we
consider n − 1 flows only). The following auxiliary claim
shows that for all-to-one routing the highest overhead load is
induced if links towards the destination node vn are failed. In
this case, the adversary can “reuse“ failures: if the adversary
removes the links between vi and vn, then the occurrence of vi
in any failover sequence implies a higher number of flows on
the subsequent node in the failover sequence.

Claim 4. For the all-to-one routing, the highest load is induced
if links towards the destination node vn are failed.

Proof. To achieve a load of f on some link, the adversary first
needs to bring at least f flows to some node w. Consider a
failover sequence mi,· in which w is located at j’s position,
i.e., mi,j = w. In order to route the flow vi → vn to node
w, the adversary needs to fail at least j links (every failure
requires at most a single additional backup node). Thus, the
adversary can remove the links to the destination from every
node mi,k, k < j and from the source vi. The optimality is
due to the fact that once one of the nodes mi,k, k < j appears
in other sequences, these failures are automatically reused: the
links (mi,k, vn) already failed. If the adversary would instead
choose to fail other links (not towards the destination), e.g.,
(mi,j ,mi,j+1) , the failures can only be reused if the same
link (and not only an endpoint) appears in other sequences
before w. Therefore, we conclude that the strategy of failing
the links to the destination is optimal: (1) it requires no more
failures to bring a specific flow to w than any other strategy,
and (2) link failures to the destination can strictly be reused
more often than the failures of links to any other nodes.

Thanks to this claim, we can assume that F consists of links
(vi1 , vn), (vi2 , vn), . . . for some i1, i2, . . . only. Accordingly,
we refer to them by i1, i2, . . . for all-to-one routing.

Consider two flows originating from u and v in a system
relying on a failover scheme represented by M . Both flows

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 6

cannot reach the destination, so they are rerouted to their fail-
safe paths, trying the failover paths as described earlier. If they
both use the same node t in their failover paths, the links from
nodes earlier in the corresponding rows of the failover matrix to
the destination must have failed. That is, mu,a = mv,b = t for
some indices a, b. Thus the flow from u will transit through t
if all the previous failover routes have failed: {(mu,i, vn), 1 ≤
i ≤ a} ⊆ F . Similarly, the flow from v will transit through t
if {(mv,i, vn), 1 ≤ i ≤ b} ⊆ F . As a shorthand notation,
we refer to the set of elements of row i before t as Pt(i) =
{mi,j |mi,ti = t, 1 ≤ j ≤ ti}, the prefix of t in row i (this can
include the source and destination of the flow, although they
are ignored in the failover scheme). The number of failed links
is hence at least the number of elements in the union of these
prefixes minus the occurrence of the destination node of the
flows: f ≥ a+ b− |Pt(u)∩ Pt(v)| − 2. This relation provides
two techniques to ensure that the link (t, vn) has a low load:
i) makes sure a and b are maximized (that is, t is used as a
last resort), and ii) ensure that failover routes used by u and v
are as different as possible, ideally Pt(u) ∩ Pt(v) = ∅: thus
the adversary cannot “reuse” failed links on the failover path
of packets from u when targeting packets emitted by v.

When generalizing this analysis to all nodes of the system,
it is interesting to observe that i) and ii) conflict: on the one
hand, several different nodes must be used early in failover
schemes (to prevent a large intersection size), on the other,
nodes should be used as late as possible on failover sequences
so that no congestion can easily happen on their link to vn.

B. Randomized Failover Schemes

Let us now use our observations above to design good
failover matrices. A first naive approach may be to choose
the matrix entries mi,j (i.e., the “failover ports”) uniformly at
random from the set of next hops which are still available, and
depending on the source and destination address, in order to
balance the load. However, note that a random and independent
choice will quickly introduce loops in the forwarding sequences:
it is likely that a switch will forward traffic to a switch which
was already visited before on the failover path.

Thus, our randomized failover scheme RFS will choose
random permutations, i.e., for a source-destination pair (vi, vn),
the sequence mi,1,mi,2, . . . ,mi,n−2 (with mi,j ∈ V \{vi, vn})
is always loop-free (deterministically). Technically, RFS draws
all mi,j uniformly at randomly from V \{vi, vn} but eliminates
repetitions (e.g., by redrawing a repeated node). We can show
that RFS is almost optimal, in the following sense.

Theorem 5. Using the RFS scheme, in order to create a
maximum load of λ̂ =

√
f , the adversary will have to fail at

least Ω
(

f
logn

)
links w.h.p., where 0 < f < n.

Proof. To create a link load of
√
f with the minimal number

of link failures, the adversary must route at least
√
f flows to

some node w. Given the
√
f load on the node, in the best case

(for the adversary), the entire flow will be forwarded by w
on a single outgoing link (e.g., the link to the destination vn).
We will show that w.h.p., it is impossible for the adversary to
route more than

√
f flows to a single node.

The adversary can create a high load for some node w only if:
1) Node w is located close to the beginning of many sequences
(i.e., is in a small “prefix” of the sequences); thus, a small
number of failures is sufficient to redirect the flow to w. 2)
Many nodes appearing before w in the sequence prefixes occur
early in many other prefixes as well; thus, the adversary can
“reuse” failed links for other source-destination pairs. Note that
while these two requirements conflict, we use them to prove
the lower bound on the number of required failures: the set of√
f sequences with the largest number of node repetitions in

the w-prefixes also have the shortest w-prefixes.
With this intuition in mind, let us compute the probability

that a node w appears more than approximately log n times
at position j. Let Y ji be an indicator random variable that
indicates whether w is located at position j ∈ [1, . . . , n− 2] in
sequence i ∈ [1, . . . , n− 1]. Let Y j =

∑n
i=1 Y

j
i be a random

variable representing the number of times that w appears at
position j. Since the failover sequences are random, Pr(Y ji =
1) = 1

n−2 (w is neither the source nor the destination) and
thus, ∀j,E

[
Y j
]

= n−1
n−2 . Applying the Chernoff bound on the

sum of n i.i.d. Poisson trials, we obtain (for any δ > 0):

Pr
(
Y j > (1 + δ)E

[
Y j
])
≤ 2−δE[Y j]

Pr

(
Y j >

(1 + 3 log n)(n− 1)

n− 2

)
≤ 2−(3 logn)×n−1

n−2

≤ 2−3 logn = 1/n3.

Let z = (1+3 logn)(n−1)
n−2 and thus Pr

(
Y j > z

)
≤ 1/n3.

We can now apply a union bound argument3 over all possible
nodes w and positions j, which yields that with probability at
least 1− 1

n , any node appears at most z times at each position.
The adversary needs to select the

√
f sequences with the

shortest w-prefixes. For a chosen sequence i, let us denote by
ki the prefix length for node w (the prefix length includes w
itself). Since each node will appear no more than z times at
each position (with probability of at least 1− 1

n) the minimum
length of a total prefix for any node w can be derived. Let us
denote the minimum total prefix by k. Clearly, k is minimized
for the shortest possible prefixes ki. According to the analysis
above, with high probability, there are no more than z prefixes
of length 1, no more than z prefixes of length 2, and so on.
Therefore:

k =

√
f∑

i=1

ki ≥
z∑
i=1

1 +

z∑
i=1

2 + · · ·+
z∑
i=1

√
f

z

= z

(
1 + 2 + · · ·+

√
f

z

)
≥ f

2z
≥ f

8 log n
. (1)

Eq. 1 is true since for n ≥ 6, (1+3 logn)(n−1)
n−2 ≤ 8 log n.

In conclusion, we know that in order to achieve a load of√
f , the adversary has to fail the entire total prefix of w that

consists of at least f
8 logn nodes. However, the nodes in the

prefixes are not necessarily all distinct, and the number of links
the adversary needs to fail only depends on the distinct nodes
in the total prefix of the node w. The latter is true due to the

3The union bound argument says that the probability of the union of the
events is no greater than the sum of the probabilities of the individual events.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 7

fact that the best adversarial strategy is to fail only the links to
the destination since in this case every such failure is reused
once the same node appears again in the total prefix of w (see
Claim 4). Hence, we next compute the minimum number of
distinct nodes D in any set of k random nodes. As we are
interested in lower bounding D, we can choose k minimal,
i.e., k = f

8 logn . The analysis follows from a balls-and-bins
argument where bins represent node IDs and balls are the
k positions that should be failed by the adversary. Thus, D
is a number of occupied bins (i.e., bins that contain at least
one ball). Let Di be a binary random variable indicating that
the i-th ball falls into an empty bin (i.e., D =

∑k
i=1Di).

