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HW/SW co‑design of a visual SLAM application

Jonathan Piat1,2 · Philippe Fillatreau4 · Daniel Tortei1,2 · Francois Brenot1,3 · Michel Devy1

Abstract
Vision-based advanced driver assistance systems (ADAS), appeared in the 2000s, are increasingly integrated on-board 
mass-produced vehicles, as off-the-shelf low-cost cameras are now available. But ADAS implement most of the time-
specific and basic functionalities such as lane departure or control of the distance to other vehicles. Integrating accurate 
localization and mapping functionalities meeting the constraints of ADAS (high-throughput, low-consumption, and small-
design footprint) would pave the way towards obstacle detection, identification and tracking on-board vehicles at potential 
high speed. While the SLAM problem has been widely addressed by the robotics community, very few embedded 
operational implementations can be found, and they do not meet the ADAS-related constraints. In this paper, we 
implement the first 3D monocular EKF-SLAM chain on a heterogeneous architecture, on a single System on Chip (SoC), 
meeting these constraints. In order to do so, we picked up a standard co-design method (Shaout et al. Specification and 
modeling of hw/sw co-design for heterogeneous embedded systems, 2009) and adapted it to the implementation of 
potentially any of such complex processing chains. The refined method encompasses a hardware-in-the-loop approach 
allowing to progressively integrate hardware accelerators on the basis of a systematic rule. We also have designed original 
hardware accelerators for all the image processing functions involved, and for some algebraic operations involved in the 
filtering process.

Keywords FPGA · Co-design · SLAM · Machine-vision · ADAS

1  Introduction

Advanced driver assistance systems (ADAS) appeared in the 
2000s and are now increasingly found on-board mass-pro-
duced vehicles. They involve various sensors (cameras, lidar, 
others) and signal or image processing functionalities (e.g. 
extraction and analysis of features detected in acquired sig-
nals or images), see [33]. ADAS-related concepts have been 
notably validated by research on perception or navigation for 
autonomous mobile robots since the 1980s. Nevertheless, 
ADAS implement most of the time specific and independ-
ent functionalities, such as the control of distance to other 
vehicles, or the detection of driver hypovigilance or lane 
departure, see [27]. Functionalities such as accurate vehicle 
localization and sparse vehicle environment mapping would 
allow paving the way towards obstacle detection, identifica-
tion and tracking (notably thanks to the reduction of the 
complexity of the associated data processing) and towards 
autonomous navigation of road vehicles at high speed.

Self-localization and environment modelling have been 
central issues for research on mobile robots since the 1980s 
[10], although the SLAM acronym appeared towards the end 

 * Jonathan Piat
piat.jonathan@gmail.com

Philippe Fillatreau
philippe.fillatreau@enit.fr

Daniel Tortei
dtertei@laas.fr

Francois Brenot
fbrenot@laas.fr

Michel Devy
michel.devy@laas.fr

1	 CNRS, LAAS, 7 avenue du colonel Roche, 31400 Toulouse, 
France

2	 Univ de Toulouse, UPS, LAAS, 31400 Toulouse, France
3	 Institut National Polytechnique de Toulouse, 

INPT - University of Toulouse, 4 Allee Emile Monso, 
31030 Toulouse, France

4	 Laboratoire Genie de Production de l’Ecole Nationale 
d’Ingenieurs de Tarbes (LGP-ENIT), Institut National 
Polytechnique de Toulouse (INPT), University of Toulouse, 
47 avenue d’Azereix, BP1629, 65016 Tarbes Cedex, France

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-018-0836-2&domain=pdf


of the 1990s [14]. Various sensors have been used for the 
associated perception tasks, e.g., ultrasonic sensors, laser 
range finders, and cameras. The emergence of off-the-shelf 
low-cost cameras allows using them in monocular, stereo-
vision, or panoramic vision-based ADAS systems, see [18].

The simultaneous localization and mapping (SLAM) 
issue has now been widely explored by the robotics com-
munity, and numerous academic solutions have been pro-
posed. However, very few complete embedded operational 
chains meeting the constraints associated with ADAS (fast 
processing times, low-consumption, small-design footprint) 
can be found in the literature. This is partly due to the intrin-
sic complexity of the advanced image processing algorithms 
involved and to the large volume of data (number of pixels) 
to be processed.

The computer vision and robotics perception communi-
ties started in the late 1990s–early 2000s to study the design 
of specific, embedded and real-time architectures, involv-
ing programmable logics, for advanced image processing 
functionalities, see [35]. Much progress remains to be done 
about vision-based SLAM, a complex image processing 
and numerical filtering chain. To embed such a complex 
functionality on an ADAS, one must explore the possibili-
ties offered by available execution resources, to take advan-
tage of their specific properties. This leads the designer to 
formulate a heterogeneous (or not) processing architecture 
involving both general purpose processing units and appli-
cation-specific hardware accelerators. To define an efficient 
distribution of the computational load over these two kinds 
of operators, the design needs to be undertaken following 
joint design (called co-design) approaches.

This paper deals with the definition of a heterogeneous 
architecture for the integration of a complete monocular 3D 
extended Kalman filter (EKF) vision-based SLAM process-
ing chain meeting the constraints of an ADAS. To achieve 
that, we have studied the introduction of a suitable co-design 
methodology associated with a hardware-in-the-loop (HIL) 
approach allowing to progressively integrate specifically 
designed hardware accelerators.

The contribution is threefold :

• we have selected in the literature a standard and generic
co-design approach [38] which we have (1) refined to
allow the integration of a complex processing chain such
as a vision-based monocular SLAM and (2) adapted to
encompass a hardware-in-the-loop approach allowing
to progressively integrate hardware accelerators; in our
approach, the hardware accelerators are integrated one
by one, based on the use of a systematic rule based on
the results of the profiling of the heterogeneous SLAM
chain under construction. The refinement and adapta-
tion brought to the state-of-the-art method we picked up
[38] are not specific to the nature of the processing chain

developed here, and can be reused for any advanced sig-
nal or image processing chain.

• we have used this refined co-design method to integrate
the first complete monocular 3D EKF-SLAM chain on a
heterogeneous (hardware/software) architecture on a sin-
gle SoC. The obtained performances meet the constraints
(processing times, power consumption, design footprint)
of the ADAS.

• we have developed and validated original hardware accel-
erators (reusable for any embedded SLAM application
or vision application involving the same functionalities)
of all the image processing and of some data process-
ing functions involved in the numerical filtering steps
(Fig. 1).

This work was conducted in the context of the Develop-
ment of an Integrated Camera for Transport Applications 
(DICTA) cooperative project. The goal of this project is to 
integrate advanced ADAS functionalities on the iCam smart 
camera developed by the Delta Technologies company, see 
[13].

This paper is organized as follows. In Sect. 2, we present 
a state-of-the-art spanning over the basic SLAM principles 
and different approaches found in the literature, the basics 
of extended Kalman filtering, the operational vision-based 
SLAM implementations in the community and at the LAAS 
laboratory, and the hardware/software co-design method-
ologies; this section ends by a synthesis of the working 
hypothesis, the scientific approach followed and the main 
contributions of this work. Section 3 presents the refined 
and adapted generic co-design methodology proposed here, 
and details the successive steps of the development of our 
heterogeneous monocular 3D EKF-SLAM chain. The rest 
of the paper is organized according to these steps. Section 4 
deals with step 1 of our co-design methodology, which 
defines the architecture model, the application model, and 
the constraints on the embedded system. Section 5 presents 
iteration 1, performing the initial platform specification, the 
application model refinement, and the implementation of 
a software-only prototype. Section 6 deals with iterations 
2–4 ( iterative integration of original hardware accelerators). 
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Fig. 1   Simultaneous localization and mapping—SLAM



Section 7 presents the final embedded prototype, discusses 
its validation through the experimental results obtained and 
compares it to state-of-the-art implementations. Section 8 
presents our global conclusions and our future works.

2 � State of the art and motivation

2.1 � SLAM: general principle

In the framework of the autonomous navigation of a mobile 
robot or vehicle, the SLAM issue deals with the problem of 
incrementally building a map of an unknown environment 
explored by the vehicle, while simultaneously keeping track 
of the vehicle pose (position and orientation) in this envi-
ronment (see Fig. 2). Various exteroceptive sensors have 
been used to sense the environment (e.g. ultrasonic sensors, 
laser range finders or one or several cameras). Tracking and 
matching landmarks over time allow updating the environ-
ment map: the positions of already perceived landmarks are 
refined while newly perceived landmarks are integrated into 
the map, see [14]. Proprioceptive sensors (e.g. odometry or 
inertial measurement units—IMU) provide an estimate of 
the robot pose, notably allowing reducing the complexity of 
the landmarks tracking process. Tasks involved in the SLAM 
process may be described as front-end perception tasks, and 
back-end pose estimation and map update tasks, see [7, 37].

2.2 � SLAM: different approaches

The approaches found in the literature for the SLAM process 
may be classified mainly into filtering-based approaches, 
and approaches based on bundle adjustment optimization.