So, Pr(Di = 1) ≥ n−1−k
n−1 . Since k = f

8 logn and f < n,
we obtain Pr(Di = 1) ≥ n−1−k

n−1 ≥ 8 logn−1
8 logn ≥ 0.8. Thus,

E[D] = kE[Di] ≥ 0.8k. Due to Chernoff (for any δ ∈ (0, 1]):

Pr(D ≤ (1− δ)0.8k) ≤ Pr(D ≤ (1− δ)E[D])

≤ e−E[D]δ2/2 ≤ e−0.8kδ
2/2.

By taking δ = 0.5 we obtain Pr(D ≤ 0.4k) ≤ e−0.1k.
It remains to prove that this bound still holds under the

union bound for all
(
n−1√
f

)
possible sets of sequences that the

adversary can choose. In other words, we have to ensure that(
n√
f

)
e−0.1k ≤ 1

n (we took a larger number as
(
n√
f

)
≥
(
n−1√
f

)
).

(
n√
f

)
e−0.1k ≤ n

√
fe−0.1k = n

√
fe−

f
80 log n (2)

= e
√
f lnn− f

80 log n = e
f
(

lnn√
f
− 1

80 log n

)

≤ ef
(

log n√
f
− 1

80 log n

)
.

For f ≥ 822 log4 n, we have (logn√
f
− 1

80 logn) ≤ −2
822 logn ,

and hence
(
n√
f

)
e−0.1k ≤ e

−2f

822 log n ≤ e−2 log3 n ≤ 1
n2 . Since(

n√
f

)
Pr(D ≤ 0.4k) =

(
n√
f

)
Pr(D ≤ 0.4f

8 logn) ≤ 1
n2 , w.h.p.,

any set of
√
f sequences needs Ω(f

logn) failures.

C. Deterministic Failover for Few Failures

Theoretically, the result of Theorem 5 can be derandomized,
i.e., the RFS scheme can deterministically ensure low loads.
The idea is that we could verify whether an (improbable)
situation occurred and the random sequences generated by
RFS yield a high load (we just need to check all possible loads
at any w); if so, another set of random permutations is generated.
However, this verification is computationally expensive.

We hence next want to find deterministic schemes. In
particular, we propose an optimal failover scheme (which
matches our lower bound in Section IV), for small f . Similar to
RFS, the deterministic failover scheme DFS is again defined
by failover matrix mi,j ; however, here mi,j will simply refer
to a node’s index (and not the node itself): We define the index
of any node v` to be `− 1, i.e., the nodes {v1, v2, . . . , vn} are
mapped to the indices {0, 1, . . . , n− 1}. Given a destination
node vn, DFS is defined by the following index matrix:

1, 2, 4, 8, . . . ,
(

0 + 2blognc
)

mod n

2, 3, 5, 9, . . . ,
(

1 + 2blognc
)

mod n

3, 4, 6, 10 . . . ,
(

2 + 2blognc
)

mod n

. . .

In general, the index in sequence i ∈ [1, . . . , n−1] at position
j ∈ [1, . . . , blog nc] is mi,j = (i− 1) + 2j−1 mod n. E.g., if
the link (v1, vn) fails, v1 reroutes via the node with index 1,
i.e., via v2; and so on. We can show the following result.

Theorem 6. The DFS scheme achieves a maximum load of
λ̂ = O(

√
f) in any scenario with f < blog nc failures.

Proof. We will prove something even stronger: the adversary
cannot choose link failures such that any node w forwards
more than

√
f flows. Clearly, an upper bound on the node load

is an upper bound on the (incident) links: in the worst case, w
will forward all traffic to the same link. To create a high load
at some node w, the adversary needs to find failover sequences
in the matrix mi,j where the node w appears close to the
beginning of the sequence, and fail all the links (vi, vn), where
vi is a node preceding w in a sequence: i.e., the adversary
fails the total prefix of w. Note that failing the links to the
destination is the best strategy for the adversary as failures are
automatically reusable in other sequences (see Claim 4).

The following two claims will help us to show that the
adversary wastes its entire failure budget in order to achieve a
maximum load of

√
f .

Claim 7. Every node index participates in blog nc sequences.

Proof. The DFS failover matrix is defined as mi,j = (i−1)+
2j−1 mod n, where i ∈ [1, . . . , n−1] and j ∈ [1, . . . , blog nc].
From this construction, it follows that there are no index
repetitions in the matrix columns. Since there are blog nc
columns, the claim follows.

Claim 8. For any node index `, all `-prefixes (sets of indices
preceding ` in the sequences) are disjoint.

Proof. Let us define m = i− 1 and k = `− 1. The index in
sequence m ∈ [0, . . . , n−2] at position k ∈ [0, . . . , blog nc−1]
is m+ 2k mod n. Consider a sequence m′ where the index
w appears at position k′ and a sequence m′′ where the index
` appears at position k′′. Without loss of generality, assume
that k′′ > k′. Let m′ + 2k

∗
mod n and m′′ + 2k

∗∗
mod n

represent the indices in the prefixes of ` in sequences m′ and
m′′ accordingly. Assume by contradiction that these indices
are the same. We have

m′ + 2k
′

= m′′ + 2k
′′

mod n

m′ + 2k
∗

= m′′ + 2k
∗∗

mod n (assumption)

and hence m′ −m′′ = 2k
′′ − 2k

′
+ n · C1 and m′ −m′′ =

2k
∗∗ −2k

∗
+n ·C2. Therefore 2k

∗∗ −2k
′′

+ 2k
′ −2k

∗
= n ·C3

where C1, C2 and C3 are some integer constants.
Notice that max(2k

∗∗
, 2k

′′
, 2k

′
, 2k

∗
) < n, so the only possi-

ble values for C3 are: {−1, 0, 1}. Moreover, (2k
∗∗ − 2k

′′
) < 0,

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 8

while (2k
′ − 2k

∗
) > 0, and since the absolute value of these

differences is bounded by 2blognc−1 ≤ 0.5n, we can write:
−0.5n < 2k

∗∗ − 2k
′′

+ 2k
′ − 2k

∗
< 0.5n. Thus, 0 remains the

only possible value for C3. The values {2k∗∗ , 2k′′ , 2k′ , 2k∗}
are distinct since there are no repetitions in the columns
of the sequence matrix. Since 2k

′′
> 2k

∗∗
+ 2k

′
+ 2k

∗
,

due to a geometric series argument (the largest element
is greater than the sum of all previous elements), we can
state that 2k

∗∗ − 2k
′′

+ 2k
′ − 2k

∗
< 0. We conclude that

there is no integer constant C3 satisfying our assumption
m′ + 2k

∗
= m′′ + 2k

∗∗
mod n (i.e., there are two identical

indices in the `-prefixes).

Armed with these claims, we are ready to continue with the
proof. Since all prefixes are disjoint, the adversary cannot reuse
failures of one flow for another. Thus, the adversary will be
able to route one flow to w using a single failure (by finding
a sequence in which w appears at the first position); to add
another flow, the adversary takes a sequence mi in which w
is located at position 2 and will fail the links (vi, vn), and
(v(mi,1)+1, vn). And so on. Thus, the number of used failures
can be represented as 1 + 2 + 3 + 4 + · · ·+ L ≤ f where L
is the number of flows passing through w on the way to the
destination vn. So:

1 + 2 + 3 + 4 + · · ·+ L ≤ f
L(L+ 1)

2
≤ f ⇔ L <

√
2f

Note that the index of the destination node (n − 1 in our
case) can appear inside the failover sequences. In this case,
the index will be skipped since the link to it from the source
already failed. By skipping one index, we shorten the failover
sequence by 1, and since every sequence has length blog nc,
our failover scheme holds for any f < blog nc.

D. Deterministic Failover for Arbitrary Failures
We now have a randomized failover scheme as well as a

failover scheme for a small number of failures. Can we find
deterministic failover schemes which apply to arbitrary failures?

The answer is yes, and in the following, we establish
an interesting connection to block designs and distributed
algorithms without communication. We first consider failover
matrices which are latin squares: that is, failover matrices
where each node appears exactly once on each row and each
column. This is useful since there are no repetitions on rows,
and hence forwarding loops in failover paths are avoided.

However, while latin squares provide a high resilience, not
all latin squares are good failover matrices in terms of load.
As an example, let us analyze the following latin square M =
[mij]1≤i,j≤n−1 where relay nodes are tried in a round-robin
fashion: mij = (i+ j−1) mod (n−1) . This scheme cannot
lead to forwarding loops because ∀1 ≤ j, j′ ≤ (n − 1), j 6=
j′ ⇒ mij 6= mij′ . However, this scheme results in a high
load: if the adversary fails the l first links to destination d (that
is, F = {(vi, d), i = 1, . . . , l}), the l first nodes will all route
through (vl+1, d): we have φ = θ(l).

In the next section we investigate which additional properties
latin squares must have to constitute good failover matrices.
As we will see, the intersection of prefixes of rows is crucial.

k n-k

load

1 4 12 9 3 5

3 12 4 5 6 8

4 6 13 8 11 1

x x x x 4 13

x x x x x 9

......

4

Fig. 4. Load overhead φ and worst-case failure sets: Let the flows 2, 3, 4, 5
create the worst-case load φ = 4 on the link (4, vn). In the failover matrix M ,
we highlight the occurrence of 4 with a square in each row, and color the
background of the prefixes of the rows creating the load in blue. The number
of failures leading to the use of the blue prefixes depends on the number of
unique elements in their union. Two prefixes of length at most k share at most
one element, hence we can bound the number of distinct elements.

E. BIBDs or: How to create submatrices of low intersection?

1) Performance of Latin Square Schemes: Let us now take a
closer look at how a high load can arise at a node. A link e =
(w, x) carrying load `, by definition, serves on the failover
route of ` different flows. In particular, there are ` rows in
the failover matrix which include w, the head node of the
link, “early on”, in a short prefix of the row: the current set
of failures leads to a failover routing to w.

Accordingly, if the maximum load is φ then there is a node w
where this maximum load is manifested and φ rows of M are
responsible for generating this load. In other words, these φ
rows form a set T , where the links from the predecessors of w
to vn in these rows (ignoring the destination node) are all in
the failure set, i.e., ∃w ∈ V s.t.

⋃
i∈T Pw(i) \ {vn} ⊆ F .

Let M be a latin square failover matrix and F ∈ Fo(φ) an
optimal attack set of worst-case failures causing maximum
load. We now aim to lower bound the minimal size of F .
Let (w, vn) be the link on which the load is φ. We have f ≥
|
⋃
i∈T Pw(i)|−1 (we deduct one to account for the destination

node). In the best case (from a load perspective), for instance
when φ << n, two rows do not intersect: f =

∑
i∈T |Pw(i)|.

Since M is a latin square, it holds for all i, j ∈ T that the
position of w in the rows differs. If F is of minimal cardinality,
F must contain the shortest prefixes: f ≥

∑
i∈T (|Pw(i)| −

1) = (t− 1)(t− 2)/2, for t = |T |, because an occurrence of
the t in the prefix of w in row i is ignored.

This optimistic estimation technique captures the core of
our performance analysis scheme. The only technical problem
is now to limit the intersection size between the rows affected
by the failures. Of course, since any row ultimately contains
the n nodes, we must work on the first columns of failover
matrix M . Let Mk = [mij]1≤i<n,1≤j≤k denote the k-block
of M , the submatrix of the failover matrix consisting of the k
first columns of M and let Mk(i) the set of the first k elements
of the ith row of M . We say that a matrix is a latin matrix
if it can be the k-block of a latin square, that is, no element
occurs more than once in each row and in each column.

We now formalize the statement for the minimal number of
link failures necessary to generate a load φ, depending on the
intersection size of short prefixes. Figure 4 depicts an example
of how load accumulates on a link.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 9

Theorem 9. Let k ≤
√
n and Mk a latin submatrix such that

the size of the intersection of any two rows is at most 1. That
is, for ∀i, j ≤ n, i 6= j it holds that |Mk(i) ∩Mk(j)| ≤ 1.
Let F ∈ Fo(φ). If φ ≤ k then f = Ω(φ2).

Proof. Let w be a node that carries a load of φ on its link to vn
due to F . Consider the set of failover sequences that contribute
to this load (the rows with the blue background in Figure 4,
i.e., the set of flows T for which all nodes in the prefix of
their rows are in the failure set,

⋃
i∈T Pw(i)∪F = F . Observe

that |T | = φ. Partition T in two subsets: T1 for flows whose
prefix for w is shorter than k, |Pw(i)| ≤ k, T2 for all other flows
and let t1 = |T1| and t2 = |T2|, t1+t2 = φ. All the links to vn
from the predecessors of w on the rows of T in M must be in
the set of failed links, unless the destination vn is in the prefix.
Hence, it holds that f ≥ |

⋃
i∈T Pw(i)|−φ. Using the partition

into T1 and T2 we have |
⋃
i∈T Pw(i)| ≥ |

⋃
i∈T1

Pw(i) ∪⋃
i∈T2

Pw(i)| ≥ |
⋃
i∈T1

Pw(i) ∪
⋃
i∈T2

Mk(i)| , where the
last inequality is due to the fact that Mk(i) ⊆ Pw(i)
for all i ∈ T2. Leveraging the inclusion-exclusion prin-
ciple |

⋃
i∈T1

Pw(i) ∪
⋃
i∈T2

Mk(i)| ≥ |
⋃
i∈T1

Pw(i)| +
|
⋃
i∈T2

Mk(i)|−|
⋃
i∈T1

Pw(i)∩
⋃
i∈T2

Mk(i)|. We now anal-
yse each of the three cardinalities. Using the inclusion exclusion
principle again, we have |

⋃
i∈T1

Pw(i)| ≥
∑
i∈T1
|Pw(i)| −∑

i,j∈T1,i6=j |Pw(i) ∩ Pj(w)|.
∑
i<j∈T1

|Pw(i) ∩ Pj(w)| = 0
as the intersection of the first k elements of the matrix
contains w only. Due to the latin property, it hence holds
that |

⋃
i∈T1

Pw(i)| ≥
∑
i∈T1
|Pw(i)| =

∑
i∈T |Pw(i)| ≥

t1(t1 − 1)/2. Analogously, we can write |
⋃
i∈T2

Mk(i)| ≥∑
i∈T2
|Mk(i)| −

∑
i<j∈T2

|Mk(i) ∩ Mk(j)| = k · t2 −
t2(t2 − 1)/2. The last term, |

⋃
i∈T1

Pw(i) ∩
⋃
j∈T2

Mk(j)|
is at most |

⋃
i∈T1

Mk(i) ∩
⋃
j∈T2

Mk(j)|, which in turn is
equal to |

⋃
i∈T1,j∈T2

(Pw(i) ∩Mk(j))| due to the distribution
law. |Pw(i)∩Mk(j)| ≤ 1 for all i 6= j, thus the whole term can
be upper bounded by t1 ·t2. Therefore, f+φ ≥ t1(t1−1)/2+k·
t2−t2(t2−1)/2−t1·t2 = t1(t1−1)/2+t2(k−t1)−t2(t2−1)/2.
k − t1 ≥ t2, as k ≥ φ = t1 + t2. Consequently, f + φ ≥
t1(t1 − 1)/2 + t22 − t2(t2 − 1)/2 = Ω(t21 + t22) = Ω(φ2),
concluding the proof.

This theorem is an important tool in the analysis of latin
square failover schemes, as it directly describes the relation
between the intersection size of k-length row prefixes and the
optimal attack cost f . More precisely, if we manage to create
matrices which have a large k-block with such intersection
properties, then we can guarantee a constant approximation of
the optimal resilience for up to O(k2) failures.

2) Using BIBDs to Minimize Intersection: Given n nodes,
the problem is now to generate n different failover sequences
of length k with guarantees on the size of the intersection.
Of course, this generation is trivial for k << n. For the
performance of the resulting scheme however, the objective
is to find constructions for larger k: for instance if k =

√
n,

we have an optimal solution as the attacker would need to
fail θ(k2) = θ(n) links to reach the limits of Theorem 9.
Constructing such sets is however challenging.