Historically, filtering-based SLAM approaches (based 
on the use of an extended Kalman filter—EKF) have been 
proposed first (see for example [31]) and have remained 
very popular since then. Filtering-based approaches use 
probabilistic data to describe the robot state (robot pose) 
and the landmark positions in the environment map. Match-
ing landmarks allows refining the map and the robot pose 
through a numerical process (the extended Kalman filter is 
widely used at this stage). EKF-based SLAM exhibits well-
known limitations. First, the approach is complex, as EKF-
based SLAM requires to integrate all landmarks positions 
and the robot pose in the same state vector and to manage 
their uncertainties (large covariance matrix) in the filtering 
process. The EKF-SLAM complexity is evaluated in Sola 
[40] to o(k⋅n2) , where n is the global number of landmarks
in the environment map and k is the number of landmarks
observed at each algorithm iteration. Second, consistency
problems appear, due to errors related to the linearization
performed in the neighborhood of the system state, and to
possible wrong landmark matches. Thus, the community

has explored other solutions. In Montemerlo et al. [29], the 
authors propose the FastSLAM algorithm, based on the use 
of a particle filter instead of the EKF. On the one hand, this 
approach reduces complexity by decorrelating the robot pose 
from the landmarks positions, but on the other hand, this 
approach also exhibits similar complexity and consistency 
issues (especially as the number of particles grows with the 
size of the environment map).

Another approach has been getting more and more inter-
esting over the last few years: bundle adjustment SLAM per-
forms optimization over selected key frames in the sequence 
of images acquired by the robot, see [30, 42]; incoming key 
frames correspond (for example) to images for which too 
few features matches are obtained, and the uncertainty of 
the robot pose is too high; key frames should be spatially 
distributed, and may be kept in limited number using a tem-
porally sliding window.

In Strasdat et al. [42], the authors compare filtering-
based and bundle adjustment-based SLAM approaches for 
purely software implementations, and conclude that key 
frame-based optimisation provide the best accuracy per unit 
of computing time if powerful processing units and large 
amounts of interest points can be used. But, the authors 
show that filtering-based approaches still appear beneficial 
for small processing budgets (as is the case in our study).

2.3 � SLAM: extended Kalman filter

Filtering is the process of estimating the system state from 
noisy, partial and/or indirect state measurements.

The Kalman filter provides an optimal state estimate in 
the event of noisy measurements, assuming a Gaussian dis-
tributed noise and a linear process model. The filter relies 
on the recursive estimation of the state and the stochastic 

Fig. 2   Principles of the simultaneous localization and mapping prob-
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properties of the process. Starting from an initial state and 
a stochastic model of the process and data sources, the fil-
ter predicts the future state of the system together with its 
prediction error. The predicted state is then compared to the 
actual state observed from the measurements, to update the 
stochastic model and refine the state estimate. The updated 
stochastic model will help achieve better state prediction for 
the next iterations of the process.

The state prediction step is formulated as follows:

where �̂+ the predicted state, �̂ the current state , � the state 
transition matrix, � the state error covariance matrix, �+ the 
a posteriori error covariance matrix, and � the covariance 
of the process noise.

The state update step is formulated as follows:

where H is the observation model matrix, Z is the innovation 
(difference between the observation and the predicted state) 
covariance matrix, � is the Kalman gain matrix that allows 
updating the state and state error covariance matrix.

The extended Kalman filter extends this framework to the 
case of a non-linear process model. In the state prediction 
and state update steps, the observation and prediction func-
tions are linearized around the current state of the system. 
An extended Kalman filter iteration for the visual SLAM 
problem can be formulated as follows:

1. The state is predicted using a movement model of the
system that can integrate proprioceptive data (IMU,
odometry… ), or a simpler model like a constant speed
model.

2. The state observation step consists in observing map
elements (landmarks) as features to be observed in the
images. These observations are iteratively integrated
into the filter following the update process step.

3. Features are detected in the image and integrated as
landmarks in the process state. These map points will
later be used for the state observation step of the filter.

This process implies, on the computer-vision side, the abil-
ity to:

1. detect image features
2. describe image features in the world frame

�̂+ =��̂

�+
=���T

+���T ,

(1)� =���T
+ �,

(2)� =��T
⋅ �−1,

(3)�̂+ = �̂ +�(� −��̂),

(4)�̂+
= �̂ −���T ,

3. accurately match image features in a frame sequence

These tasks must be performed with as much accuracy as 
possible since wrong image features or bad matches may 
endanger the filter stability.

2.4 � Operational vision‑based embedded SLAM 
implementations

There are still very few real-time embedded operational full 
SLAM processing chains in the literature. Early works have 
proposed systems based on the use of telemeters or infrared 
(IR) sensors. For example, Abrate et al. [1] have proposed 
a solution involving eight low-cost IR sensors. The SLAM 
processing chain was implemented on a low-cost CPU 
Motorola 68331 processor. The processing times obtained 
limited the robot speed to 0.6 m/s. The emergence of low-
cost cameras and the improvements of embedded processors 
performances have allowed the implementation of embedded 
vision-based SLAM solutions in the last few years. Bonato 
et al. [5] have proposed a system based on the use of four 
cameras (resolution: 320 × 240 pixels). The authors have 
implemented a SIFT interest points descriptor on a Stratix® 
II FPGA. The hardware blocks are coded in Handel-C and 
the communication interfaces and cameras interfaces are 
coded in VHDL. The authors foresee performances for 
a complete vision-based 2D EKF-SLAM chain of 14 Hz 
with a consumption of 1.3 W. Nikolic et al. [32] propose 
the implementation of an embedded 3D vision-based (2 
cameras) SLAM based on bundle adjustment on a hetero-
geneous Zynq FPGA (hardware + software); the camera’s 
resolution is 752 × 480 pixels; the system proposed a hard-
ware implementation of the extraction of FAST and Harris 
interest points (see [21, 36]), while the rest of the SLAM 
processing chain is not implemented on the FPGA. The sys-
tem runs at 20 Hz. Faessler et al. [15] propose the imple-
mentation of a 3D optimization-based monocular-dense 
SLAM on-board a quadrocopter. The camera resolution is 
752 × 480 pixels, interest points used are FAST corners; the 
visual odometry chain is implemented on a CPU ARM® 
(four cores, 1.9 GHz); dense map reconstruction is imple-
mented on a ground segment (on a CPU i7 2.8GHz). The 
Wi-Fi communication between the on-board payload and 
the ground segment limits performances to between 5 and 
50 fps (frames per second). In Vincke et al. [46], the authors 
propose a pure software implementation of a monocular 3D 
EKF-SLAM processing chain on a multiprocessor hetero-
geneous architecture - OMAP3530 single chip integrating a 
RISC processor (ARM® Cortex A8 500 MHz) with a SIMD 
Neon coprocessor, and a DSP (TMS320C64x+, 430 MHz) -. 
Again, the resolution of the cameras is limited to QVGA 
(320 × 240 pixels). The mean processing times performances 
announced are around 60 fps.



Considering our scientific and applicative context, these 
implementations all exhibit part or all of the following draw-
backs: limited camera resolution, purely software implemen-
tation, 2D (not 3D) SLAM, performances not compatible 
with ADAS, or involvement of optimization-based SLAM, 
while our objective is the implementation of a 3D EKF-
based SLAM on a heterogeneous architecture, with perfor-
mances compatible with ADAS constraints. To the best of 
our knowledge, there exists no implementation of a complete 
monocular 3D EKF-SLAM processing chain coping with the 
constraints of an ADAS.

2.5  Operational vision‑based EKF‑SLAM 
implementations at LAAS

Over the last few years, two operational vision-based EKF-
based SLAM processing chains have been developed at the 
LAAS-CNRS laboratory.

Davison et  al. [12] and Roussillon et  al. [37] imple-
ment a 3D EKF-SLAM processing chain called RT-SLAM 
(standing for real-time SLAM). Sensors used are an IMU 
and a single camera (VGA resolution, 640 × 480). It is a 
pure software implementation (in C++ language) running 
on an Intel Core i7 × 86 desktop processor. The number of 
landmarks in the environment map and the number of land-
marks updated at each image acquisition are configurable. 
An active search strategy associated with a Harris features 
detector [21] allows observing, tracking and matching cor-
ners. Newly observed landmarks are initialized in the envi-
ronment map using a classical one-point RANSAC (random 
sample consensus) algorithm [11]. The global processing 
time performances reach 60 Hz, but consumption is too high 
for the ADAS context (140 W).

More recently, C-SLAM, based on RT-SLAM and pre-
sented in Gonzalez et al. [20] was developed in C language; 
this software implementation did not use any external soft-
ware library anymore (as opposed to RT-SLAM). In Botero 
et al. [6], the authors implement C-SLAM on a dual FPGA 
platform including a Virtex5 and a Virtex6 FPGAs. Perfor-
mances reach 24 Hz (with 640 × 480 image resolution) while 
observing up to 20 landmarks in each acquired image (up to 
20 × 24 landmarks updates/s). The C-SLAM implementation 
allowed to validate the software architecture presented in 
Sect. 3. The first three layers are in charge of the scheduling 
of the vision-based EKF-SLAM steps, while the low-level 
layer involves the computationally intensive operations (the 
latter layer is where the performance improvement oppor-
tunities should be sought for). We have used this functional 
architecture as a starting point for the works presented here; 
the initial behavioral model used in our co-design approach 
(see Sect. 4.2) has been directly derived from this architec-
ture (Fig. 3).

2.6 � HW/SW co‑design methodologies

In the literature, many works related to the development of 
suitable methodologies for the prototyping of an embedded 
system can be found. A subset of these refers to heteroge-
neous architectures and they can be classified [38] as: (A) 
top-down approaches, where the target architecture is gradu-
ally generated from the behavioral system specification by 
adding implementation details into the design; (B) platform-
based approaches, where a predefined system architecture 
is used to map the system behavior; and (C) bottom-up 
approaches, where a designer assembles the final hardware 
architecture by inserting wrappers between operational het-
erogeneous components.

These methodologies can be referred to as co-design 
methodologies [mainly for approaches (A) and (B)] or 
design space exploration (DSE) [for approaches (A), (B) and 
(C)]. In the following, we explore existing methodologies 
for co-design; most methodologies in the literature are top-
down approaches, that use an application model to specify 
the application behavior and structure (and thus constitute 
model-driven methodologies).

The model-driven design flow for the design space explo-
ration (DSE) is a long-studied problem and has proved 
worthy in a number of applicative domains where the com-
plexity of the targeted application and of the computing 
architecture may lead to a difficult design process.

In Bezati et  al. [3] and Pelcat et  al. [34], top-down 
approaches use the data-flow model of the application to 
ease the parallelism exploration to target heterogeneous 
multi-core architectures. Other authors use a high-level pro-
gramming language that implements a data-flow model of 
computation that is to be automatically transformed into a 
valid hardware implementation or multi-core software, see 
[41, 49]. Some works rely on the UML model with its archi-
tecture specific extensions (MARTE, UML 2.0 see [25]… ) 

Fig. 3   Architecture of the C-SLAM software [6]



to study an application and its supporting architecture in the 
same framework.

Other top-down approaches such as [23] or [9] only 
define the high-level methodology to be applied for DSE 
but leave the choice of the languages and the tools to the 
designer. Methodologies such as the one proposed in Calvez 
et al. [9] (see Sect. 4) guide the user from the input high-
level specification to a valid system on a chip by imposing 
a number of intermediate steps (each step being associated 
with its local model and tests) that follow a V-chart flow. 
Methodologies such as the one proposed in Kienhuis et al. 
[23] only define a very coarse design flow from the applica-
tion and architecture models to a mapping that meets the
application constraints. An iteration of the flow maps the
application model onto the architecture model and evaluates
the performance of the mapping in a simulated environment.
The architecture model is then refined until the application
constraints are met.

All these methods and tools target the same goal: defining 
an optimal architecture (with respect to input constraints and 
input models) for a specific application through the design 
space exploration. Every method has domain-specific attrib-
utes and constraints that may not fit our needs. In Sect. 3, 
we will propose a generic design flow, refined from Shaout 
et al. [38], and how we used it to guide our application 
development.

2.7 � Synthesis: working hypothesis, scientific 
approach and contributions

In this paper, we aim at defining and validating a hetero-
geneous hardware/software architecture for the integration 
of a complete monocular vision-based 3D EKF-SLAM 
processing chain meeting the constraints of an ADAS. In 
Strasdat et al. [42], the authors show that filtering-based 
approaches appear beneficial for small processing pro-
cess budgets, as is the case in our study (integration of 

a monocular sparse vision-based SLAM chain, where a 
limited number of interest points will be tracked). Further-
more, with optimisation-based approaches, latency cannot 
be guaranteed, while the number of operations involved in 
one EKF state update step is deterministic for a given state 
vector dimension.

Our SLAM-related working hypothesis (derived from the 
RT-SLAM, see [37], and C-SLAM, see [20]) is as follows:

• we use an IMU system for vehicle motion estimation in
the SLAM prediction step;

• we use a single camera (resolution: 640 × 480 pixels) for
exteroceptive perception;

• we initialize up to five new landmarks in the map for each
acquired image;

• we integrate up to 20 landmarks observation in the
SLAM correction step;

• we use a corner detector to extract sparse interest points;
the process involves a tessellation of the acquired images
to provide a better distribution of the extracted interest
points in each image;

• the tesselation grid uses 40 × 40 pixels tiles resulting in
a 16 × 12 grid (see Sect. 6.1).

Efficient embedded systems must provide high computa-
tional performances and low consumption [19]. The appli-
cative ADAS-related context and the cooperative DICTA 
project (see Sect. 1) have helped to define the performance 
target constraints on our system. Frequency requirements 
are set to a minimum of 30 Hz (or frames per second). The 
constraints on the latency of the complete processing chain 
are set to at most 1 image. We also aim at keeping the total 
system consumption lower than 5 W and the design footprint 
as small as possible (within 25 cm2

× 2 cm ) since we should 
be able to embed the final SLAM implementation on-board 
an iCam smart camera, see [13]. None of the operational 
vision-based SLAM implementations presented in Sects. 2.4 
and 2.5 meets these constraints.

The choice of the target platform is linked to the 
choice of the associated processors. CPUs and GPUs (and 
to a lesser extent DSPs) provide a much easier imple-
mentation of complex algorithms than FPGAs (based 
on reprogrammable logics and leading to much higher 
implementation complexity and time). But FPGAs gen-
erally lead to far better real-time processing (namely 
latency and throughput) and power consumption perfor-
mances, see [17, 35]. When tackling the implementation 
of embedded complex algorithms (here, dealing with 
advanced image processing), heterogeneous hardware/
software architectures combining a CPU and a FPGA 
may allow efficient trade-offs; the algorithms of higher 
complexity, processing low volumes of data or called 
at low frequencies may be implemented on the CPU; 
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algorithms which are more systematic and/or process 
high data volumes (typically here, low-level image pro-
cessing algorithms applied to large number of pixels) 
can be efficiently and massively parallelized on a FPGA. 
We chose to implement our embedded SLAM chain on 
a Zynq-7020 FPGA, only  Xilinx® heterogeneous plat-
form providing a heterogeneous architecture combining 
a CPU  (ARM® dual-core Cortex A9 processor) and a 
FPGA, at the start of the works described here. We chose 
Avnet’s ZedBoard environment for the prototyping of our 
3D EKF visual SLAM SoC; this low-cost platform pro-
vides all interfaces functionalities for a PC, a monitor, 
and a USB camera, and relevant processing and memory 
resources. In particular, it provides an energy-efficient 
multi-core ARMv7 processor (667 MHz), a Zynq-7020 
FPGA device, 512MB DDR3 RAM and a Xillinux [47] 
distribution which comes quite handy for our needs 
as it allows memory-mapped and streaming interfaces 
between the logic fabric and the host processor(s) at no 
additional engineering effort.

In the following, we describe our implementation of a 
complete monocular 3D EKF-SLAM on a heterogeneous 
architecture. Our contribution is threefold:

• we have selected in the literature a (standard and generic)
co-design approach which we have (1) refined to allow
the integration of a complex processing chain such as
a vision-based monocular SLAM and (2) adapted to
encompass a hardware-in-the-loop approach allowing to
integrate hardware accelerators of advanced image pro-
cessing or algebraic data processing functions involved in
the filtering process. In our approach, the hardware accel-
erators are integrated one by one. The HIL progressive
integration of hardware accelerators is made by using a
systematic rule on the results of the cost (here, latency
and throughput) profiling of the hardware and software
functional components of the heterogeneous SLAM
chain under construction.

• we have used this refined co-design method to integrate
the first complete monocular extended Kalman filter
(EKF) SLAM chain on a heterogeneous (hardware/soft-
ware) architecture on a single SoC. The obtained process-
ing chain performances meet the constraints of the pro-
cessing times, power consumption and design footprint
of the ADAS.

• we have designed several original hardware accelera-
tors reusable for any embedded SLAM application
or vision application involving the same functions.
Indeed, we have proposed and validated original hard-
ware accelerators of all the image processing function-
alities involved (extraction of interest points corners
and computation of their descriptors, tessellation of
the images for a better distribution of the interest points

all over the images, matching and tracking of the inter-
est points over the sequence of images). We also have 
developed and validated an original hardware accelera-
tor for the multiplication of matrices involved in the 
EKF filtering steps.

3 � Proposed co‑design methodology

Co-design is a well-covered scientific topic with solutions 
ranging from pure design methods to semi-automated design 
flows. We have identified the following flaws in the existing 
aforementioned methods (see Sect. 2.6):

• ASIC/SoC oriented design flows do not specify optimi-
zations at the application model level but rather tend to
optimize at the implementation level.

• co-design workflows such as in Calvez et al. [9] tend
to prefer local iterations at each step (e.g. specification,
design, implementation) rather than global iterations (see
Fig. 4).

• in design flows such as the one proposed in Pelcat et al.
[34], the scheduling partitioning can completely be rede-
fined between two iterations of the same flow with differ-
ent constraints/scenario input

• design flows such as [34] tend to consider that the
designer has an extensive knowledge of the application
constraints/properties before prototyping. The flow does
not specify how the designer improves the knowledge
along the design iterations.

• fully automated design flows (see for example [41, 49])
somehow fail to capture the full extent of the designer’s
knowledge.