Fortunately, two closely related problems are well-studied:
the problem of generating block designs (that is, families of

subsets of elements), and its geometric counterpart, generating
projective planes of high order. We here choose the first
approach, and next quickly introduce the relevant definitions.
The interested reader can refer to [32] for an overview of the
rich field of block designs. For our construction we will use
symmetric balanced incomplete block designs (BIBDs).

Definition 3 (BIBD, Def 1.2 and 2.1 in [32]). Let v, k, and λ
be positive integers such that v > k ≥ 2. A (v, k, λ)-balanced
incomplete block design is a design (X,A) such that the
following properties are satisfied:

1) X is a set of v elements called points, |X| = v.
2) A is a multiset of b non-empty subsets of X called

blocks, where each block contains exactly k points.
3) Every pair of distinct elements is contained in λ blocks.

A BIBD where b = v is called symmetric.

Symmetric BIBDs feature a useful intersection property.

Fact 1 (Thm 2.2 in [32]). Given a symmetric (v, k, λ)-BIBD,
it holds for all 1 ≤ i, j ≤ v, where i 6= j, that |Ai ∩Aj | = λ.

The only remaining problem is that blocks are not rows: even
once we have generated our n blocks of size k, we need to order
the failover routes within each block such that the resulting
matrix Mk is a k-block of a latin square. The following
procedure will be used to construct the first k elements of
row i using the elements of Ai. It leverages k sequential
perfect matchings in the bipartite graph, associating to each
row its set of backup nodes from the block Ai.

Algorithm 2 Transforming Blocks into Latin Rows
1: input : a (n, k, λ)-BIBD (X,A)
2: output: Mk: n rows of size k
3: Let G = (U, V,E) a bipartite graph s.t., |U | = |V | = n

and (i, j) ∈ E iff xj ∈ Ai
4: for j ∈ {1, . . . , k} do
5: Let P : U → V a perfect matching of G
6: for i ∈ {1, . . . , n} do
7: mij ← P (i)
8: G = (U, V,E \ {(i,mi,j)|1 ≤ i ≤ n})
9: return Mk = [mij]1≤i≤n,1≤j≤k

Theorem 10. Algorithm 2 returns a latin block with |Mk(i)∩
Mk(j)| = λ for all 1 ≤ i < j ≤ n.

Proof. Let us first show that Algorithm 2 always terminates.
This will happen iff a perfect matching P is always found.
Observe that at Line 3, by definition of a BIBD, G is a k-
regular bipartite graph (with |U | = |V |). It therefore contains
a perfect matching (due to Hall’s Theorem). Observe that after
the first execution of Line 8, G is now a k − 1 regular graph
(since a perfect matching was removed). This will be repeated
until j = k, where G is merely a matching.

Regarding correctness, observe that no node is ever repeated
in a row as the blocks are sets. Since P is a perfect matching, no
node is repeated in columns. Hence, M is a latin submatrix.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 10

The construction of Algorithm 2 will be very useful to
transform blocks into failover matrixes that provide the
guarantees of Theorem 9.

3) Failover Matrix Creation: With the above we now
construct a failover matrix M (summarized in Algorithm 3)
given a symmetric BIBD. As a first step, Algorithm 3 exploits a
symmetric (n, k, 1)-BIBD (X,A) to create the first k-submatrix
of M . The remaining submatrix is constructed such that each
row and column of the complete matrix is a permutation, and
thus we have a latin square. Together with the theorems from
previous sections, this suffices for a constant approximation.

Algorithm 3 Construction of Failover Matrix
1: input: (n, k, 1)-BIBD (X,A)
2: output: latin square failover matrix M
3: Let Mk = [mij]1≤i≤n,1≤j≤k = Alg2(X,A)
4: Let MC = Alg2(X, {Bi, Bi = X \Ai, 1 ≤ i ≤ n})
5: return M = Mk⊕MC , where ⊕ concatenates columns

Theorem 11. Algorithm 3 returns a latin failover matrix M
with intersection properties representing a failover scheme that
is optimal up to a constant factor.

Proof. We prove first termination and then correctness.
Termination: Since Mk is a latin submatrix, all the n values

appear exactly once on the first column, and once on the last
column. Observe that in Line 4, (X, {Bi, 1 ≤ i ≤ n}) is a
BIBD (regardless of its intersection size), as the complement
of a BIBD is also a BIBD ([32] Thm 1.32).

Correctness: Observe that Mk and MC are latin submatrices.
To show that the resulting matrix M is a latin square, we need
to show that no row contains twice the same id. By definition
of Bi ∩ Ai = ∅. So M is a latin square, and therefore the
corresponding failover scheme is correct, i.e., no loops occur as
each node appears at most once per row of the matrix. Since M
is a latin square satisfying the conditions of Theorem 9, we
conclude that for a load up to φ ≤ k ≤

√
n, the number of

failed links is θ(φ2). This implies asymptotical optimality for
All-to-One routing by matching the lower bound of Thm 2.

Thanks to Theorem 11 we can build a load-optimal failover
scheme given a suitable BIBD. In order to construct the
corresponding BIBDs (for k − 1 being a prime tower), we
can leverage the following theorem.

Theorem 12 (Thm 2.10 in [32]). For every prime power q ≥ 2,
there exists a symmetric (q2+q+1, q+1, 1)-BIBD (a projective
plane of order q).

Using these BIBDs, we can thus construct failover matrices
for n = q2 + q + 1 directly. If there exists no prime power q
for which n = q2 +q+1, we can construct a failover matrix as
follows. Choose r such that 22r+2r+1 ≤ n < 22r+2+2r+1+1.
Construct the failover matrix M with a (q2 + q + 1, q + 1, 1)-
BIBD for q = 2r. Assign each row of this failover matrix to
at most 4 nodes. The remaining n − 22r + 2r + 1 elements
of each sequence are chosen among the permutations of the
nodes not used yet to guarantee a loop-free behavior. Using
this construction, the load deteriorates by at most a factor of
4, as every prefix is used in at most three other rows.

F. Supporting Other Routing Schemes

1) Resilient Permutation Routing: Having discussed the All-
to-One model, we now turn to the permutation routing problem.
Permutation routing is a classic and well-studied scenario (e.g.,
in the context of oblivious routing and Valiant’s trick [25],
[35]) where given a (worst-case) permutation π : V → V , each
node v communicates with its image π(v). This corresponds to
a set of n flows with source vi and destination π(vi). Hence, in
a resilient setting, each flow needs a backup sequence to reach
its destination π(vi) for a permutation π. Again, for each flow,
we set the conditional failover rules according to the rows of
a matrix M .

Note that the permutation routing problem has a fundamen-
tally different structure from all-to-one routing and adversarial
link failure strategies have to take all links into account, while
for all-to-one routing the adversary can focus on the nodes to
induce a high load. Nevertheless, we can apply the BIBD
construction presented above to generate efficient failover
matrices for this problem as well. We can even re-use the
proof structure for the failure set size necessary for a certain
load. Since every flow has a different destination it is more
difficult for an adversary to reuse link failures and thus we can
prove a higher bound than for all-to-one routing.

Theorem 13. Let k ≤
√
n and Mk a latin submatrix where

the intersection size of any two rows is at most 1, i.e., ∀i, j ≤
n, i 6= j it holds that |Mk(i) ∩Mk(j)| ≤ λ. Let F ∈ Fo(φ).
If φ ≤ k then f = Ω(φ ·

√
n) for permutation routing.

Proof. Let (w, u) be a link that carries a load of φ due
to F . Consider the set of affected failover sequences that
contribute to this load, denoted by the set of flow T . Observe
that |T | = φ. The node w can be the source of at most one
flow. Analogously, u is the destination of at most one flow,
thus there are at least φ− 2 affected rows in the BIBD failover
matrix M with w in the prefix of u and a link failure for
each element of those prefixes of u (note that w cannot be the
destination of the flows of these rows, as then they would not
contribute to a load exiting w). We now need to show that the
size of the set F of these link failures is at least Ω(φ ·

√
n).

Due to the prefix intersection properties of the matrix structure
we use (Theorem 9), it must thus hold that the prefix length
of u exceeds

√
n for these φ− 2 rows.