In an effort to get a design flow that simultaneously:

• captures the designer knowledge,
• ensures limited partitioning modifications between two

consecutive iterations of the design flow,
• allows for the integration of model-level optimizations,
• ensures IP/software capitalization,
• and allows for HIL performance evaluation,

we came up with the generic workflow depicted in Fig. 5.
This design flow aims at guiding the designer through 

the DSE but does not include any automatic steps nor is 
supported by any software tool.

The following subsections describe the workflow steps 
and then introduce its application to the implementation 
of our vision-based EKF-SLAM chain.



3.1 � Design flow description

The design flow starts with an initial model of the applica-
tion and either a single-core initial architecture or an archi-
tecture imposed by the application. The initial constraints 
capture the affinity for tasks to be executed on a given 
processing element and the costs associated with each 
task (evaluation of task processing time, power consump-
tion, memory footprint … ). In a first iteration, the model is 
scheduled over the given architecture to evaluate the initial 

latency (only performance cost that can be evaluated at 
this step of the co-design method) of the application. This 
result allows the user to refine the architecture model (i.e., 
add parallelism degrees) and the application model (i.e., 
expose more potential parallelism) iteratively, over steps 
1 and 2. Once the architecture and application model is 
considered valid regarding the target latency, the designer 
can move forward through the prototyping process.

The next step (synthesis) aims at building a software-
only functional prototype of the application. The designer 
validates each of the software components using unit-testing 
techniques. Each of the validated blocks then contributes to 
a software libraries catalog, to be used for the initial proto-
type. This initial prototype implements the schedule defined 
earlier together with the communication primitives for inter-
process communication.

This initial software prototype is evaluated against the 
actual performance defined in the constraints: it is profiled 
to evaluate the component costs. If the target performance 
is not met, the actor with the highest cost is selected for 
optimization. The design flow thus loops back to the Hw/
Sw partitioning with the affinity of the selected actor set to 
hardware in the constraints. Once an actor is implemented in 
hardware, the current stage prototype performance is evalu-
ated using an HIL approach. The hardware accelerators are 
integrated one at a time: a single accelerator is integrated at 
each global iteration of the HIL process. This design loop 
keeps going until the prototype meets the target cost.

Similarly to state-of-the-art co-design methods, the pro-
posed design workflow guides the platform designer from 
model-based specification to a prototype that meets the 
application constraints. It goes through a number of proto-
typing steps with local iterations to achieve locally required 
performance.

The main contributions of this workflow are that:

1. optimizations are performed at the model level and at
the implementation level, whereas some methods only
consider the model level in the design flow;

2. a systematic decision rule is used to improve the applica-
tion’s partitioning;

3. knowledge is improved at each iteration through profiling;
4. partitioning is modified one task at a time;
5. implementation costs can relate to different attributes

(throughput, latency, power consumption) to cover dif-
ferent application domains.

3.2 � Design flow applied to our vision‑based 
EKF‑SLAM application

In the following, we describe the design iterations we 
followed to conduct the development or our embedded 

Fig. 5   Proposed co-design methodology for iterative prototyping



real-time vision-based EKF-SLAM implementation. Sec-
tion 4 describes the modelling of the design flow inputs. 
In Sect. 5.1, we detail the optimizations at the application 
model level for the platform specification step. Then we will 
successively integrate hardware accelerators (vision-related 
processes and algebraic operator) to meet the targetted costs 
(see Sect. 6) as depicted in Fig. 6. The evaluated costs in our 
application will be the throughput to meet our target frame 
rate, the design footprint and the power consumption of the 
system (see Sect. 4.3).

4 � Architecture, application and constraints 
modelling

This section deals with the application of step 1 of our co-
design methodology, named “Modelling”. This stage estab-
lishes the architecture model (see Sect 4.1), the application 
model (see Sect. 4.2), and the constraints on the system (see 
Sect. 4.3).

4.1 � Architecture model

As explained in Sect. 2.7, we target an architecture with 
general purpose processing capabilities and room to inte-
grate hardware accelerators. We chose the Zedboard® 
development platform based on the ZynQ® Soc that fea-
tures the following attributes:

• an energy-efficient dual-core ARM® v7 processor
(667MHz);

• 512 MB DDR3 RAM;
• 80k logic cells, with DSP and memory blocks;
• a Xillinux [47] Linux distribution which comes quite

handy for our needs as it allows memory-mapped and
streaming interfaces between the FPGA and the host
processor(s) at no additional engineering effort.

This development platform does not meet our physical 
footprint constraint of 25 cm2

× 2 cm , but our design has 
the potential to be shrinked to this size. While the on-
board SoC can have a larger power consumption than the 
target (5 W), we will optimize the logic and software to 
meet that limit.

Our architecture model is composed of two CPU with 
available logic to host our custom hardware accelerators.

4.2 � EKF‑SLAM application model

The visual EKF-SLAM chain can be described by the 
following pseudo-code, that we formerly used for our 
C-SLAM implementation, see [20]:

1: slam = init slam(map size)
2: for n = 0; ;n++ do
3: image = acquire frame()
4: predict(slam, robot model);
5: j = 0;
6: lmk list = select lmks(slam);
7: correl list = correl lmks(lmk list, frame);
8: for i = 0; i < size(correl list) and j < nb correct; i+

+ do
9: if score(correl list[i]) > correl threshold then

10: correct slam(correl list[i]);
11: j ++;
12: end if
13: end for
14: feature list = detect features(frame);
15: j = 0;
16: for i = 0; i < size(feature list) and j < nb init; i++

do
17: if init lmk(feature list[i]) then
18: j ++;
19: end if
20: end for
21: end for

where:

• slam is the global structure that holds the SLAM state
and additional information;

• lmk_list is a list of landmarks selected in the environ-
ment map for tracking;

• correl_list is the list of observations of these selected
landmarks in the current image;

• feature_list is the list of newly detected interest points
in the current image;

Fig. 6   Iterations for our co-design flow applied to our hardware pro-
totype; each red arrow represents the accelerators successively inte-
grated in our HIL approach



and:

• slam_init() is a function that initializes the SLAM state
given a map size;

• predict() is a function that performs the prediction step
of the EKF filter;

• select_lmks() is a function that returns a list of land-
marks to be observed in the current image;

• correl_lmks() is a function that observes (matches) the
selected landmarks with interest points in the current
image;

• correct_slam() is a function that performs the correction
step of the EKF filter;

• detect_features() is a function that detects interest points
in the image;

• init_lmk() is a function that initializes landmarks cor-
responding to newly detected interest points (landmark
initialization). The function returns 0 if the environ-
ment landmark map is full.

This pseudo-code can be configured with the following 
parameters:

• correl_threshold , the minimum correlation score for a
landmark to be integrated to the correction step;

• map_size , that defines the total number of landmarks to
be managed in the environment map;

• nb_correct , that defines the number of EKF correction
to be executed per frame;

• nb_init , that defines the maximum of new landmarks to
be integrated into the environment landmarks map per
frame.

In our C-SLAM implementation, those parameters take 
the following values:

• nb_correct = 6,
• nb_init = 5.

This C-SLAM algorithm is then adapted to run in an SDF 
(deterministic) manner. We obtain the SDF model pre-
sented in Fig. 7.

4.3 � Constraints

We remind here briefly the targeted performance contraints 
expressed in Sect. 2.7:

• SLAM throughput: 30Hz (30 fps);
• SLAM latency: 1 image;
• power consumption: 5 W;
• small physical footprint (within 25 cm2

× 2 cm).

Now that all the required design flow inputs are defined, we 
can start iterating the design flow, starting with the model 
level optimization.

5 � Iteration 1: initial platform specification 
and model refinement

As we explain in this section, the initial model does not 
expose a lot of parallelism and we are not satisfied with the 
initial latency evaluation; thus we decide to optimize the 
schedule latency at the model level (see Sect. 5.1). Then, 
we present the software-only obtained prototype assessment 
(see Sect. 5.2).

5.1 � Application model refinement

In SDF applications models, more parallelism can be 
exposed at the structural level by applying re-timing tech-
niques. Re-timing consists of adding delay tokens on the 
graph edges to modify the application pipeline.

Such modifications do not affect the structural aspect 
of the model (the way that nodes are connected) and the 
schedule length, since the repetition vector of the graph 
is preserved, but the latency of schedule can be positively 
affected.

In our 3D EKF-SLAM application, re-timing was 
achieved by delaying the prediction, correction and 
landmarks initialization tasks (starting from the SDF model 
presented Fig. 7, these tasks are delayed in Fig. 8).

Before this re-timing, the directed acyclic graph (DAG) 
of the application is defined as shown in Fig. 9 (on the left 
of the picture), with only Feature_detection (2) and Land-
marks_correlation (3) to be executed in parallel and a paral-
lelism level of 1.16 ( parallelism = T1∕T∞ with T1 = 7 and 
T
∞
= 6).

After re-timing, the DAG of the application is defined 
as shown in Fig. 9 (on the right of the picture), where the 
filtering [Correction (5)] and [Landmark_initialization (6)] 
tasks are allowed to be executed in parallel of the vision 

Fig. 7   The vision-based EKF-SLAM SDF model



tasks. Parallelism level is now 1.75 ( Parallelism = T1∕T∞ 
with T1 = 7 and T

∞
= 4).

The application now exposes three-degree parallelism. 
This allows creating a clear partitioning between the filter-
ing tasks (landmarks selection, prediction, correction, land-
marks initialization) and the vision tasks (feature detection, 
landmarks correlation). Re-timing may affect the SLAM’s 
performance since the behavior of the tasks must take the 
re-timing into account, but is necessary to meet the execu-
tion time constraints on a heterogeneous architecture. In this 
case, the designer should take into account the behavior of 
the landmarks correlation task as its function is to find land-
mark matches between the past and the current frame. In 
cases of, e.g., sudden changes in the orientation, it is highly 
likely that we ”lose” a large number of landmarks. Given the 
fact that the correction task operates on landmarks from the 
precedent frame, the quality of the prediction may be cor-
rupted in case of a low number of (or no) landmark matches. 
Thus, a larger number of landmarks needs to be correlated.

In conclusion to this subsection, we generalize our opti-
mized model as a filtering-based visual SLAM application 
that stands:

• whatever the filtering technique involved in the correc-
tion task is

• whatever the feature detection and correlation
techniques involved in the features detection and
landmarks correlation tasks are

in a filtering-based visual SLAM application.

5.2 � SW‑only prototype

After the model-level optimization, the model is mapped 
onto the ZynQ® dual-core architecture with all actors affini-
ties set to software. The prototype consists of two threads T1 
and T2 with appropriate synchronization and communication 
happening through software FIFOs (see Fig. 10).

Vision and filtering tasks are being allocated (mapped) 
onto two different threads. At this stage, there is no task 
mapped on a reconfigurable hardware device (FPGA); the 
entire application is running on the host processor.

This software-only prototype does not match our target 
throughput (see Table 5). The actor with highest computing 
cost is identified as the features detection and its affinity is 
set to hardware in the application constraints.

6 � Iterations 2–4: hardware accelerators

This section presents the hardware accelerators developed 
along the iterations of our HIL-oriented co-design methodol-
ogy (see Fig. 24). We remind that in our co-design method-
ology, hardware accelerators are integrated one at a time (a 
single accelerator is integrated at each global iteration of the 
HIL process). The choices of the successive functionalities 
to be accelerated are made using the following systematic 
rule: the costliest function (as far as computing cost is con-
cerned) is the next to be implemented on hardware. The 
main iterations will be summarized at the end of the co-
design process (see Fig. 24).

Our main contributions here are the following FPGA-
based original hardware accelerators:

• an accelerator for the features detection task (front end—
see Sect. 2.1—vision task accelerator including the hard-
ware implementation of the FAST interest points associ-
ated with an image tesselation process), implemented in
iteration 2 and presented in Sect. 6.1;

Fig. 8   Re-timed application SDF model

Fig. 9   Application DAG before and after re-timing

Fig. 10   Schedule of the SLAM application after first iteration



• an accelerator for the correction step of our EKF-
SLAM (back end—see Sect. 2.1—filtering task accel-
erator), developed during iteration 3 and presented in
Sect. 6.2;

• an accelerator for the correlation task (front-end vision
task accelerator) of our EKF-SLAM, developed during
iteration 4 and presented in Sect. 6.3.

6.1 � Iteration 2: feature detection hw accelerator

Image features detection is the task of detecting, in 
images, interesting image structure that could arise from a 
corresponding interesting scene structure, e.g., a landmark 
in the scene. Image features can be interest points, curve 
vertices, edges, lines, curves, surfaces, etc., (see [16]). Our 
vision-based EKF-SLAM implementation relies on the 
detection and tracking of corners in an image sequence. 
The corner detection methods presented in Harris and 
Stephens [21] and Shi et al. [39] analyze the gradient in 
the local neighborhood of the potential corner in the pro-
cessed image through a structure tensor. In Bay et al. [2] 
and Lowe [28], a difference of Gaussian (DoG) is used to 
detect a corner. Some of these corner detection methods 
were successfully implemented on FPGA (see [4, 48]), 
but the resource count (memory and logic blocks) can be 
fairly high . FAST (feature for accelerated segment test, 
see [36]) is a corner extraction method with good corner 
extraction performances and a very low software com-
plexity. This method is also well suitable for hardware 
implementation with a very low resource count and no use 
of DSP blocks, see [24].

There are very few implementations of feature detec-
tion modules on a dedicated hardware architecture in the 
literature. Birem and Berry [4] have implemented a Har-
ris point detector on an Altera® Stratix I® target. But the 
Harris detector is implemented on (many) DSP blocks 
of the component. Nikolic et al. [32] have proposed an 
implementation of Harris and FAST points detectors on a 
Xilinx® Spartan 6®. A pixel is processed over four system 
clock ticks, which limit the input pixel stream frequency. 
Kraft et al. [24] have implemented a FAST point detector 
on a Xilinx® Spartan 3®. The feature detector is executed 
at 130 Mpixels per second (corresponding to almost 500 
frames per second for an image resolution of 512 × 512), 
which meets our ADAS-related constraints (as far as 
throughput is concerned).

In this subsection, we present the design and implemen-
tation of our hardware accelerator for the FAST feature 
extraction, based on the implementation proposed by Kraft 
et al. [24] and optimized by us (see [7]) to achieve a better 
maximum frequency (thanks to a pipelined adder tree) and 
memory consumption (only one 36k BRAM used).

6.1.1 � FAST corner detector

The FAST corner detection at a given candidate pixel of an 
image (called reference, current or central pixel here) relies 
on the analysis of the local gradient between this reference 
pixel and the pixels located on a Bresenham circle centered 
on the reference pixel (Fig. 11). Let Pi ( i ∈ [0, BCs − 1] ) be 
the pixels located on this circle, where BCs is the size of the 
Bresenham circle (i.e., the number of pixels on the circle). 
Pixels located on the circle are classified into two classes 
(darker or brighter) according to the following conditions :

where p is the reference pixel, t is a threshold, Ip is the inten-
sity of the reference pixel and IPi

 is the intensity of a given 
pixel on the Bresenham circle. If a set of minimum N con-
tiguous pixels are classified as brighter or darker, then p is 
classified as a corner. The detector has got three parameters: 
the Bresenham circle size BCs , the threshold t and the mini-
mum number of contiguous pixels N.

Figure 11 shows an example of a corner with the corre-
sponding Bresenham circle.

Once a corner is detected, its score, given by Eq. 5, is 
computed.

Figure 12 presents the global architecture of our hardware 
accelerator for the FAST feature detection. The FAST hard-
ware implementation is composed of four processing blocks: 
Thresholder, Corner Score , Contiguity and Score Validation.

The Thresholder processing block uses threshold t 
to compare the central pixel to the pixels on the circle, 
and provides two vectors of BCs bits each indicating 
whether the successive pixels on the circle are, respec-
tively, brighter or darker than the central pixel. These two 

ClassPi
=

{
darker IPi

≤ (Ip − t)

brighter (Ip + t) ≤ IPi,

(5)

V = max

(
∑

Pi∈brighter

|IPi
− Ip| − t,

∑

Pi∈darker

|Ip − IPi.
| − t

)

Fig. 11   Fast corner detection principle on sample image used in a 
SLAM application



vectors are used by the CornerScore block, that computes 
the current pixel score V. The Contiguity block determines 
whether at least N contiguous pixels are brighter or darker 
than the central pixel. There are BCs − N  successive arcs 
of N contiguous pixels on our Bresenham circle; for each 
of these arcs, N comparisons are needed to check whether 
all pixels belong to the same (brighter or darker) class. 
Therefore, our Contiguity block uses BCs − N comparators, 
each of them performing N comparisons. All comparisons 
are performed in parallel. If at least one of the contiguity 
tests performed by the BCs − N comparators is successful, 
the presence of a corner and its score are validated by the 
Score validation block.

The implementation of the four material processing 
blocks is composed of logic elements performing sums, dif-
ferences, absolute values and comparisons. The implemen-
tation of most of these is quite straightforward. The inputs 
of the CornerScore and Thresholder processing blocks are 
the central (current) pixel, the pixels of the Bresenham cir-
cle, and threshold t. Outputs of the Thresholder processing 
block (and inputs of the Contiguity block) are the elements 
of the BCs bits vectors indicating whether the successive 
pixels on the circle are, respectively, brighter or darker 
than the central pixel. The main hardware acceleration is 
provided by the adder tree instantiation which computes 
pipelined additions. It allows to perform, in our case, addi-
tions of eight inputs per clock cycle—with a latency two 
clock cycles instead of eight clock cycles using a basic 
processor, see [7].

As far as the pixel pipeline flow is concerned, pixels are 
stored in a cache (BRAM) allowing to feed the FAST corner 
detection hardware blocks with the pixels on the Bresenham 
circle . If BCd is the diameter of the Bresenham circle, we 
need a sliding processing region of BCd × BCd pixels in the 
image; thus, we need to buffer BCd image lines.

Our hardware architecture is generic. The size of the 
Bresenham circle BCs , the threshold t and the number N of 
contiguous pixels needed to detect a corner can be param-
eterized. The typical values we have chosen are BCs = 16 , 
N = 9 and t = 20 , recommended by Rosten and Drummond 
[36].