To have reached v in such a prefix it must hold that either
the link (vi, v) or a link (v′, v) failed, for an element v′ in
the prefix of v on row i. To reuse a failure of the first type in
flows, vi must occur in the prefix of w in other rows. Again
due to the matrix structure (Theorem 9), a multiple reuse of
such a failure is hence only possible if the prefix of the reusing
rows is at least

√
n long. The multiple reuse of the second

type of failure has the same implication. Thus at least half
of the failures affecting the prefixes used are unique. In other
words, the failures for the first

√
n elements of the rows can

only be reused at most once and thus φ ·
√
n/2 = Ω(φ ·

√
n)

failures are necessary.

2) Arbitrary Traffic Patterns: With these solutions in mind,
we are now ready to present our main contribution: a resilient
failover routing scheme for arbitrary traffic patterns (for n

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 11

flows), i.e., the flows are not restricted to share the same
destination nor do we limit the number of flows with the same
source.

Given a list of flows, let δo(v) and δi(v) count the number
of flows originating from v and destined to v respectively. The
maximum values of these quantities is denoted by δo and δi.
If we consider the directed multigraph induced by the list of
flows, δo and δi correspond to the out-degree and in-degree
of this multigraph. Using these definition, we show a general
lower bound of failures necessary for arbitrary flow sets.

Theorem 14. Given a BIBD-failover matrix M , Ω(φ2) link
failures are necessary to generate a load of φ <

√
n regardless

of the number of flows that share sources and destinations.

Proof. Let us first consider the case where δo = 1, i.e., there is
at most one flow originating from each node. This first part of
the proof is along the same lines as the first part of the proof
of Thm. 13. Let link (w, u) be the link where the maximum
load manifests. Node w can be the source of at most one flow,
thus there are at least φ− 1 rows (set T) in the BIBD failover
matrix M with a link failure for each element of the prefix
of w in those rows (note that w cannot be the destination of
the flows of these rows, as then they would not contribute to
a load exiting w). We now need to show that the size of the
set F of these link failures is at least Ω(φ2). We pick one
element v in the prefix of w on row i, i being one of the φ− 1
rows in T responsible for the load. For such a link failure to
be reused in another row, v would have to appear in the prefix
of w in another row. However, in this case, the length of the
prefix of w must exceed

√
n, because there cannot be two

elements that appear in two prefixes of shorter size, due to the
construction of M (Thm. 11). Thus we have two cases where
either more than (φ− 1)/2 of the rows in T have i) prefixes
of w shorter than

√
n, in which case the necessary number of

failures is Ω(φ2) due the argument above, or ii) there are more
than (φ− 1)/2 rows in T with long prefixes. For the portion
of the prefixes of length

√
n we can use the same argument as

before, leading to a number of link failures in Ω(φ ·
√
n) which

clearly exceeds Ω(φ2). If we have several flows originating
from the same nodes, then adapting the above analysis leads
to at least φ− δo rows with link failures in the prefixes of w
(for the at most δo flows originating from w this does not hold,
hence we exclude them). Thus this proves that Ω((φ− δo)2)
failures are necessary. For the case where δo > φ/2 we could
encounter a scenario where φ/2 flows with source w contribute
to the highest load on (w, u). Since we only consider the load
caused by failover, the destination of these flows cannot be u,
as in this case the flows would not contribute to the worst
case load. Hence, we focus on the link failures necessary to
reach u in the affected rows. In this case, the prefixes of u are
of interest and using the same argument as above, the number
of link failures can be lower bounded by Ω(φ2) as well.

When we have a bound on δo and δi for a flow set, we can
prove an even higher bound.

Theorem 15. Given a BIBD-failover matrix M , Ω((φ−δo−
δi) ·
√
n+ φ2) link failures are necessary for a load φ <

√
n.

Proof. Similarly to the proof before, we first consider the case
where δi is one, i.e., there is at most one flow destined to
each node. Let link (w, u) be the link where the maximum
load manifests. Thus there are φ− 1 rows (set T) in the BIBD
failover matrix M with a link failure for each element of the
prefix of u in those rows (there can be one row where u is the
target and does not need to appear in the prefix).

We now lower bound f . To contribute to the load, either
i) w must appear in the prefix of u on at least φ−1− δo rows
of T or ii) w must be the source of the flow of the remaining
at most δo nodes. Consider i) first. w and u can only appear in
one BIBD-block together, thus there are φ− 2− δo rows in T
where only w can appear in the first

√
n elements of the rows.

The arguments of the proof for Thm. 14 apply here as well
and thus at least (φ− 2− δo)

√
n link failures are accumulated

for the
√
n-length prefixes of T . For ii) where w is the source,

only u needs to be in the prefixes, contributing to lower bound
of Ω(φ2). Thus the necessary size of F of both cases together
is Ω((φ − δo)

√
n + φ2). For flow sets where up to δi flows

share a destination, the number of rows with w and u in the
prefix is further reduced, concluding the proof.

Our approach can be extended for more than n flows,
parametrized by the number of failures to be tolerated. We
describe next a construction that can be used in this case. A
prerequisite is the following observation. For failover matrix
with more than n rows we cannot construct a latin submatrix
Mk, as we have only n elements to fill the matrix with.
However, when maintaining the low intersection size, we can
keep the number of failures needed for a certain load high.
Consider for example the case when each element can occur
twice in each column, but the pairwise intersection of the first
k elements of two rows is still one. In this case we can use
the same arguments as in the proof of Theorem 9 to show that
the number of failures necessary is quadratic in the resulting
load. Hence we can split BIBD blocks into smaller blocks and
use Algorithm 3 to build failover matrices for more flows with
the same load behavior, albeit tolerating fewer failures. More
precisely, given a (q2 + q+ 1, q+ 1, 1)-BIBD for q = n1/2 we
can construct a (23/2 logn−log k, k, 1)- BIBD by partitioning
each block into (q+1)/k disjoint subblocks. With these smaller
blocks, we can use the same approach as before, for k times
more flows. With this BIBD the number of failures to be
tolerated for O(n3/2) is in the order of log2 n, resulting in an
overhead load in the order of log n.

Corollary 1. Given λn flows, it holds that Ω(φ2) link failures
are necessary to generate an overhead load of kφ < k

√
n. If

λ ∈ O(
√
n), it holds that Ω(φ2) link failures are necessary to

generate an overhead load of φ < log n.

G. Discussion and Remarks

Single Failover Table. First, we note that our approach requires
only one failover table: in OpenFlow terms, a group table with
entries of type “Fast Failover”. Each group table entry contains
a list of buckets, each bucket with a possible outgoing port. To
support all possible n2 source-destination pairs, we will need
n2 groups and n buckets in each group. When a Fast Failover

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 12

group is applied, the first bucket that contains a working port
is activated, and this port is used to forward the packet. Thus,
our approach is different from other approaches (e.g., link
reversal routing) which require a state (i.e., store information)
in data-plane devices, and which we dismissed for this reason.
Generalization To Approaches That Match Inport. We also
note that our load lower bound even holds for failover schemes
which support the matching of the inport: the proof does
not make any assumptions on how the scheme calculates the
failover rules but only assumes that after a failure, the traffic
will be rerouted via some alternative node (which is known to
the adversary). Extending our matrix-based failover schemes to
utilize incoming port information however is non-trivial and an
interesting direction for future research. Having that said, we
also note that the disadvantage of schemes that use the incoming
port is that depending on the implementation, this information
may not always be available to the failover application, as it
relies on the hardware to expose the information to the upper
layers. In contrast, the source-destination information is always
available as it is part of a packet header.
Complexity and Runtime. In terms of rule complexity, our
approach requires rules that depend both on source and destina-
tion, which implies a quadratic number of rules (compared to
linear in case of destination-based routing). This is an inherent
price one has to pay in order to obtain such a high degree of
resilience while keeping load low: if destination-based rules
only are used, then there is a much higher (and inherent)
lower bound on the load. In terms of runtime, the time taken
to compute the load-optimal deterministic failover scheme is
dominated by the BIBD computation; all other parts of our
algorithm (e.g. the matching) can be computed very fast. Our
randomized failover scheme is easier to generate but it suffers
from a logarithmic factor in the lower bound for the minimum
failure set size with respect to load.

VI. SIMULATIONS

We complement our formal analysis with a simulation study.
In particular, we shed light on the load distribution in different
failure scenarios and under different alternative routing schemes.
Furthermore, we explore the performance of a BIBD-based
approach in Clos networks, a topology designed for datacenters.
To give an indication of the resources required, generating
a BIBD-based failover matrix for a network of 200 nodes
takes less than 3 seconds on a desktop machine, given a
suitable BIBD as an input. Computing this BIBD is more
computationally expensive, e.g., creating the corresponding
(183,14,1)-BIBD takes around 2 hours on the same machine.
However, it only has to be computed once and can be used for
networks of varying size.

A. Random Failures

Improved load compared to state-of-the-art. We first investi-
gate random failures, to model more “average case” rather than
worst-case failures. Figure 5, top left, shows the maximum
link load across all links, depicting the median (line), the
maximum (dots) and the interquartile range (error bar) over
100 independent runs, for 200-node networks for all-to-one

● ● ● ●

● ● ● ●

●

●

●

● ● ● ● ● ● ●

●

●

●

●

BIBD

RAND

101 102 103 104

0.0

2.5

5.0

7.5

0.0

2.5

5.0

7.5

f

Lo
ad

● ● ● ● ● ● ●

● ● ● ●

● ● ● ● ● ● ●

● ● ● ●

BIBD

RAND

101 102 103 104

1.00
1.25
1.50
1.75
2.00

1.00
1.25
1.50
1.75
2.00

f

Lo
ad

● ● ● ●
●

●
●

●

●

●

●

0

30

60

90

120

101 102 103 104

f

Lo
ad

Method ● DEST BIBD

●

● ●
● ●

●
● ● ● ● ● ● ●

●
● ● ●

● ● ●
● ●

●
● ●

● ●
● ● ●

● ●

● ●

●

●

●

●

●

● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

Permutation routing

All−to−one routing

0 200 400 600

0 200 400 600
0

20
40
60

2.5
5.0
7.5

10.0

n

Lo
ad

Method ● DEST BIBD

Fig. 5. Comparison of maximum link load induced by random failures
with a BIBD scheme, a random permutation scheme (RAND) and a random
destination-based scheme (DEST) for a network of 200 nodes, where not noted
otherwise. The x-axis represents the number of link failures f , the y-axis the
maximum link load overhead. The dots represent the maximum link load over
100 experiments, the line represents the median, and the bars indicate the
interquartile range (Q3−Q1). Top left: All-to-one routing and random link
failures, BIBD vs RAND. Top right: Permutation routing and random link
failures, BIBD vs RAND. Bottom left: All-to-one routing and random link
failures, BIBD vs DEST. Bottom right: All-to-one and permutation routing and
random link failures, for networks with 20 to 600 nodes. In the former n/2
random links failed, while in the later n3/2 links are down in the experiments.

routing as a function of the number of failures. Clearly, even
in the presence of a large number of concurrent failures, using
our approach, the max load is low compared to the theoretical
possible maximum of 200. More precisely, failover sequences
with BIBDs incur a maximum load of less than 6 on average,
even if almost 2/3 of the links failed. Even though operating
beyond the n− 1 tolerated failures studied in Theorem 9, our
scheme performs well under larger failure sets. For comparison,
the stochastic failover scheme based on random permutations
proposed in Section V-B (indicated as “RAND” in the figures)
does not perform as well as the failover scheme based on
BIBDs. In addition, the BIBD approach provides deterministic
guarantees, and not just probabilistic ones. Figure 5, top right,
shows the corresponding results for permutation routing. Under
permutation routing, the load is much lower.
The power of oblivious routing and remark on destination-
based routing. Next, we investigate to what extent our
approach benefits from the high path diversity offered by the
oblivious BIBD routing policy, where (failover) paths can be
arbitrary (and not only destination-based). For comparison, we
consider destination-based routing (as it commonly used in
legacy IP-networks): destination-based routing schemes are
confluent, i.e., once two flows toward the same destination
intersect, they will use the same remaining path (the suffix).
Observe that in order to implement destination-based routing,
we need to set all rows in the failover matrix to the same
permutation for all-to-one routing. For random link failures,
the best destination-based failover strategy is a randomly chosen
permutation. As can be seen in Figure 5 bottom left, if routing
is destination-based (referred to as “DEST” in the figure),
the resulting link load is significantly higher in the all-to-one

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 13

●

●

● ●

●

●

●

●

●

5

10

15

20

25

50 100 150
f

Lo
ad

Method ● BIBD RAND

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ●

5

10

20

50

100

200

0 200 400 600
n

Lo
ad

Method ● DEST BIBD

Fig. 6. Comparison of maximum link load induced by targeted failures
with a BIBD scheme, a random permutation scheme (RAND) and a random
destination-based scheme (DEST) Left: All-to-one routing and targeted link
failures, BIBD vs RAND for a network of 200 nodes. Right: All-to-one routing
and n/2 targeted link failures for networks of size n between 20 and 600
nodes with a logarithmic scale for the load.

scenario. Also when varying the size of the networks under
scrutiny and when studying permutation routing, see Figure 5
bottom right, the load under destination-based routing is much
higher. Accordingly, we conclude that the higher path diversity
offered by routing that takes the source into account in addition
to the destination is vital for resource-efficient failover.

B. Targeted Failures

We now turn our attention to scenarios with adversarial
failures, Figure VI-A. Indeed, we believe that the key strength
of our approach lies in such more challenging failure scenarios.
We consider an adversary that targets a particular node v and
fails f random links incident to this node v. In other words,
the adversary specifically targets the links of one node. For
all-to-one routing, the chosen node is the destination node vn,
for permutation routing any node can be picked.

Note that all rows of the BIBD failover matrices offer the
same properties due to the fact that they are generated from
symmetric BIBDs and form a latin square. As shown, the
maximum load is generated by failing links incident to vn for
all-to-one routing.
Improved load for all-to-one and permutation routing.
Figure VI-A, left, plots the maximum load observed on any link
as a function of the number of failures up to half the network
size.4 Unlike in the random failure experiments discussed above,
we now see that the load grows more quickly with an increasing
number of failures. Indeed, the results are reminiscent of the
formal worst-case analysis presented in the previous section.

When the failover matrix is constructed with random
permutations per row, the number of failures necessary to
generate a maximum load of φ is in Ω(φ2/ log n).

Furthermore we study the load for networks of different
size. In Figure VI-A, right, the load in networks with a size
between n = 20 and n = 600 nodes and n/2 targeted failures
is depicted for BIBD and destination-based routing. Note that
the BIBD load grows more quickly until n = 180 and starts
growing from a lower level with n = 200. This is due to the
fact that for n < 183 a BIBD for 133 = 112 +11+1 elements
is used in the construction of the failover matrix, thus the
first 11 elements of more and more rows are re-used when n
grows. For n > 183 a BIBD of 183 = 132 + 13 + 1 elements

4For a linear number of failures (O(n)), the load will be in the order of
√
n

for targeted failures in the all-to-one case. Therefore higher failure numbers
are not interesting. (For more failures there will no longer exist a route.)

●●●
●●

● ●
● ●

●

●

● ● ● ● ● ● ●
●

●

●

Targeted

Random

50 100 150 200

0 2500 5000 7500 10000

5
10
15

0
50

100
150
200

f

P
at

h
Le

ng
th

Method ● BIBD DEST RAND

● ●

●

● ● ●

● ● ●

●

●

2

5
10
20

50
100
200

500

1000 1500 2000 2500 3000
n

Lo
ad

Method ● BIBD DEST

Fig. 7. Left: Path length measurements on complete networks of 200 nodes, for
varying failure scenarios. Each scenario has been evaluated over 100 all-to-one
traffic simulations. Right: Maximum load measurements on clos networks
of switches with p = 26 to 48 ports, containing 980 to 2,880 nodes. We
conducted 100 traffic simulations with 5,488 to 27,648 flows from top-of-
rack switches to one destination with p/2 random (top) or targeted (bottom)
failures for each size n. Points (maximum), lines (median) and grayed areas
(interquartile range) are highlighted for these 100 values.

is used in the failover matrix construction, which of course
offers its best performance for values of n close to 183. Note
that asymptotically the load bound of

√
φ in the number of

failures φ holds, hence we did not add any optimizations for
values n < 183. The load for destination-based routing grows
linearly in the number of nodes (note the logarithmic scale of
the y axis), i.e., the load is n/2 and thus much higher than
with BIBD-based routing.

Under permutation routing the load is lower and BIBD
achieves a more balanced link load than the randomized ap-
proach, as additional experiments not shown here demonstrate.