The results of our material architecture implemented 
for the detection of FAST features are consistent with the 
state-of-the-art functional implementations (we assessed this 

through a comparison with a software implementation based 
on the use of the OpenCV library).

On our FPGA target (Xilinx® ZynQ® zc7z20), we obtain 
a maximum frequency of 160 MHz, i.e., our feature detec-
tion hardware accelerator can process up to 160 Mpixels/s 
(maximum frequency for a VGA image resolution) with a 
latency of BCd pixels and BCd image lines (7 lines for a 
Bresenham circle of 16 pixels perimeter). This throughput 
corresponds to the processing of up to 77 frames/second 
for a full HD image resolution ( 1920 × 1080 pixels), with 
a maximum power consumption of 2.5 W (estimated using 
the Xilinx® XPower Analyzer® tool). These results bring to 
light a very good computational power/consumption ratio 
and validate our FAST interest point extraction hardware 
accelerator. Table 1 summarizes the use of the resources of 
the FPGA.

In comparison with the state of the art of FAST feature 
extraction hardware accelerators, the architecture proposed 
in [24] uses 12 BRAMs, 2368 LUTs and 1547 registers of 
a Spartan® 3 FPGA, with a maximum processing clock 
of 130MHz (for a 512 × 512 images). The improvements 
brought by our architecture are a lower BRAM count and 
the use of a pipelined adder tree to increase the maximum 
frequency.

6.1.2 � Tesselation hw accelerator

The second hardware acceleration of the feature detection 
front-end vision task is the tesselation of the corner extrac-
tion. Tesselation is the process of tiling the image in small 
blocks using a rectangular grid having Rows lines and Cols 
columns, to beneficially:

• reduce the image processing complexity by applying
image processing techniques only to a subset of image
blocks (delimited by the grid cells) instead of processing
the entire image;

• avoid the need for the use of a non-maxima suppres-
sion technique since we extract a single feature (the one
with maximum score) within each tesselation grid cell.

In our original software-only SLAM implementation, 
this tesselation was used so that at each iteration only 
five image blocks were selected to compute the corner 

Fig. 12   FAST architecture

Table 1   Use of the logic resources of the Zynq xc7z20-1clg484 for 
VGA ( 640 × 480 ) image resolution

Logic utilization Used Available Utilization (%)

Slice LUTs 5963 53200 11
BRAM (18 k/36 K) 0/1 140 (38 K) 0.5
Slice registers 8281 106400 7



detection (see parameters settings presented in Sect. 4.2) 
and only one corner per image tile was extracted. This 
helped reduce the image processing time but also allowed 
the algorithm to improve the spatial distribution for the 
corners to be integrated as landmarks into the SLAM map.

Our tesselation module uses a BRAM memory that 
stores the best score for each tile. Since the image is pro-
cessed as a stream of pixels, only a single tile is active 
(i.e., currently being searched) at a time. The score and 
maximum position for a given block are output when the 
pixel stream reaches the bottom right corner of the block. 
The module outputs a stream of scores and corresponding 
maxima positions (one maximum position and correspond-
ing score per block).

The memory consumption (Mem) of the FAST feature 
extraction and tesselation hardware modules depends on 
the number of columns (Cols) of the tesselation grid, the 
number of bits used to code the (X, Y) position of a pixel 
with maximum score in a block (nbrbitX and nbrbitY) and 
the number of bits used to code the score (nbrbitscore). 
The following Eq. 6 computes the memory consumption:

In our case, Cols = 16, nbrbitY = 10bit, nbrbitX = 10bit 
and nbrbitscore = 12bit. The tesselation hardware module 
requires only Mem = 512 bits.

Our tesselation HW module also implements two coun-
ters (a pixel counter and a line counter) which allow defin-
ing the current tile (i.e., currently active tesselation grid 
cell) index and the current pixel position in this tile. A 
comparator compares the current pixel FAST score to the 
maximum score in the tile and stores the current score and 
position in the BRAM only if this score is higher than the 
current maximum score in the corresponding tesselation 
grid cell.

Figure 13 shows the tesselation grid, in black, and the 
highest score in each tile, in color: colors used range from 
red to blue for an increasingly good feature.

Our tesselation module efficiently helps meeting the pro-
cessing times constraints for our embedded SLAM chain. 
Moreover, a feature is detected by the FAST corner detector 
only one time, during the feature initialization step. Then, by 
updating the EKF filter, the algorithm predicts the new fea-
ture position in the next frame. Thus, the feature is tracked 
by correlating the descriptor BRIEF in a given and predicted 
area of research (see Sect. 6.3).

Furthermore, the latency of the FAST feature extrac-
tion and tesselation hardware modules is fixed and given 
by Eq. 7:

where IMGH = 480 , Rows = 12 and FASTrad = 4 pix-
els, where IMGH is the number of lines in our images 

(6)Mem = Cols × (nbrbitY + nbrbitX + nbrbitscore).

(7)L = (IMGH∕Rows + (FASTrad))lines + 1pixel,

and Fastrad is the radius of our Bresenham circle. 
Latency = 44 × linelatency + 1 × pixellatency.

The processing pipeline of the FAST feature extraction 
and tesselation hardware modules also transfers back to 
the software processor a fixed amount D of data which 
depends on

Rows, Cols, nbrbitX, nbrbitY and nbrbitscore (the num-
ber of bits used to code a corner score).

i.e., D = 768 Bytes in our design.
The new scheduling obtained after the integration of

our feature detection and image tesselation HW accelerator 
is presented in Figs. 14, 15 and Table 5.

6.2 � Iteration 3: algebraic hardware accelerator

The goal of this section is to give a theoretical background 
to identify the computational bottleneck of the EKF block 
used for a visual EKF-SLAM algorithm in general. After-
wards, we will focus on the integration of an adequate EKF 
accelerator.

(8)
D = (Cols×Rows) × (nbrbitY + nbrbitX + nbrbitscore),

Fig. 13   Tesselation on FAST corner detection result

Fig. 14   Schedule of the SLAM application after second iteration

Fig. 15   Image processing pipeline for the corner extraction



The profiling of our accelerated EKF-SLAM implemen-
tation shows that the most time-consuming task is correc-
tion_slam. According to our methodology, this task must 
now be accelerated through the use of hardware IPs.

6.2.1 � Complexity study of extended Kalman filter 
for the correction step

The EKF general framework was described in Sect. 2.3; the 
following Table 2 gives a breakdown of data sizes for the 
correction step (see Eq. 4), using:

• N, the number of landmarks observed in the correction
step ( N = 20 in our implementation);

• r the size of the robot state vector ( r = 19 in our imple-
mentation)

6.2.2 � Vision‑based EKF accelerator co‑design

In Thrun et al. [44], the authors show that computational 
requirements for an EKF algorithm depend on the num-
ber of features N retained in the map: LEKF = O(N2

) . We 
can see that the most computationally expensive equations 
take place in the correction loop while updating the cross-
covariance matrix (see Eq. 4) which makes for 85% of all 
the floating-point operations (FLOPs) when N = 20 , which 
matches the profiling of our EKF-SLAM implementation. 
Thus, a significant speed-up can be obtained by leveraging 
the floating-point KZKT tri-matrix multiplication and sub-
traction operations in hardware.

Another particularity of visual EKF-based SLAM is 
that the dimension of the covariance innovation matrix Z 
is always 2 × 2 . Moreover, in the literature, efficient recon-
figurable designs harboring matrix multiplication opera-
tions in floating-point precision are processing element 

(PE) oriented, see [22, 50]. Consequently, we can rewrite 
P − KZ × Kt as a PE-based pseudo-code:

Phase I: K × Z

1: for i = 0; i < 7N + 19; i++ do
2: PEin(i) = {Ki0,Ki1}
3: for j = 0; j < 2; j ++ do
4: PEin(i) = {Z0j , Z1j}
5: PEout(i) = Ki0 × Z0j +Ki1 × Z1j
6: end for
7: end for

Phase II: P − KZ × Kt

1: for i = 0; i < 7N + 19; i++ do
2: PEin(i) = {KZi0,KZi1}
3: for j = 0; j < 7N + 19; j ++ do
4: PEin(i) = {Kt

0j ,K
t
1j , Pij}

5: PEout(i) = Pij−(KZi0×Kt
0j+KZi1×Kt

1j)
6: end for
7: end for

Phase I and Phase II are executed sequentially on the 
same PEs. Each PE consists of two floating-point multi-
pliers, one floating-point adder (which perform KZKt ) and 
one floating-point subtractor (which performs P − KZKt ). 
Thanks to the size of the Z matrix, we are able to instanti-
ate multiple PEs that do not have to communicate to each 
other intermediary multiplication values (on line 5 of both 
Phase I and Phase II pseudocodes the output function of a 
PE does not depend on intermediary multiplication values). 
This design permits subtractions in equation P − KZ × Kt 
to be executed right after the multiplication under the con-
dition that each corresponding element of the P matrix is 
already fetched from memory. Thus, not only the tri-matrix 

Table 2  EKF matrix description Symbol Dimension Description

x̂, x̂+ (7N + r) × 1 Robot and feature positions (actual and predicted)
P,P+

(7N + r) × (7N + r) Cross-covariance matrix (actual and predicted)
P1 r × r Cross-covariance matrix with respect to robot position
P2 r × 7N Cross-covariance matrix with respect to all landmarks
P3 7 × 7 Cross-feature–robot covariance matrix
P4 (7N + r) × 7 Cross-feature–feature and robot–robot covariance matrix
F
x

r × r Jacobian to system state
F
�

r × 6 Jacobian to system state perturbation
Z 2 × 2 Covariance innovation
H 2 × 7 Jacobian
R 2 × 2 Measurement noise
K (7N + r) × 2 Filter gain
y 2 × 1 Measured output



multiplication is executed in a pipelined manner, but we also 
improve the performances of the subtraction as its latency 
is now the one of a single floating-point subtractor. Results 
are output column-wise which eases later addressing issues 
in software, see Fig. 16.