Length overhead When links fail and flows need to be
rerouted, the lengths of the resulting paths are of interest too. In
our experiments we also measure the maximum path length in
200 nodes networks under failure scenarios of varying intensity.
Figure VI-B (left) present those results for both random and
targeted failures. In both scenarios, all schemes present a steady
increase in the maximum path lengths as the number of faults
increases. BIBD and RAND are slightly below twice the path
length of destination-based routing, because the variety of
source-based failover sequences leads to higher maxima.

C. Clos Networks

To complement our study of complete networks with sparser
topologies, we also analyzed the performance of our rerouting
scheme for Clos networks [1]. In this popular data center
network topology, two layers of aggregation switches are orga-
nized as independent pods that are redundantly interconnected
through a layer of backbone switches. We hereafter describe
this architecture, parametrized only by k, the number of ports
per switch.

The two aggregation layers are divided in k pods that share
identical configuration. Each pod contains a total of k switches,
half on each layer. Each pod’s first layer consists in k/2
switches connected to (k/2)2 clients, and the second layer
consists in k/2 switches connected to the backbone switches.
In addition, those two layers are fully connected: a switch of
the first layer has k/2 links to each of the second layer switches,
and vice versa. Each of the (k/2)2 backbone switches connect
to exactly one layer 2 switch in each pod. This construction
therefore contains (k/2)2 +k2 switches, and can accommodate
up to k3/4 clients.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 14

When a packet of flow i arrives at a switch and its default
forwarding link has failed, a failover matrix can be used to
determine the next hop of the rerouting strategy.

Figure VI-B(right), illustrates how the load increases for
growing networks under a BIBD and destination-based failover
strategy, with p/2 targeted link failures where p is the number
of ports (and hence the maximum degree) of a switch. The
switches feature p = 28 to 48 ports, leading to a network size
of 980 to 2880 switches and 5488 to 27648 client machines
(generating the traffic). The median of the maximum load
remains one for BIDB and destination-based routing, while
the maximum of the maximum load grows to 100 with BIBD
and 500 for destination-based routing. The former is moderate
given the number of flows and demonstrates that the BIBD
approach is able to balance load successfully despite failures.

VII. RELATED WORK

There exist several empirical studies showing that link
failures, even simultaneous ones, do occur in different net-
works [20], [34], including wide-area [14] and data center
networks [12]. For example, it has been reported that in a wide
area network, a link fails every 30 minutes on average [16].

Commercial networks today usually rely on routing schemes
such as ECMP, OSPF, IS-IS, and MPLS to reroute traffic, which
do not come with formal guarantees under multiple failures.
Accordingly, backbone networks are usually over-provisioned.

Existing resilient routing mechanisms can be classified
according to whether a single link/node failure [10], [22], [37],
[38] or multiple ones can be tolerated [8]. Alternatively, they
can be classified into static and dynamic ones. Dynamic tables
and using link reversals [11] can yield very resilient networks,
but dynamic tables are not supported in OpenFlow switches
today. Finally, one can also classify existing mechanisms as
basic routing schemes [5], schemes exploiting packet-header
rewriting (as e.g., failover in MPLS networks [26]), and routing
with packet-duplication [13]. While packet-header rewriting can
improve resiliency, it can be problematic in practice, especially
under multiple failures, as header space and rule space is
limited. Hence we do not use header rewriting. Also, we do
not allow for flow splitting, which can reduce network loads
but raises issues with granularity and packet reordering [16].

The works closest to ours are by Feigenbaum et al. [15],
Chiesa et al. [6], and Stephens et al. [30], [31]. Feigenbaum et
al. [15] introduces the notion of perfect resilience, resilience
to arbitrary failures. Chiesa et al. [6] focus on “scalable” static
failover schemes that rely only on the destination address, the
packets incoming link, and the set of nonfailed links incident to
the router. The authors find that per-incoming link destination-
based forwarding tables are a necessity as destination-based
routing alone is unable to achieve resilience against even a
single link failure, and, moreover, entails computationally hard
problems. In [18], Chiesa et al. consider randomized algorithms
for static routing schemes whose rules depend only on the inport
(where the packet arrives) and the destination.

Stephens et al. [30], [31] present a new forwarding table
compression algorithm called Plinko, which however cannot
provide resilience guarantees in all possible failure scenarios.

However, in contrast to our paper, none of these papers
studies the implication on the network load of different failover
mechanisms: an important concern in traffic engineering.
Moreover, existing work often focuses on destination-based
routing algorithms only, which inherently entails high loads (as
shown in this paper) and also ignores one of the key advantages
of software-defined networks in terms of traffic engineering.
Finally, much existing work (e.g., based on randomized or
stateful routing) is not OpenFlow-compatible.

One contribution of our paper is to observe a connection to
the field of local algorithms without coordination. Accordingly,
in terms of techniques, the paper closest to ours is by Malewicz
et al. [19], as well as the seminal work by Dolev et al. [7].
The authors study scheduling for “disconnected cooperation”:
in their setting, a set of initially isolated, distributed processors
need to schedule their work before starting communication.
The goal is to come up with a deterministic schedule which
minimizes the number of redundantly executed tasks: the so-
called waste. This applies in decentralized environments where
processors may meaningfully carry on with the computation
regardless of any other component (e.g., due to the idempotency
of tasks). Given a set of n nodes and n < t tasks, where n
is a prime power, Malewicz et al. present a deterministic,
design-theoretic construction of an optimal schedule.
Bibliographic note. Preliminary results of this paper have
been presented at OPODIS 2013 [4] and at DSN 2017 [23].

VIII. CONCLUSION

In order to guarantee connectivity, this paper leveraged
an intriguing connection between local failover mechanisms
and combinatorial block designs. In particular, we developed
a deterministic failover scheme defining an almost optimal
tradeoff between resilience and network load: the resulting
bounds are off by a constant factor of the optimal bound.
Our work hence settles an open question: while mechanisms
such as Fast Reroute have been in place for many years, the
fundamental tradeoffs regarding their level of resiliency and
resource overheads such as load were long not well understood.

An attractive property of our approach is that the required
number of failover rules is low: the number of rules only
depends linearly on the number of failed links incident to the
switch, and not on the number of possible combinations of
possible link failures (which would be exponential). Interest-
ingly, as we prove, despite this compact representation, we do
not lose anything in terms of failover optimality with respect
to the overhead load and fault-tolerance).

The main open question of our work regards solutions for
sparse and specific networks.
Acknowledgments. The authors would like to thank Chen
Avin for many discussions and inputs.

REFERENCES

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. ACM SIGCOMM Computer Communication
Review, 38(4):63–74, 2008.

[2] A. K. Atlas and A. Zinin. Basic specification for ip fast-reroute: loop-free
alternates. IETF RFC 5286, 2008.

[3] M. Borokhovich, L. Schiff, and S. Schmid. Provable data plane connec-
tivity with local fast failover: Introducing openflow graph algorithms. In
Proc. ACM SIGCOMM HotSDN, 2014.

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. Y, FEBRUARY 2017 15

[4] M. Borokhovich and S. Schmid. How (not) to shoot in your foot with sdn
local fast failover: A load-connectivity tradeoff. In Proc. 17th Conference
on Principles of Distributed Systems (OPODIS), 2013.

[5] M. Canini, P. Kuznetsov, D. Levin, and S. Schmid. A Distributed and
Robust SDN Control Plane for Transactional Network Updates. In Proc.
IEEE INFOCOM, 2015.

[6] M. Chiesa, I. Nikolaevskiy, S. Mitrovic, A. Panda, A. Gurtov, A. Madry,
M. Schapira, and S. Shenker. The quest for resilient (static) forwarding
tables. In Proc. IEEE INFOCOM, 2016.

[7] S. Dolev, R. Segala, and A. Shvartsman. Dynamic load balancing with
group communication. In Proc. SIROCCO, pages 111–125, 1999.

[8] T. Elhourani, A. Gopalan, and S. Ramasubramanian. Ip fast rerouting
for multi-link failures. In Proc. IEEE INFOCOM.

[9] T. Elhourani, A. Gopalan, and S. Ramasubramanian. Ip fast rerouting for
multi-link failures. In Proc. IEEE INFOCOM, pages 2148–2156, 2014.

[10] G. Enyedi, G. Rétvári, and T. Cinkler. A novel loop-free ip fast reroute
algorithm. In Dependable and Adaptable Networks and Services. 2007.

[11] E. Gafni and D. Bertsekas. Distributed algorithms for generating loop-free
routes in networks with frequently changing topology. Communications,
IEEE Transactions on, 29(1):11–18, Jan 1981.

[12] P. Gill, N. Jain, and N. Nagappan. Understanding network failures in data
centers: measurement, analysis, and implications. In ACM SIGCOMM
Computer Communication Review, volume 41, pages 350–361, 2011.

[13] P. Hande, M. Chiang, R. Calderbank, and S. Rangan. Network pricing
and rate allocation with content-provider participation. In Proc. IEEE
INFOCOM, 2010.

[14] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer. Achieving High Utilization with Software-Driven
WAN. In Proc. ACM SIGCOMM, 2013.

[15] J. Feigenbaum et al. Ba: On the resilience of routing tables. In Proc.
ACM Symposium on Principles of Distributed Computing (PODC), 2012.

[16] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and D. Gelernter. Traffic
engineering with forward fault correction. In Proc. ACM SIGCOMM
Computer Communication Review, volume 44, pages 527–538, 2014.

[17] V. Liu, D. Halperin, A. Krishnamurthy, and T. E. Anderson. F10: A
fault-tolerant engineered network. In Proc. USENIX NSDI, 2013.

[18] M. Chiesa et al. On the resiliency of randomized routing against multiple
edge failures. In Proc. ICALP.

[19] G. Malewicz, A. Russell, and A. A. Shvartsman. Distributed Scheduling
for Disconnected Cooperation. Distributed Computing, 18(6), 2005.

[20] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and
C. Diot. Characterization of failures in an ip backbone. In Proc. IEEE
INFOCOM, volume 4, pages 2307–2317, 2004.

[21] M. Menth, M. Duelli, R. Martin, and J. Milbrandt. Resilience analysis
of packet-witched communication networks. IEEE/ACM transactions on
Networking (toN), 17(6):1950–1963, 2009.

[22] S. Nelakuditi, S. Lee, Y. Yu, Z.-L. Zhang, and C.-N. Chuah. Fast local
rerouting for handling transient link failures. IEEE/ACM Transactions
on Networking (ToN), 15(2):359–372, 2007.

[23] Y.-A. Pignolet, S. Schmid, and G. Tredan. Load-optimal local fast
rerouting for dependable networks. In Proc. 47th IEEE/IFIP Conference
on Dependable Systems and Networks (DSN), 2017.

[24] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-
fying Middlebox Policy Enforcement Using SDN. In Proc. SIGCOMM,
2013.

[25] H. Räcke. Survey on oblivious routing strategies. In Proc. of the 5th
Conference on Computability in Europe (CiE), pages 419–429, 2009.

[26] S. Schmid and J. Srba. Polynomial-time what-if analysis for prefix-
manipulating mpls networks. In Proc. IEE INFOCOM, 2018.

[27] A. Shaikh, C. Isett, A. Greenberg, M. Roughan, and J. Gottlieb. A case
study of ospf behavior in a large enterprise network. In Proceedings
of the 2nd ACM SIGCOMM Workshop on Internet measurment, pages
217–230. ACM, 2002.

[28] L. Shen, X. Yang, and B. Ramamurthy. Shared risk link group (srlg)-
diverse path provisioning under hybrid service level agreements in
wavelength-routed optical mesh networks. IEEE/ACM Transactions
on Networking (ToN), 13(4):918–931, 2005.

[29] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, et al. Jupiter rising: A
decade of clos topologies and centralized control in google’s datacenter
network. In ACM SIGCOMM Computer Communication Review,
volume 45, pages 183–197. ACM, 2015.

[30] B. Stephens, A. L. Cox, and S. Rixner. Plinko: Building provably resilient
forwarding tables. In Proc. 12th ACM HotNets, 2013.

[31] B. Stephens, A. L. Cox, and S. Rixner. Scalable multi-failure fast failover
via forwarding table compression. SOSR. ACM, 2016.

[32] D. R. Stinson. Combinatorial designs: constructions and analysis.
Springer Science & Business Media, 2007.

[33] J. Tapolcai, B. Vass, Z. Heszberger, J. Bıró, D. Hay, F. A. Kuipers, and
L. Rónyai. A tractable stochastic model of correlated link failures caused
by disasters. In Proc. IEEE INFOCOM, 2018.

[34] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage. California fault
lines: understanding the causes and impact of network failures. ACM
SIGCOMM Computer Communication Review, 41(4):315–326, 2011.

[35] L. G. Valiant. A scheme for fast parallel communication. SIAM journal
on computing, 11(2):350–361, 1982.

[36] M. Walraed-Sullivan, A. Vahdat, and K. Marzullo. Aspen trees: balancing
data center fault tolerance, scalability and cost. In Proc. ACM CONEXT.

[37] J. Wang and S. Nelakuditi. Ip fast reroute with failure inferencing. In
Proc. SIGCOMM Workshop on Internet Network Management, pages
268–273, 2007.

[38] B. Zhang, J. Wu, and J. Bi. Rpfp: Ip fast reroute with providing complete
protection and without using tunnels. In Proc. IWQoS, pages 1–10, 2013.

Michael Borokhovich received B.Sc. (2005),
M.Sc. (2009) and Ph.D. (2013) degrees in Com-
munication Systems Engineering from Ben-Gurion
University in Israel. The main research topics in-
cluded fast failover in OpenFlow SDN networks,
distributed algorithms, and optimization. Between
2014 and 2015, he was a Postdoc at UT Austin
in Texas where he worked on efficient algorithms
for distributed graph engines. Between 2015 and
2017, Michael was with AT&T Labs-Research, where
he worked on ONAP (Open Network Automation

Platform), and VNFs (virtual network functions). Currently, Michael is with
Amazon, where he builds innovative SDN solutions for AWS networking.

Yvonne-Anne Pignolet is a Principal Scientist at
ABB Corporate Research, Switzerland, where she
leads and contributes to projects in distributed sys-
tems and networking for automation. While the appli-
cation domains vary (including power grids, mining,
manufacturing, building automation), her work is
centered around the efficient design, engineering and
operation of networked systems. Before joining ABB
in 2011, she was a post-doctoral researcher at IBM
Research Zurich Laboratory, Switzerland, working on
wireless sensor nodes, and at Ben Gurion University

of the Negev, Beer Sheva, Israel, studying complex network evolution. She
completed her Msc (2006) and PhD (2009) at ETH Zurich, Switzerland.

Stefan Schmid is Professor at the Faculty of Com-
puter Science at the University of Vienna, Aus-
tria. He received his MSc (2004) and PhD (2008)
degrees from ETH Zurich, Switzerland. In 2009,
Stefan Schmid was a postdoc at TU Munich and
the University of Paderborn, between 2009 and
2015, a senior research scientist at T-Labs in Berlin,
Germany, and from the end of 2015 till 2018, an
Associate Professor at Aalborg University, Denmark.
His research interests revolve around fundamental and
algorithmic problems arising in networked systems.

Gilles Tredan is a CNRS researcher at LAAS (Lab-
oratoire d’Architecture et d’Analyse des Systmes)
in Toulouse, France. He obtained a PhD degree in
computer science from University of Rennes 1 in
November 2009, under the supervision of Achour
Mostefaoui. From January 2010 to September 2011,
he worked as a postdoc in the FG Inet group, Berlin.
Gilles likes graphs and algorithms.

	Introduction
	Problem Statement & Model
	A Load Lower Bound
	Characterizing Resilient Routing Schemes
	Resilient Oblivious Routing
	How to Create Good Failover Matrices?
	Randomized Failover Schemes
	Deterministic Failover for Few Failures
	Deterministic Failover for Arbitrary Failures
	BIBDs or: How to create submatrices of low intersection?
	Performance of Latin Square Schemes
	Using BIBDs to Minimize Intersection
	Failover Matrix Creation

	Supporting Other Routing Schemes
	Resilient Permutation Routing
	Arbitrary Traffic Patterns

	Discussion and Remarks

	Simulations
	Random Failures
	Targeted Failures
	Clos Networks

	Related Work
	Conclusion
	References
	Biographies
	Michael Borokhovich
	Yvonne-Anne Pignolet
	Stefan Schmid
	Gilles Tredan