As our entire EKF-SLAM algorithm is designed to run 
as a SoC on a ZynQ device, we designed and implemented 
a generic accelerator that takes into account both latency 
and the aforementioned integration issues. We instantiate 
four PEs. In terms of latency, performances are close to the 
theoretical speed-up, see [43]. The reasons for not having 
instantiated more PEs are tied to resource usage (LUTs for 
logic and DSP48E embedded multipliers for floating-point 
calculations), and thus the percentage of the used area on the 
device which would consequently decrease the maximum 
operating frequency and/or the power consumption.

Having in mind that square matrix P is the biggest struc-
ture in our SLAM algorithm in terms of memory usage, it is 
imperative to ensure efficient data communication between 
the accelerator and the rest of the system. In Table 3, we can 
see the influence of N2 in equation P − KZ × Kt , as far as 
the number of element-wise memory accesses is concerned, 
by changing the value of N. An accelerator which would 
transfer back all the results into external memory (where 
program data are stored) would suffer from a large memory 
access penalty with growing N. By storing the P matrix in 
on-chip memory instead of storing it in external memory 
and by modifying the software to access the contents of P 
in on-chip memory, we would in addition gradually increase 
the efficiency of the accelerator.

In each EKF iteration, matrices P1 , P2 , P3 and P4 are 
fetched and updated from on-chip memory via a dedicated 

AXI bus. Then, matrices Z and K are copied from external 
memory to on-chip memory (iBRAM). Control data are 
communicated directly from the Xillinux user space to the 
co-processor. The logic fetches by itself matrices Z, K and 
P, and stores the result back in P (oBRAM) via dedicated 
XIL_BRAM buses. The processor is notified of the end of 
execution via an interrupt signal.

After the integration of this back-end accelerator, the 3D 
EKF SLAM’s tasks’ timing changes as on Fig. 17.

Since the accelerator IP is generic, our co-design tech-
nique may be migrated to bigger reconfigurable devices if 
there is a demand for more processing power (PEs). Accel-
erator was also successfully tested as a PLB peripheral for 
heterogeneous designs on a FPGA with IBM’s PowerPC440 
embedded processor.

The resulting speed-up when using the algebraic accelera-
tor is listed in iteration 3 of Table 5. This table shows that 
the next iteration of our design workflow must now target the 
acceleration of the landmark correlation step.

6.3 � Iteration 4: feature correlation hw accelerator

In this section, we present an original hardware accelera-
tor for the tracking and matching of features through the 
input image flow. Our working hypothesis is derived from 
our initial software C-SLAM implementation, see Sect. 2.7. 
The landmark map is initialized from the initially detected 
FAST features. Then, the selected features are tracked in 
the next images using an active search strategy [20]. The 
size of the search windows is derived from the innovation 
covariance of the EKF state. A descriptor-based matching 
in these searching areas is performed by comparing feature 
descriptors.

Many approaches to compute feature descriptors can 
be found in the literature. The Binary Robust Independ-
ent Element Feature (BRIEF) descriptor [8] has got many 
advantages over the other well-known SIFT [28] or SURF 
[2] descriptors from the point of view of their suitability for
hardware implementation. It is indeed a binary descriptor
representing the distribution of gradients in the neighbor-
hood of the pixel of interest. First, a Nb × Nb patch centered
on this pixel is extracted. Mb pairs of pixels in the patch are
randomly selected (see Fig. 18), and for each pair p0, p1 , a 
bit is generated as follows:

Fig. 16   Generic tiling for P − KZ × K
t

Table 3   Transfer analysis regarding P matrix in EKF equations

%xfers on N = 6 N = 13 N = 20

FPF
T
+ GQG

T 1.21 0.2 0.06
HPH

T
+ R 3.95 1.4 0.7

PH
T
Z
−1 17.2 11 7.96

P − KZK
T 74.96 86.45 90.8

Fig. 17   Schedule of the SLAM application after third partitioning



This results in a Mb-bit long binary descriptor. The BRIEF 
descriptor can be computed very fast, is very compact and 
exhibits good stability for the matching. The descriptor is 
robust to illumination changes and small rotations (less than 
15 ◦ ) [8] which makes it a good choice for SLAM applica-
tions. Its simplicity makes it a good candidate for hardware 
implementation. The comparison of two binary numbers can 
be done very simply and implemented very efficiently.

For our embedded SLAM implementation, we associ-
ate each FAST feature detected in the images to a BRIEF 
descriptor. We decided to compute 128-bit descriptors in a 
9 pixels × 9 pixels neighborhood.

Comparing the BRIEF descriptors of 2 pixels comes 
down to computing the Hamming distance of two 128-bit 
vectors. Eqs. 9 and 10 show the two steps of the Hamming 
distance computation:

where nOnes() counts the number of bits equal to ’1’ in the 
tmp vector. Counting the ones in a 128-bit vector proves 
expensive in term of hardware and latency. To simplify the 
process, the input 128-bit vector is divided into smaller vec-
tors of size n (6 bits in our case) for which the hamming 
distance can be computed using a n-inputs LUT. The result 
of each sum is then added using a pipelined adder tree. This 
induces a latency of four clock cycles in our design which 
in return consumes fewer logic cells than a classical 128-bit 
Hamming distance computation.

Figure 19 shows a correlator core. Data for correlation 
( BRIEFref  , ROIsize and X0 / Y0) and the correlation result 
(X,Y, BRIEF and HammingDistance) are stored in the same 
BRAM which can be read and written to by both the hard-
ware and the ARM host. A signal result_available is asserted 
to notify the end of the computation.

In the global image processing pipeline (see Fig. 21), 
the FAST feature extraction and BRIEF descriptor 

bm =

{
1 if p0 < p1
0

.

(9)tmp =BRIEFref XOR BRIEFcurrent,

(10)HDist =nOnes(tmp),

computation are performed in parallel. As several ROIs in 
which correlation using Hamming Distance is performed 
may overlap, we decided to instantiate as many correlation 
cores in parallel as the number of landmarks managed in 
the environment map (typically 20 in our case as stated in 
Sect. 2.7). Since the two vision-processing tasks partially 
depend on the same set of pixels, the cache memory was 
optimized to store the pixel shared between the two tasks 
(see Fig. 20). One key advantage of this accelerator is that 
its throughput is independent from the size of the search 

Fig. 18   Computation of the BRIEF descriptor

Fig. 19   Instantiation of a multi-core correlator

Fig. 20   Cache management for the shared memory between BRIEF 
descriptor computation and FAST corner extraction. The Blue area 
depicts the pixel used for the BRIEF descriptor computation. The 
Bresenham circle for the FAST computation is included in this area

Fig. 21   Image processing pipeline for descriptor extraction and 
matching



area since the descriptors are computed and correlated in 
parallel, on the pixel stream.

In Bonato et al. [5] and Yao et al. [48], respectively, the 
authors implement the SIFT feature descriptor in hardware. 
The SIFT feature descriptor is better than BRIEF in terms 
of stability, but the resource count is much higher from the 
viewpoint of the use of DSP blocks (respectively, 64 and 
97), the use of LUT (respectively, 35k and 43k) and the use 
of registers (19k for both), and the frame rate is much lower 
(30 FPS for QVGA images in Bonato et al. [5] and 30 FPS 
for VGA images in Yao et al. [48]). Moreover, these two 
hardware designs only compute the descriptor, while the cor-
relation is performed in software. In de Lima et al. [26], the 
authors use a FPGA to compute a 256-bit BRIEF descriptor. 
The implementation only considers the descriptor computa-
tion and was designed using HLS tools. This implementation 
is shown to work well for QVGA images stored in memory 
and processed using a 125-MHz system clock but no imple-
mentation of the correlator is proposed.

Our BRIEF correlator can run at up to a 160.436-MHz 
pixel clock and uses only 6 % of our ZynQ 7020 registers 
and 18% of its LUT. The BRAM consumption depends on 
the image resolution. For a VGA resolution, only 836 kb 
BRAM are used.

After integration of this front-end accelerator, 3D EKF-
SLAM tasks’ timing changes as on Fig. 22.  

7 � Final hardware prototype

This section begins with a description of our visual 3D 
EKF-SLAM’s SoC architecture, at the end of our co-design 
process (Sect. 7.1). Afterwards, the obtained global experi-
mental results are presented and discussed (Sect. 7.2) and 
put into perspective with respect to the state of the art 
(Sect. 7.3).

7.1 � Final hardware architecture

The developed hardware architecture consists of three IPs 
instantiated in the reconfigurable fabric of a ZynQ-7020 
device: the FAST feature detector and image tesselation 
module, the EKF module, and the correlator module. All 

vision tasks and the most time-consuming task in the EKF 
are executed on FPGA, while the rest is scheduled on ARM 
under Xillinux (user space). Hardware-accelerated functions 
are integrated into the embedded system as co-processors. 
The CPU communicates with our IPs via Xillinux middle-
ware (kernel space) and the Xilly_vga, Xillybus_lite, and 
Xillybus IPs are also instantiated in the logic, see Fig. 23.

The FAST+Tesselation accelerator is interfaced with Xil-
linux through Xillybus FIFOs (camera_fifo and FAST_fifos) 
which are accessed in the user space through files. The first 
is used for frame pixel reception, which is made from image 
files in Xillinux. The whole image sequence, and the IMU 
and GPS data used by our application are pre-registered and 
stored in external memory. This feature detection logic runs 
at 89MHz, limited by the maximal throughput supported by 
the Xillybus IPs. Control signals are communicated from 
the host through Xillybus_lite, which serves as a memory-
mapped (host to FPGA BRAM) interface. The correlator 
module communicates with the middleware as a memory-
mapped device.

Our modification to this off-the-shelf prototyping archi-
tecture was introduced in the third co-sythesis loop by 
changing the devicetree.dts file so that this architecture 
could support addressing through an additionally instanti-
ated AXI4 stream bus (namely axi_interconnect_2) for the 
EKF accelerator ( P − KZKT operation). In this way, we were 
able to set-up a new clock domain (96MHz) and to facili-
tate the HIL process. An individual bus is also imperative 
because of the P matrix-related transfer rates—see Table 3.

7.2 � Experimental results and discussion

In Table  4, we present the summary of the Zynq-7020 
device’s resource usage. The BRAM usage is high because 
apart from instantiating it for the storage of the P matrix, 
it is also used for implementing the Xillybus FIFOs (6×
BRAM36K). The maximum frequency of individual acceler-
ators is higher than actually set, because of the timing issues 
of the integrated bare-metal design with the Xillybus IPs. 
The Xilinx Power Analyzer® is used to measure the power 
consumption in the reconfigurable logic (0.671 W)—this 
measure does not include the ARM’s power consumption. 
The power consumption was measured, on the ZedBoard 
power input, to 4.56 W. This value is high because of other 
active peripherals on the board (which are not used by our 
SLAM application): Ethernet controller, LEDs, OLED 
display...

The performance measures (in frames per second) of 
the successive versions of our SLAM application along our 
co-design process are given in Table 5. The first column 
presents our SLAM task execution time with re-timing; 
the second, third and fourth columns present the impact 
on these performances of the progressive integration of 

Fig. 22   Schedule of the SLAM application after iteration 4



our hardware accelerators. The total execution time of the 
functional blocks is measured using software-intrusive 
code profiling. FIFO communication between the soft-
ware threads takes a lot of time (12 ms). The loading of 

the frames from external memory also consumes a large 
part of the processing time (13 ms). Although the fea-
tures detection task is much faster now, a huge percent-
age of the execution time is due to FIFO communication: 
15 − (640 × 480)∕89MHz = 11.55(ms) . The accelerated 
correction task takes only 20 × 0.25 = 5(ms) , where 0.25 ms 

Fig. 23   Embedded SLAM’s SoC architecture

Table 4   Global prototype’s resource usage with IPs’ performance

Resources Instantiated %FPGA

LUTs 27256 50
Slice registers 34127 31
DSP48E 40 18
BRAM (36 kb) 51 36
BRAM (18 kb) 15 6
ARM Cortex A9 2(cores) 100
FMAX (MHz) Individually Integrated
FAST+Tessellation 166 89
Correlator 204 89
Eq P − KZK

T 119 96
Power consumption (W)
ZedBoard – 4.56 (0.671)

Table 5   Execution time of SLAM functional blocks in (ms) on Zed-
Board

Iteration no. I II III IV

COM 12 12 12 12
Landmark selection 0.8 0.8 0.8 0.8
Prediction 2.1 2.1 2.1 2.1
Correction_slam 24 24 5 5
Landmark initialization 0.3 0.3 0.3 0.3
Camera 13 13 13 13
Landmark correlation 8.8 8.8 8.8 0.6
Feature detection 140 15 15 15
FPS rate (Hz) 5 16 20 24



is the time needed for a single landmark correction. Thanks 
to multi-core correlation, matching of observed landmarks 
takes minimal time now.

Since the target-compliant prototype lacks real-time exe-
cution because of Xillinux communication interfaces, FIFO 
inter-thread communication and the latency needed to fetch 
images from a storage medium, we conclude our approach to 
be validated and our global prototype to meet the applicative 
constraints after four iterations, see Fig. 24.

7.3 � Comparison with the state of the art

Three heterogeneous FPGA-based SLAM systems exist up 
to our knowledge: the monocular 2D EKF-SLAM of Bonato 
et al. [5], the C-SLAM monocular 3D EKF-SLAM previ-
ously implemented at the LAAS laboratory [20], and the 
3D bundle adjustment SLAM of Nikolic et al. [32]. How-
ever, these works do not present complete SLAM systems as 
they do not implement the vision and pose estimation-related 
accelerators on a single reconfigurable device. The first 
paper does not mention what algorithm for feature detec-
tion the authors use, and moreover, their landmarks map is 
2D, which significantly downsizes the complexity of their 
problem compared to ours. On the other hand, the authors of 
the third paper use a ZynQ device for preprocessing vision 
tasks—feature detection and correlation, using multiple 
cameras along with synchronized IMU data. Moreover, they 
mention in conclusion that their future work envisages a 
“SLAM in a box” module on a single embedded device, as 
the computationally demanding bundle adjustment is ported 
onto a power-consuming Core2Duo host. Last, authors in 
[20] implement a monocular SLAM chain similar to ours;
although they achieve performances similar to ours (24 Hz)
with the same amount of observations and corrections, they
consume more power (as they use two FPGAs). Compared
to optimized software implementation like the one presented
in Vincke et al. [45], our prototype achieves better frame rate
at higher image resolution. One key advantage of our solu-
tion compared to software-only prototypes (even multi-core

ones) is that the EKF part of the application is fully inde-
pendent from the vision-processing operators. This allows 
our prototype to support higher image resolution with no 
additional CPU load.

8 � Conclusion and future works

8.1 � Conclusion

In this paper, we have implemented on a heterogeneous soft-
ware/hardware architecture (Zynq FPGA) the first complete 
monocular 3D EKF-SLAM chain meeting the constraints of 
an ADAS (processing times, power consumption and design 
footprint). To do so, we have adapted and refined a clas-
sical co-design approach to encompass a hardware-in-the-
loop approach allowing to progressively integrate hardware 
accelerators; in our approach, the hardware accelerators 
are integrated one by one, based on the use of a systematic 
rule on the results of the cost profiling of the functional 
components of the heterogeneous SLAM chain under con-
struction. The proposed co-design approach is generic and 
reusable for any advanced image processing chain on a het-
erogeneous architecture. Using a systematic rule paves the 
way towards some automation in the co-design approach 
proposed. We also have developed and validated several 
original hardware accelerators reusable for any embedded 
SLAM application or vision application involving the same 
functions. We have proposed and validated hardware IPs 
of all the image processing functions involved and of some 
data-processing functions involved in the numerical filtering 
steps. Our FAST hardware accelerator brings some progress 
with respect to the state of the art from the point of view of 
resources used and processing times. We think that our hard-
ware accelerator for the computation of a BRIEF descriptor 
provides a good trade-off between resource consumption 
and performances. Our hardware accelerator for correlation 
implements 20 cores in parallel and also provides a hardware 
accelerator for the computation of a Hamming distance. The 
processing time obtained does not depend on the size of the 
correlation windows.

8.2 � Future work

In our future works, we will interface the ZynQ-7020 device 
directly with an embedded camera (see Fig. 25), as we pre-
sumed that the camera task outputs a 1D pixel flow in our 
application model (data flow). That would remove the 13-ms 
Xillibus communication delay, which would yield an over-
performing prototype.

Once the embedded camera has been wired with the 
ZynQ, our prototype may be evolved into a consumer-grade 
product. We intend to exploit the three developed harware 

Fig. 24   Summary over the iterative prototyping



IPs with the rescheduled EKF-SLAM application in a bare-
metal design where the reconfigurable fabric would permit 
a higher bandwidth (at least 150 MHz instead of 89 MHz). 
On the other hand, once freed from the delays induced by the 
FIFO software communication and Xillinux interfaces, we 
estimate1. that vision tasks and filtering tasks would roughly 
take at most 4.1 ms and 8.2 ms, respectively, the filtering 
part being then the new bottleneck. That would roughly lead 
us to a monocular EKF-SLAM functionality with local maps 
containing 20 landmark points (while observing all of them) 
exceeding a 100-Hz rate at very low power consumption, 
which would even outperform the RTSLAM’s [37] execution 
(when using the same parameters as ours) on an Intel i7 core.
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